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Abstract—The prevalence and availability of cloud infrastruc-
tures has made them the de facto solution for storing and
archiving data, both for organizations and individual users.
Nonetheless, the cloud’s wide spread adoption is still hindered by
dependability and security concerns, particularly in applications
with large data collections where efficient search and retrieval
services are also major requirements. This leads to an increased
tension between security, efficiency, and search expressiveness,
which current state of the art solutions try to balance through
complex cryptographic protocols that tradeoff efficiency and
expressiveness for near optimal security.

In this paper we tackle this tension by proposing BISEN, a
new provably-secure boolean searchable symmetric encryption
scheme that improves these three complementary dimensions by
exploring the design space of isolation guarantees offered by novel
commodity hardware such as Intel SGX, abstracted as Isolated
Execution Environments (IEEs). BISEN is the first scheme to
enable highly expressive and arbitrarily complex boolean queries,
with minimal information leakage regarding performed queries
and accessed data, and verifiability regarding fully malicious
adversaries. Furthermore, by exploiting trusted hardware and the
IEE abstraction, BISEN reduces communication costs between
the client and the cloud, boosting query execution performance.
Experimental validation and comparison with the state of art
shows that BISEN provides better performance with enriched
search semantics and security properties.

I. INTRODUCTION

Cloud computing has had a profound impact on the way that
we design and operate systems and applications. In particular,
data storage and archiving is now commonly delegated to
cloud infrastructures, both by companies and individual users.
Companies typically want to archive large volumes of data,
such as e-mails or historical documents, overcoming limita-
tions or lowering costs of their on-premise infrastructures [2],
while individual users aim at making their documents easily
accessible from multiple devices, or simply avoid consuming
storage capacity of their mobile devices [15].

However, data being outsourced to the cloud is often sensi-
tive and should be protected regarding all aspects of depend-
ability. Private information incidents are constant reminders of
the growing importance of these issues: governmental agencies
impose increasing pressure on cloud companies to disclose
users’ data and deploy backdoors [24]; cloud providers are
responsible, maliciously or accidentally, for critical data dis-
closures [20]; and even external hackers have gained remote
access to users data for limited time windows [29]. Cloud
outsourcing services are thus highly incentivized to address
these dependability and security requirements. In particular,

when storing and updating large volumes of data in the cloud,
it is essential to offer efficient, secure, and precise mechanisms
to search and retrieve relevant data objects from the archive.
This highlights the need for cloud-based systems to balance
security, efficiency, and query expressiveness.

To address this tension, Searchable Symmetric Encryption
(SSE) [7] has emerged as an important research topic in
recent years, allowing one to efficiently search and update
an encrypted database within an untrusted cloud server with
security guarantees. Efficiency in SSE is achieved by building
an encrypted index of the database and storing it in the cloud
[17]. At search time, a cryptographic token specific to the
query is used to access the index, and retrieved index entries
are decrypted and processed. To minimize communication
overhead, most SSE schemes delegate the execution of cryp-
tographic computations to the cloud, as multiple index entries
would otherwise have to be requested and downloaded to
the client. However, performing sensitive operations in the
cloud also leads to significant information leakage, including
the leakage of document identifiers matching a query, the
repetition of queries, and the compromise of forward and
backward privacy [35] (respectively, if new update operations
match contents with previously issued queries, and if queries
return previously deleted documents). These are common,
yet severe, flavors of information leakage that pave the way
for strong attacks on SSE, including devastating file-injection
attacks [39]. Another relevant limitation of SSE schemes is
query expressiveness, as most solutions only support single
keyword match [13] or limited boolean queries (e.g., forcing
queries to be in Conjunctive Normal Form and not supporting
negations) [25]. This hinders system usability and may force
users to perform multiple queries in order to retrieve relevant
results, leading to extra communication steps and additional
information leakage.

In this paper we address these limitations by present-
ing BISEN (Boolean Isolated Searchable symmetric ENcryp-
tion), a new provably-secure boolean SSE scheme that im-
proves query expressiveness by supporting arbitrarily complex
boolean queries with combinations of conjunctions, disjunc-
tions, and negations (e.g., “(cancer ∨ terminal) ∧ ¬ cirrosis”).
This is a significant improvement over the current state of
the art, since supporting boolean queries is fundamentally
more challenging than single-keyword queries and addressing
negations is a non trivial task. Furthermore, BISEN also boosts
performance by minimizing the number of communication

1



steps and amount of data transferred between clients and cloud
servers. A central insight in the design of BISEN is the fact
that we can securely delegate critical computations to the cloud
by leveraging on a hybrid solution that combines standard
symmetric-key cryptographic primitives (e.g., Pseudo-Random
Functions and Block-Ciphers [27]) with remote attestation
capabilities offered by modern trusted hardware, formally cap-
tured by an abstraction called Isolated Execution Environments
(IEEs) [4].

An IEE is an environment that allows applications to execute
in isolation from all external interference (including co-located
software and even a potentially malicious Hypervisor/OS)
and that provides a mechanism for the remote attestation of
computed outputs. Until recently, such an abstraction could
only be built through hardware that was unfeasible to deploy
in cloud infrastructures, however recent advances in trusted
computing have made IEEs available in commodity hardware.
Prominent examples include Intel SGX [16] and ARM Trust-
Zone [1], which are being deployed in current desktop and
mobile processors and will soon become available as part of
many cloud infrastructures [33].

A main advantage of designing our system to leverage
the IEE abstraction lies in its portability, as our solution
can be easily instantiated using different existing (or fu-
ture) IEE-enabling technologies as they become available in
cloud platforms, while preserving security guarantees. This is
also relevant considering recent attacks on trusted hardware
[36], [37]. To further increase this portability, we extend
the IEE formalization to support very lightweight hardware
technologies (such as Intel SGX, with its limited Enclave Page
Cache size of 128MB), complemented with SSE techniques
and cryptographically protected accesses to more abundant
untrusted resources in the machine hosting the IEE or in other
external cloud storage services. This approach has mutual
benefits: SSE techniques allow extending IEE trusted resources
beyond hardware limitations in a secure way, minimizing
assumptions regarding the underlying technology employed;
and IEEs allow increasing the performance, scalability, and
security of SSE schemes.

In summary, in this paper we provide the following main
contributions:
• We propose and formalize an approach for extending

trusted hardware resources, integrating it in the IEE abstraction
of Barbosa et al. [4]. This approach allows IEEs to support
and operate on very large databases, and may be of particular
interest for other applications;
• We design BISEN, a Boolean SSE scheme based on the

previous approach and that can support all Boolean operands
and formulas. By leveraging IEEs as remote trust anchors,
BISEN is able to move most client-side computations to
the server, providing overall reduced computation, storage,
and communication overheads. BISEN provides verifiability
against fully malicious adversaries, supports dynamic updates
with forward and backward privacy, and queries only reveal
which encrypted index entries are accessed;
•We implement a prototype of BISEN based on Intel SGX,

which we run on real world datasets to experimentally validate
its efficiency properties. Our prototype is open-source and
available at https://github.com/sgtpepperpt/BISEN.

II. BACKGROUND AND RELATED WORK

Isolated Execution Environments (IEEs) From a high level,
and as defined by Barbosa et al. [4], an IEE is an idealized
random access machine, running a fixed program, and whose
behaviour can only be influenced by a well-specified interface
that allows input/output interactions with the program. Iso-
lation guarantees in IEEs follow from the requirements that:
the I/O behaviour of programs running within them can only
depend on themselves, on the semantics of their language,
and on inputs received; and that the only information revealed
about these programs must be contained in their I/O behaviour.
This abstraction allows for the formal treatment of remote
attestation mechanisms offered by technologies such as SGX
and TrustZone, which were shown in [4] to be sufficient for
the deployment of an Outsourced Computation protocol.

Building on these definitions, Bahmani et al. [3] demon-
strated how to refine the IEE attestation mechanism to enable
for the deployment of general multiparty computation. Their
design follows two main stages. First, clients leverage remote
attestation mechanisms to perform a key exchange agreement
with the IEE and establish a secure communication channel.
Afterwards, clients use these channels to interact with a
reactive functionality on the IEE, exchanging encrypted inputs
and outputs with confidentiality and integrity guarantees. The
usage of sequence numbers in communications made through
these channels also prevents a malicious server from repeating
requests. In this work we will leverage on the IEE abstraction
and this protocol, further extending it by allowing the IEE
to interact with untrusted storage resources with privacy,
integrity, and verifiability guarantees.
Searchable Symmetric Encryption (SSE) SSE deals with the
problem of how to efficiently search and update an encrypted
database [17], [26]. To achieve this goal, SSE schemes usually
build an encrypted index of the database (e.g., an inverted
list index [32]), hence reducing the previous problem to the
easier one of searching and updating an encrypted index. This
approach has additional advantages, as the index allows search
performance to be sub-linear on the database size, and the data
itself can eventually be stored on a second storage system
with different security guarantees. In its most simple version,
keys of this encrypted index are message authentication codes
(MACs) of keywords, and values are symmetrically encrypted
versions of document identifiers.

To search the encrypted index, the client transforms his
query into a cryptographic token (usually composed of a
pair of cryptographic keys), which is used by the server to
find and decrypt relevant index entries. This approach allows
the encrypted index to provide zero-leakage when it is on
the rest, however some information patterns must be leaked
when it is updated or queried, as a necessary tradeoff for
achieving practical performance (also providing zero-leakage
during computation would require expensive techniques such
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as Oblivious-RAM [22]). Information leaked by SSE schemes
includes search patterns (if a query has occurred in the past and
when) and access patterns (which index entries are accessed
by the query). Query-recovery attacks have been demonstrated
based on both patterns [12], [31], although requiring large a-
priori database knowledge (around 90%) or the adversarial
ability to inject files [39].

Forward and backward privacy are also important security
definitions in SSE [35]. Forward privacy enforces that up-
date operations should not reveal anything regarding updated
keywords, even if combined with previously issued query
tokens [8], and helps partially mitigating file-injection attacks.
Backward privacy enforces that search operations should only
reflect the current state of the database and should reveal
nothing regarding deleted keywords [9].

SSE schemes usually only support single keyword queries,
as supporting boolean multi-keyword queries with similar
security guarantees and performance is a fundamentally more
difficult problem [14], [23], [25]. Even the most recent
Boolean SSE scheme to date [25] still provides: limited
usability, as it does not support negations and queries must be
in Conjunctive Normal Form (CNF), possibly forcing users to
rewrite their queries; limited performance, requiring quadratic
server storage in the number of unique keywords in the
database and exhibiting quadratic search performance in the
query size; and limited security, as queries leak the search and
access patterns of some of their individual keywords and of the
resulting conjunctions/disjunctions. This is due to the difficulty
of managing complex multi-map data-structures required by
the authors for supporting boolean queries, which we show in
this work to be avoidable by leveraging remote trust anchors
expanded with cryptographically secured accesses to large
untrusted storage.

Cryptographic Protocols based on Trusted Hardware Re-
cent works have demonstrated the benefits that trusted hard-
ware like Intel SGX can bring to the design of cryptographic
protocols. Iron [19] used Intel SGX to develop a practi-
cal Functional Encryption (FE) scheme [19]. SSE, as most
schemes for privacy-preserving computations, can be seen as
specialization of FE, meaning that the approach proposed by
the authors could also be employed to solve the problems
we address in this work. However, our approach is specifi-
cally tailored for solving the challenges posed by searching
encrypted data, optimizing performance and efficiency as no
general purpose approach traditionally can.

ZeroTrace [34] provided a more efficient protocol for
Oblivious-RAM based on SGX. Their techniques can be used
to complement our approach, as a way to further reduce
information leakage and provide further resilience to side-
channel attacks [37]. HardIDX [21] used SGX for efficiently
supporting range queries in SSE. Their approach has similar-
ities with ours, but its focus is on a fundamentally different
problem (range queries). Additionally, it only supported static
databases and required the client to build the encrypted index.
In contrast, or work supports dynamic updates with minimal
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Fig. 1: Overview of the proposed approach.

leakage and moves most computations to the cloud in a secure
way, both considered essential for practical applications.

III. TECHNICAL OVERVIEW

The main idea of BISEN is for clients to leverage IEEs
as remote trust-anchors within the cloud, supporting efficient
update and search operations on their cloud-stored encrypted
databases. However, it would be unfeasible to maintain a
whole database index within a resource-restricted IEE. As
such, our proposal is to leverage a highly efficient environment
for computations (the IEE) and a virtually infinite source for
external storage (the cloud). BISEN combines these tools in its
IEE-sided code, processing queries within its isolated memory,
and relying on an cloud service for storing encrypted data.

Figure 1 provides an overview of BISEN’s architecture and
its components. BISEN starts with a bootstrapping phase,
where a client contacts a cloud server to initiate the IEE
with BISEN’s code. We call this server the Proxy Server, as
it operates the IEE, manages all of its communications, and
orders concurrent accesses. When started, the IEE initiates its
state and asks a Cloud Storage Service to create BISEN’s
(initially empty) encrypted index. This storage service will
basically be responsible for large-scale storage, and can even
be instantiated through pure storage solutions (e.g. AWS S3),
as it only needs to support put/get operations. Hardcoded in
BISEN’s code is the public key of a trusted Certificate Au-
thority, meaning that the IEE will only accept communications
from clients that present a valid certificate signed by it.

After bootstrap, clients can contact the proxy server to
remotely attest it created an IEE with BISEN’s code and
to establish secure communication channels with it. Secure
channels are established through a key-exchange algorithm
based on remote attestation and the clients’ public keys, as
in [3]. Through these channels, clients can issue update and
search operations to the IEE, which it processes by contacting
the storage service and accessing BISEN’s index.

Updates allow both adding or removing keywords to/from
documents. In either case, a new encrypted entry is added to
BISEN’s index, where its key is composed of a deterministic
cryptographic token uniquely combining the keyword and
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document, and its value is an encrypted message that includes
the document id and a flag indicating if the operation is
an addition or removal. This approach guarantees that both
operations are indistinguishable, a necessary condition for
preserving forward and backward privacy.

Search operations take a boolean query as input. The IEE
processes this query, retrieves and decrypts relevant index
entries from the storage service, calculates the resulting set
of document ids, and finally returns this set to the client.

Adversary Model. The clients, the IEE, and the Certificate
Authority are the only trusted participants in BISEN. The
Proxy Server and Storage Service are considered fully ma-
licious, i.e., they may attempt to break data privacy, integrity,
or computation correctness. Networking channels are also con-
sidered untrusted. Denial of service is considered out of scope
for this work, as the cloud controls the whole infrastructure,
but may be addressed in future works through cross-cloud
replication.

Application Scenario. An interesting application scenario for
BISEN is that of encrypted archival of email in the cloud. In
such a scenario, users would be able to securely outsource the
storage and management of their emails to a third-party cloud
provider, while still being able to have rich search features that
are commonly found in todays unsecured email cloud archival
services. As studied by Zheng et al. [39], cloud email is an
example scenario that can be easily targeted by file-injection
attacks, hence this application enforces the need to improve
the security of SSE schemes to withstand fully malicious
adversaries. Furthermore, preserving forward privacy is known
to help mitigate such attacks [39], and backward privacy
may have important implications in future attacks as well
[9]. Overall, minimizing information leakage should be a top
priority when deploying SSE schemes in practical scenarios.

IV. BISEN

In this section we present BISEN’s full details. We start
with some required notations and definitions (§ IV-A), then we
present BISEN’s protocols (§ IV-B), and finally we analyse its
security (§ IV-C).

A. Notations and Definitions

General Notations. In this paper we denote by λ the security
parameter and µ(λ) a negligible function in it. We will
use the standard security notions of variable-input-length
Pseudo-Random Functions (PRF, instantiated as an HMAC
in our implementation) [5] and authenticated encryption
schemes ensuring indistinguishability under chosen-ciphertext
attacks (IND-CCA) [27]. We assume the keys of these
primitives to be uniformly sampled from {0, 1}λ by the
key generation algorithm. We consider adversaries to be
probabilistic algorithms, running in time polynomial on
security parameter λ.

IEE Notations. IEE behavior and interactions with clients can
be abstracted as IEE = (Setup,Send,Receive), as follows:

• IEE.Setup(1λ, pkc) corresponds to IEE bootstrapping (if it
hasn’t been initialized yet) and secure channel establishment.
Setup takes security parameter 1λ and client public key pkc
as input, and produces state stIEE with the exchanged key, if
pkc could be verified.
• IEE.Send(stIEE,m) can be used by the client or IEE, and

uses the secure channel established by Setup to encrypt m
with the key in stIEE. This outputs c and updates state stIEE.
• IEE.Receive(stIEE, c) uses the channel to retrieve en-

crypted message c using the key in stIEE. This outputs m and
updates state stIEE.

Additionally, and differently from the IEEs original speci-
fication [3], [4], we consider IEEs to rely not only on trusted
state, which is assumed to be incorruptible by the underlying
system, but also on untrusted state (represented in BISEN
through the Storage Service), which has to be explicitly
protected through cryptographic algorithms. To establish inter-
actions with this untrusted state, and following a dictionary-
like notation, we define three new calls in the IEE abstraction:
• IEE.uInit() initializes an empty data-structure D in un-

trusted storage outside the IEE. It outputs D, making it
available for future uPut and uGet operations;
• IEE.uPut(D, {li, vi}∗i=0) accesses untrusted storage and

stores a group of entries {li, vi}∗i=0 in data-structure D. It
outputs updated structure D.
• IEE.uGet(D, {li}∗i=0) accesses untrusted storage and out-

puts a group of values {vi}∗i=0, stored in positions {li}∗i=0 of
data-structure D.

Formally, we consider uInit and uPut to additionally
produce an execution trace, containing the operation, its
input, and the output. In the security experiment this trace
is given directly to the adversary, capturing the notion that
all data stored through this mechanism is considered leakage.
Since we are considering a fully malicious adversary, all
values returned by uGet can be set by the adversary.

SSE Notations. In SSE, a database DB is composed by a
collection of d documents, each with a unique identifier id and
containing a set of keywords W. For a keyword w, DB(w) is
the set of documents where it occurs. The total number of
document/keyword pairs is denoted by n and is stored in an
encrypted index I, which is a dictionary structure mapping
each unique keyword w to a list of matching documents
(id0, .., id|DB(w)|−1) and allowing queries to be performed in
time sub-linear in n. φ(w̄) is a boolean query composed of a set
of keywords w̄ and satisfying a boolean formula φ. DB(φ(w̄))
represents the set of documents satisfying φ(w̄).

A multi-client dynamic boolean searchable symmetric en-
cryption scheme

∏
= (Setup,Search,Update) consists of

three protocols between a client and a server (in our case,
the IEE):
•
∏
.Setup (1λ, pkc) starts the scheme, with inputs security

parameter 1λ and client public key pkc. At the end of the
protocol the client has secret parameter K and, if the scheme
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hadn’t been initialized yet by another client, the server has the
(initially empty) encrypted index I.
•
∏
.Update (K, op, w, id) updates the database with inputs

secret parameter K, operation op = {add, del} (i.e., an addition
or deletion of a keyword), keyword w, and document identifier
id. In the end, the server outputs updated I.
•
∏
.Search (K, φ(w̄)) queries the database with inputs K

and boolean query φ(w̄). In the end, the client outputs a set
of document identifiers. If for any possible inputs this output
is DB(φ(w̄)), we say that

∏
is correct.

B. The Scheme

Figure 2 details BISEN’s protocols. In the Setup algorithm,
the client starts by contacting the proxy server and invoking
the IEE.Setup protocol. If the IEE hasn’t been initiated yet,
the proxy server starts it, and then redirects the client’s setup
message to it. The IEE starts by performing a key-exchange
algorithm with the client to create the secure channel between
the two. From this algorithm results state stIEE, which contains
the corresponding communication key. Then, if this is its first
execution, the IEE initiates its state: a key kF ,to be used
with PRF F; key kE , to be used with encryption scheme Θ;
dictionary of counters W, mapping each unique keyword w
in the database to an integer counter c initialized at zero
(each increment in c represents a new document containing
w); and counter nDocs, which counts the number of unique
database documents and will be used in the Search protocol
to help resolve Boolean queries with negations. Finally, the
IEE also asks the storage service to initiate index I, through
the IEE.uInit call.

The Update protocol can be used both for adding or deleting
keywords to/from documents, depending only on the value of
input op. Moreover, the protocol follows the same specification
for both, and for adverseries, they are indistinguishable. When
performing an update, the client starts by sending (op, id, hw)
to the IEE through their secure channel (IEE.{Send,Receive}
calls), where hw is a hash of keyword w, performed to
normalize keyword lengths and make updates for different
keywords indistinguishable. Upon receiving this message, the
IEE builds l, the label (or index key) for this update, by first
applying F on hw and kF to produce kw, and then on kw
and c (the keyword’s counter, retrieved from W). This double
application of F allows merging both hw and c with a secret
parameter (kF ), producing a secure label that is unique for this
update. l determines the position in index I where the update
will be stored. As index value, the IEE encrypts (l, op, id)
with Θ, an authenticated encryption scheme. Θ ensures the
preservation of both privacy and integrity of encrypted index
values. Furthermore, by including l in the encrypted index
value, the IEE can validate during Search operations that the
server is returning correct responses when it requests index
values from untrusted storage. Finally, the IEE sends this new
index entry to the server for storage, through the IEE.uPut
call, and increments nDocs if this is a new document.

When searching with a boolean query, the client also sends
hw to the IEE, for each keyword w in the query. Additionally

the client sends φ, the boolean formula of the query that the
IEE needs for computing search results. Given this message,
the IEE recalculates all labels for the inputed keywords (as
in Update), requesting the respective index positions from
the server through IEE.uGet. To hide any possible patterns
in the query structure, the IEE randomly permuts label or-
der and requests all at once (or alternatively in single, but
successive requests, if the storage service does not provide
such semantics). The IEE proceeds to decrypt these entries
with Θ, verifies if the server returned correct index values for
each label (aborting the protocol otherwise), and resolves the
boolean query by applying φ to the results.

In this setting, the process of resolving a boolean query
can be described in light of set operations. Searching for a
keyword results in a set of document identifiers. When two
or more keywords are queried, their sets can be unionized
or intersected, depending if φ specifies disjunctions or con-
junctions between them, respectively. For queries of three
or more keywords, parentheses can also be used to specify
precedence between boolean operands. Performing negations
is somewhat more complicated however, since inverting sets
implies having knowledge of the range of all possible values
(in this case, all document ids). To circumvent this issue we
define that documents are identified by the incremental values
of counter nDocs, starting at zero. Additionally, correctness
of document identifiers is assured by enforcing that the ids
inputed on Update belong to the range [0..nDocs + 1]. Using
this approach, the system can easily filter results for all existing
documents, and thus efficiently support negations by searching
for a keyword and inverting its document set1.
Optimizations and Extensions. An important goal in BISEN
is being able to support lightweight IEE technologies, such
as Intel SGX with its restricted EPC size of 128MB. The
proposal to extend IEE storage with cryptographically secured
accesses to untrusted storage partially supports this goal.
However, when performing a search in very large databases,
intermediary metadata that the IEE needs to process may still
be too large for such hardware restrictions. In these scenarios,
incremental computing principles can be applied to ensure
scalability: the IEE can dynamically calculate how many index
entries will fit in its limited trusted storage, request that many
entries through the IEE.uGet call, process and discard them,
preserving only partial search results and merging them with
the results of previous iterations of this algorithm.

Increasing the number of IEEs is also a useful extension,
allowing BISEN to scale regarding both database size and
client concurrency. The best way to achieve this is to make
IEEs stateless: clients could generate keys kE and kF and share
them with new IEEs (which would also help with possible
IEE termination issues by the proxy server), while remaining
state (W and nDocs) could be stored in the storage service
in a secure way and with a concurrency control mechanism.

1We assume that ids are never effectively removed, i.e., even if a document
has all of its keywords deleted, its id will still exist and will represent an empty
document. This approach has other benefits as well, including the possibility
of recycling document ids.
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Setup(1λ, pkc)

Client:
1: stIEE←$ IEE.Setup(1λ, pkc)

Server:
2: IEE.Setup(1λ, pkc)

IEE:
3: stIEE←$ IEE.Setup(1λ, pkc)
4: I← IEE.uInit()
5: kF ←$ F.Gen(1λ); kE←$ Θ.Gen(1λ)
6: W← Init(); nDocs← 0

Update(op, w, id)

Client:
1: hw ← H(w)
2: m∗←$ IEE.Send(stIEE, {op, id, hw})
3: Send m∗ to Server.

Server:
4: Send m∗ to IEE.

IEE:
5: {op, id, hw} ← IEE.Receive(stIEE,m

∗)
6: c← Get(W, hw)
7: if c = ⊥ then
8: c← 0
9: else

10: c← c+ 1

11: W← Put(W, hw, c)
12: kw ← F.Run(kF , hw); l← F.Run(kw, c);
13: id∗←$ Θ.Enc(kE , (l, op, id))
14: I← IEE.uPut(I, l, id∗)
15: if id > nDocs then
16: nDocs++

Search(q)

Client:
1: {w̄, φ} ← ProcessBooleanQuery(q); C ← [ ]
2: for all w ∈ w̄ do
3: hw ← H(w); C ← hw : C

4: m∗←$ IEE.Send(stIEE, {C, φ})
5: Send m∗ to Server.

Server:
6: Send m∗ to IEE.

IEE:
7: {C, φ} ← IEE.Receive(stIEE,m

∗); Q← Init()
8: for all Hw ∈ C do
9: kw ← F.Run(kF , hw)

10: c← Get(W, hw); L← [ ]
11: for all ci ← 0 . . . c do
12: l← F.Run(kw, ci); L← l : L

13: Q← Put(Q, kw, L)

14: L′ ← Flatten(Q)
15: Π←$ RandomPermutation(1λ); L′ ← Π(L′)
16: D′ ← IEE.uGet(I, L′); D ← [ ]
17: for all id∗ ∈ D′; l′ ∈ L′ do
18: (l, op, id)← Θ.Dec(kE , id

∗); Verify(l, l′)
19: D ← {op, id} : D

20: D ← Π−1(D); Q′ ← Join(Q,D)
21: R← Resolve(φ,Q′, nDocs); r∗←$ IEE.Send(stIEE, R)
22: Send r∗ to Server.

Server:
23: Send r∗ to Client.

Client:
24: R← IEE.Receive(stIEE, r

∗)
Fig. 2: Our BISEN scheme based on IEE = (Setup, Send,Receive, uInit, uPut, uGet), PRF F = (Gen,Run), authenticated encryption scheme Θ =
(Gen,Enc,Dec), and hash function H.

Encrypted index I is already monotonically crescent, hence
avoiding concurrency issues.

Another design choice is how to perform delete operations.
In the original approach by Cash et al. [13], delete tokens
should be stored in a separate set D, indexed by a PRF over
both the deleted keyword and document id. This approach
has the advantage of only storing one index entry per key-
word/document deletion, while BISEN stores a new entry
for each deletion submitted by the client (even if repeated).
However it makes keyword deletions distinguishable from
additions, and requires contacting the server twice, first for
accessing index I and then for accessing D.

C. Security Analysis

In BISEN our goal is for Update operations to have no
leakage and Search operations to only reveal message lengths
and which encrypted index entries are accessed, which we
abstract as labels. This is similar to the access pattern of
previous SSE schemes, however it captures a stronger security
notion since document identifiers are protected at all times.
Moreover, executing Search for two distinct queries can leak
the same label set, thus reducing the adversarial ability to
distinguish between queries. For instance, boolean formulas

φ1 = w1 ∨ w2 and φ2 = w1 ∧ w2, although representing
different queries, access the same label set.

Formally, BISEN’s security is parametrized by three leakage
functions (LSetup,LUpdate,LSearch). From these, only LSearch

produces leakage, detailed as follows:
LSearch(q) = ((|φ|+N), |Resolve(φ,D, nDocs)|, L)

where the first part corresponds to the length of the input
message (|φ| is the length of the boolean formula of the query
and N is the number of distinct keywords in it), the second
part is the length of the query response, and L is the set of
labels relevant for the resolution of the query.

The Update protocol has no leakage as all input and output
messages are of equal length and cryptographic operations are
performed inside the IEE. Having updates with zero leakage
also ensures forward privacy [8]. Backward privacy (specifi-
cally, backward privacy with update pattern [9]) is ensured by
storing additions and deletions in an indistinguishable fashion
and filtering results in the IEE.

Moreover, the employed cryptographic mechanisms ensure
security as follows: prf-security and uniqueness in keywords
and counters ensures indistinguishability of labels from out-
puts from a random function applied to a unique counter;
unforgeability of Θ ensures that adversaries cannot produce a
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ciphertext that does not exactly match the stored data for said
keyword/counter pair on the corresponding update request;
the security of the IEE channel and the sequence numbers
used prevent adversaries from emulating a fake BISEN exe-
cution, forging client requests, altering the order of messages
exchanged, or performing replay attacks. In the Appendix
Section we provide a formal security proof of these statements
in the real/ideal standard cryptographic model [27].

V. IMPLEMENTATION

We implemented a prototype of BISEN in C/C++, with
around 6200 lines of code. Our prototype is based on Intel
SGX [16], using its remote-attestation and enclave manage-
ment primitives to provide the IEE functionalities required
by BISEN. To bootstrap the IEE and establish secure Client-
IEE channels, we leveraged the SGX-based open-source im-
plementation of Bahmani et al. [3], adapting it for BISEN.
Their original implementation employed the NaCl crypto-
graphic library [6] for elliptic curve algorithms and other
cryptographic primitives. Our adapted implementation relies
on LibSodium [30] instead, which is a more complete and
up-to-date constant-time cryptographic library, partly based
on AES-NI. Constant-time cryptographic algorithms based on
hardware implementations and oblivious primitives allow us
to prevent side-channel leakage of the SGX enclave, including
page and cache level leakage.2

We instantiate PRF F with LibSodium’s SHA256-HMAC
implementation, and Θ with its authenticated encryption al-
gorithm, XSalsa20 stream cipher with Poly1305 MACs. Since
LibSodium is not ready for SGX deployment, we prepared
an SGX-compatible version by (among other steps) removing
all unsupported functions in SGX and replacing randomness
functions with their equivalents from Intel’s RNG library.

Regarding attestation, the employed mechanism follows the
design originally proposed in [4], where each program running
on an IEE must produce a signature of its code and I/O trace
thus far. For Intel SGX, this relies on the Quoting enclave,
which uses the EPID group signature scheme [11] to produce
a signature (quote) binding the enclave execution trace with
the code that produced such trace. Verification of quotes is
performed by the client through Intel’s Attestation Service.

For the IEE to interact with the encrypted index I, we
leveraged on SGX ocalls. Additionally, concurrent accessed
are managed by leveraging enclave multi-threading and by
using concurrent data structures that only block on writes.
Our implementation is open-source and available at: https:
//github.com/sgtpepperpt/BISEN.

VI. EXPERIMENTAL EVALUATION

We now experimentally evaluate BISEN, using the proto-
type implementation described in the previous section.

2Note that these countermeasures are not sufficient to protect from devas-
tating attacks such as [36]. This is where BISEN benefits from relying on
the IEE abstraction, as one can instead implement it on hardware resilient to
speculative execution attacks if this is a realistic concern, e.g. MI6 [10].

Experimental Test-Bench. We present performance results
for BISEN and its Search and Update protocols. As IEE and
proxy server, we used an Intel NUC i3-7100U with built-
in SGX support, 2.4GHz of CPU frequency, 8GB of RAM,
256GB of SSD storage, running Ubuntu Server 18.04.1. As
storage service we used a server with an AMD Opteron 6272
CPU with 64GB of RAM. Both machines were deployed on
a one gigabit ethernet network. To evaluate the impact of
remote communications, and since we already had the previous
hardware available, we leveraged the cloud to deploy the client
instead, using an AWS EC3 t3.large instance. The round-trip
time between client and proxy server was 41.377ms and the
max transmission rate was 50Mb/s. As dataset, we used a
the english wikipedia dump of August 2018 [38] with around
60GB of uncompressed text data, 5.5 million documents, and
464 million keyword/document pairs. Measurements are based
on an average of 50 independent executions.
Experimental Evaluation Roadmap. The goal of our exper-
imental work is to answer the following questions: i.) what
are the storage costs of BISEN; ii.) what is the performance
cost (i.e., total time consumed) to process and store a whole
dataset through a batch of Update protocol invocations, and
how does this performance evolve as we scale the dataset’s
size; iii.) what is the performance cost of executing differ-
ent types of Search queries, including queries with multiple
conjunctions, disjunctions, and negations, considering different
database sizes, the selectivity of queried keywords (i.e., the
size of returned results), and the query size; and iv.) how
does BISEN’s performance compare with the state of art in
Boolean SSE, namely the recent IEX-2LEV scheme [25].

A. Storage Costs

In BISEN, clients only store one cryptographic key (32
bytes), which is used for secure communication with the IEE.
The IEE also stores this key, plus kF and kE (3 ∗ 32 = 96
bytes). Additionally it stores dictionary of counters W, which
keeps a counter (4 bytes) and a hash (32 bytes) per entry, with
one entry per unique keyword in the database. For the English
Oxford dictionary containing 616500 unique word-forms, this
results in an upper bound of around 20MB IEE storage, while
e-mail date searches for individual days over 200 years could
correspond to around 3MB IEE storage. The storage service
stores index I, which can grow due to the security guarantees
provided (83 bytes per entry), nonetheless with cloud storage
this can be more seamlessly scaled.

B. Update Performance

Figure 3 reports the performance results for the Update
protocol of BISEN. The y-axis represents time elapsed (in
seconds), while the x-axis represents the update size in terms
of keyword-document pairs (i.e., how many entries are being
added to index I at once, with a single batch of multi-
ple Update protocol invocations). Results were measured at
different batch update sizes (up to 464 million pairs) and
are reported for networking and for the three main protocol
executors in separate, namely the client, IEE, and storage
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Fig. 3: Performance of the Update protocol.

service. Proxy performance is omitted for simplicity, as it only
forwards messages and its execution is highly efficient. Total
results are also reported for convenience of the reader.

Analysing the obtained results, one can conclude that
BISEN’s performance scales linearly with the size of the
batch update (Total line in Figure 3). An update for a single
document with 640 keywords takes 29ms, while a batch update
of multiple documents totaling 464 million keywords takes
11.239 seconds (around 3 hours). This means that performance
of Update invocations is mostly unaffected by the current
database size. This is a natural observation, since this protocol
does not depend on previous operations. These results also
reflect the good performance properties of modern trusted
hardware technologies, namely Intel SGX. The results for net-
work performance basically show the cost of uploading data to
the cloud, as BISEN adds very little cryptographic expansion:
communications are encrypted with standard symmetric-key
cryptography, and keywords are only hashed.

Regarding the performance of each protocol participant
in separate, we can observe that time spent in the IEE
and Storage Service is roughly similar, with a tendency for
the Storage to become a bottleneck for larger operations.
While we consider a single storage server, distributing this
service across multiple machines might mitigate its weight
in the operation. In turn, the IEE is responsible for simple
cryptographic computations, entering enclave mode in SGX,
and exiting this mode to store data through SGX ocalls, which
is reflected in the latency for the maximum update (1300
seconds for 464 million keyword/document pairs). The largest
slice of processing is on the client, which seems contradictory
as from BISEN’s specification (Figure 2), the client performs
very few computations. From our analysis, we argue that these
results are due to necessary pre-processing: the client has to
process the whole dataset from disk, parsing its keywords,
stemming them and filtering stop-words [32]. The introduction
of parallel processing on our client prototype can help improve
these results. Additionally, in applications where documents
are created and edited online for instance, this overhead would
be greatly reduced.

C. Search Performance

To analyse the performance of the Search protocol, we
conducted experiments with different types of queries, mea-
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Fig. 5: Impact of the boolean formula and query size on the performance of
the Search protocol.

suring in all cases how performance scaled with the increase in
database size. For transparency in evaluation, in the following
experiments we used the most popular keywords in the english
language, i.e., the keywords that appear in more documents
(also known as having high selectivity). From first to twelve,
these are: time, person, year, way, day, thing, man, world, life,
hand, part, and child
Performance of each Participant. We start by analysing the
performance of networking and of each protocol participant in
separate when executing the Search protocol. For this analysis
we used an example conjunctive query with the five most
popular keywords in the database, measuring performance at
increasing database sizes. Figure 4 presents the results. In
contrast with the previous results for Update, client processing
in Search is very efficient. This performance cost is mostly
dependent on the query size, nonetheless even for a query of
five keywords it is almost close to zero (an average of 80µs).
Networking also exhibits similar results.

The remaining performance cost is divided between the
storage service and the IEE, with the IEE being the least
efficient of the three components. This is due to most com-
putations in Search being performed by the IEE. This aspect
can potentially be improved by exploring parallelism in our
prototype implementation based on SGX.
Boolean Formulas and Query Size. With this test (Figure 5)
we wanted to assess the impact of both the type of operators
and the length of the query on overall latency. We used queries
in both Conjunctive (CNF) and Disjunctive (DNF) Normal
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Forms, with one, three and five conjunctions and disjunctions.
These correspond, for example, to queries of the form (A ∨
B)∧ (C ∨D) (one conjunction) or (A∨B)∧ (C ∨D)∧ (E ∨
F ) ∧ (G ∨ H) (three conjunctions) for CNF; the same logic
applies to the DNF.

Analysing the results, we can conclude that BISEN supports
queries in any boolean formula with equal performance. For
this experiment, the determining factors in performance were
the database and query sizes. Increasing the database size
leads to a linear increase in the time required for resolving
queries, as was already noted in the previous experiment.
Moreover, increasing the query size (from one to three and
five conjunctions/disjunctions) also increases search latency,
but by a smaller fraction. This means performance costs tend
to amortize when increasing query sizes.

Query Selectivity. Next we study the impact of query selec-
tivity (i.e., the size of search results) on Search performance.
In these experiments, we performed single-keyword queries
with different selectivity levels, by choosing query keywords
based on their database popularity. Figure 6 shows the results
for queries returning from 0.2% to 25% of the database. As
expected, query selectivity has a high impact on Search perfor-
mance. Just by searching a different, more popular keyword,
Search performance can go from 1 to 16 seconds. This is
not surprising, as more popular keywords appear in more
documents, and hence the IEE will have to request, decrypt,
and verify additional index entries. Nonetheless, results seem
to amortize towards larger databases. These results are also
consistent with the performance measurements of Figure 5,
whose keyword searches have very high selectivity.

Negations. In Table I we present the impact of negations for
queries of fixed size (10 keywords), varying the number of
negated keywords – one, five and ten; then a fully negated
query – of the form ¬(A∧B), and finally the equivalent ver-
sion of the latter using De Morgan’s laws. Our objective was to
assess the impact performance of the negation operation across
different types of queries and numbers of negations. Results
show that the number of negation operations performed has
minimal impact, even for larger database sizes, which can be
explained by the low overhead of Boolean processing. Since
all queries require the same number of entries to be fetched
from Storage Service, which is where the main bottleneck lies,

DB Size 1 Neg. 5 Neg. 10 Neg. Fully Neg.

35 996 207 4.286 4.498 3.052 4.319
76 672 004 9.335 9.241 9.610 7.185

156 143 147 18.653 18.092 21.095 16.589
333 784 724 52.265 58.227 50.850 51.996
464 054 543 86.057 82.289 85.041 86.938

TABLE I: Performance (in seconds) of negations in the Search protocol.

their latency is therefore similar.

D. Comparison with IEX-2LEV

We now compare the performance of BISEN with the state
of the art in Boolean SSE, in particular the recent IEX-2LEV
scheme [25]. To this end, we used the author’s open-source
implementation [18] (with a filtering parameter of 0.2, as
reported in their evaluation [25]), and conducted experiments
with the Enron database [28], an email archive with 2.6GB of
text data used by the authors.

Since IEX-2LEV requires large volatile storage and was
originally evaluated on a machine with 60 GB of RAM and a
60-core CPU, we followed a similar test-bench and deployed
IEX-2LEV in our AMD Opteron 6272 CPU with 64 cores and
64GB of RAM. For experimental comparison we deployed
BISEN on the same machine, executing IEE computations in
SGX simulated mode. Table II presents the results obtained for
BISEN and IEX-2LEV, considering increasing database sizes
(up to 56238 keyword-document pairs, as we were unable to
execute IEX-2LEV with higher database sizes), and different
operations: Update (performed as Setup in IEX-2LEV), and
Search with queries with eight keywords (selected at random
from the Enron database) in both CNF and DNF.

Analysing the results we can conclude that BISEN is much
more efficient than the state of the art in Boolean SSE. This
phenomenon can be observed both for the Update operation,
where IEX-2LEV requires eight hours to index a database with
56 238 pairs while BISEN only requires 0.151 seconds; and
the Search operation, where IEX-2LEV is more efficient but
still requires 216 seconds to search the largest database with
a CNF boolean query while BISEN performs the same query
in 0.061 seconds. Furthermore, the improvement in storage
performance is also evident from these results, since BISEN
could process and index large databases with 10 million pairs
in a machine with only 8 GB of RAM and IEX-2LEV could
only support little more than 56 thousand pairs in a machine
with 64 GB. These results can be explained by the difficulty of
managing complex multi-map data-structures that IEX-2LEV
needs to employ in order to achieve its security guarantees. In
BISEN, by leveraging the natural synergy between standard
cryptographic primitives and IEEs deployed as remote trust
anchors, we are able to improve performance and scalability
by a large fraction, while further improving security and
minimizing leakage.

VII. CONCLUSIONS

In this paper, we have identified and addressed one of
the fundamental security issues in Searchable Symmetric En-
cryption (SSE) schemes, which is the outsourcing of critical
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Database Size Update Search CNF Search DNF
(Nr of pairs w/id) BISEN IEX-2LEV BISEN IEX-2LEV BISEN IEX-2LEV

9 793 0.151 5143 0.004 12 0.004 15
27 446 0.423 15568 0.021 173 0.012 249
56 238 0.862 29274 0.061 216 0.034 427

TABLE II: Performance comparison between BISEN and IEX-2LEV [25]. All times are in seconds. Queries composed of eight keywords.

cryptographic computations to the untrusted server. This was
achieved by proposing a new hybrid approach to SSE that
combines standard symmetric-key cryptographic primitives
with modern attestation-based trusted hardware. In our ap-
proach we minimize assumptions and requirements on the
employed hardware technology, in particular regarding its
trusted storage capacity. Instead, trusted hardware is used as a
limited-capacity Isolated Execution Environment abstraction,
extending its resources through standard cryptographic primi-
tives over more abundant (local, or even remote) untrusted re-
sources. Based on this hybrid approach, we proposed BISEN,
a new dynamic boolean SSE scheme with both forward and
backward privacy, minimal leakage, and optimal computation,
storage, and communication overheads. BISEN is shown to be
provably secure against active adversaries under the standard
security model. Experimental results obtained trough real-
world datasets and an open-source implementation of BISEN
demonstrate its optimal performance and efficiency properties.
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[7] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A Survey of Provably
Secure Searchable Encryption. ACM CSUR, 47(2):18:1—-18:51, 2015.

[8] R. Bost. Sophos - Forward Secure Searchable Encryption. In CCS’16.
ACM, 2016.

[9] R. Bost, B. Minaud, and O. Ohrimenko. Forward and Backward Private
Searchable Encryption from Constrained Cryptographic Primitives. In
CCS’17. ACM, 2017.

[10] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas, et al. Mi6:
Secure enclaves in a speculative out-of-order processor. arXiv preprint
arXiv:1812.09822, 2018.

[11] E. Brickell and J. Li. Enhanced privacy id from bilinear pairing
for hardware authentication and attestation. International Journal of
Information Privacy, Security and Integrity 2, 1(1):3–33, 2011.

[12] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-Abuse Attacks
Against Searchable Encryption. In CCS’15, pages 668–679. ACM, 2015.

[13] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases:
Data structures and implementation. In NDSS’14, volume 14, 2014.

[14] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner.
Highly-Scalable Searchable Symmetric Encryption with Support for
Boolean Queries. In CRYPTO’13, pages 353–373. Springer, 2013.

[15] ComScore. The 2017 U.S. Mobile App Report. http://tinyurl.com/
ya8kkxan, 2017.

[16] V. Costan and S. Devadas. Intel sgx explained. Techni-
cal report, Cryptology ePrint Archive, Report 2016/086, 2016.
https://eprint.iacr.org/2016/086, 2016.

[17] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable Sym-
metric Encryption: Improved Definitions and Efficient Constructions. In
CCS’06, pages 79–88, 2006.

[18] Encrypted Systems Lab, Brown University. The clusion library.
https://github.com/encryptedsystems/Clusion, 2018.

[19] B. A. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. Iron:
Functional encryption using intel sgx. In CCS’17. ACM, 2017.

[20] T. Frieden. VA will pay $20 million to settle lawsuit over stolen laptop’s
data. CNN. http://tinyurl.com/lg4os9m, 2009.

[21] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A.-R.
Sadeghi. Hardidx: practical and secure index with sgx. In IFIP DBSec,
pages 386–408. Springer, 2017.

[22] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient
oblivious RAM in two rounds with applications to searchable encryption.
In Crypto’16, pages 563–592. Springer, 2016.

[23] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search
over encrypted data. In ACNS’04, pages 31–45, 2004.

[24] G. Greenwald and E. MacAskill. NSA Prism program taps in to user data
of Apple, Google and others. The Guardian. http://tinyurl.com/oea3g8t,
2013.

[25] S. Kamara and T. Moataz. Boolean Searchable Symmetric Encryption
with Worst-Case Sub-Linear Complexity. In EUROCRYPT’17. IACR,
2017.

[26] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable
symmetric encryption. In CCS’12, pages 965–976. ACM, 2012.

[27] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC
PRESS, 2007.

[28] B. Klimt and Y. Yang. Introducing the Enron Corpus. In CEAS, 2004.
[29] D. Lewis. iCloud Data Breach: Hacking And Celebrity Photos. Forbes.

https://tinyurl.com/nohznmr, 2014.
[30] libsodium Deveplopment Team. The sodium crypto library (libsodium).

https://libsodium.org, 2018.
[31] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leakage

in searchable encryption: Attacks and new construction. Information
Sciences, 265:176–188, 2014.

[32] C. D. Manning, P. Raghavan, and H. Schütze. An Introduction to
Information Retrieval, volume 1. Cambridge University Press, 2009.

[33] M. Russinovich. Introducing Azure confidential computing.
https://tinyurl.com/y3qqwguk, 2017.

[34] S. Sasy, S. Gorbunov, and C. W. Fletcher. Zerotrace: Oblivious memory
primitives from intel sgx. In NDSS’18, 2018.

[35] E. Stefanov, C. Papamanthou, and E. Shi. Practical Dynamic Searchable
Encryption with Small Leakage. In NDSS’14, 2014.

[36] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the intel sgx kingdom with transient out-of-order
execution. In Security’18. Usenix, 2018.

[37] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter. Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx. In CCS’17, 2017.

[38] I. Wikimedia Foundation. Wikipedia:Database download. https://en.
wikipedia.org/wiki/Wikipedia:Database download, 2018.

[39] Y. Zhang, J. Katz, and C. Papamanthou. All Your Queries Are Belong
to Us: The Power of File-Injection Attacks on Searchable Encryption.
In Security’16. USENIX Association, 2016.

10



APPENDIX

BUILDING BISEN WITHOUT IEES

Figure 7 of this Appendix Section details a variant of BISEN
that can be used in scenarios where trusted hardware and
IEEs are unavailable. In a nutshell, computations previously
performed by the IEE are now performed by the client
instead. This approach achieves the same security guarantees
as the original BISEN scheme, however it imposes a higher
communication overhead.

FORMAL SECURITY MODEL

Semantic security of an SSE scheme is defined
with respect to a well defined leakage function
L = (LSetup,LSearch,LUpdate) [17], [26]. This definition
of security follows the simulation-based real/ideal paradigm
that is standard for security definitions in cryptography [27].
Leakage function L describes precisely what information
each protocol in the scheme is allowed to reveal. Definition 1
captures the security model of SSE.

Definition 1. Let
∏

= (Setup,Search,Update) be a dynamic
boolean SSE scheme and L = (LSetup,LSearch,LUpdate) a
leakage function. For algorithms A (the adversary) and S
(a simulator), we define security games RealΠ,A(1λ) and
IdealL,S,A(1λ) as follows:
RealΠ,A(1λ): run (EDB,K)←$ Setup(1λ) and give EDB

to A. A then adaptively requests executions of Search and
Update, selecting client inputs inp. The game responds by
executing the requested protocols with input (K, inp), allowing
A to select the server input EDB and arbitrarily respond to
uGet requests. The execution transcripts are then provided to
A. Eventually, A returns a bit, which is the output of the game.
IdealL,S,A(1λ): run (EDB, st)←$ S(LSetup(1λ)) and give

EDB to A. A then repeatedly requests protocols Search and
Update, selecting client inputs inp, server input EDB and
arbitrarily respond to uGet requests. The game responds
by performing S(st,LSearch(inp)) and S(st,LUpdate(inp)), re-
spectively, and returning the simulated transcript back to A.
Eventually, A returns a bit, which is the output of the game.∏

is L-secure against adaptive attacks if, for any active
adversary A, there exists a simulator S such that:

|Pr[RealΠ,A(1λ) = 1]− Pr[IdealL,S,A(1λ) = 1]| ≤ µ(λ)

Given the previous definition, Figure 8 extends it with a
game-based approach. In RealΠ,A, we first initialize the IEE-
enabling machine (IEE.Init), and then allow A to interact with
the BISEN protocol, detailed in a similar fashion in Figure 9.
Since A is an active adversary, we allow him full control
over the untrusted storage component. A is given feedback
whenever a uInit and uPut is executed, and is allowed to
freely specify the output of any uGet request (thus the split
of Search1,Search2). In IdealA,S , simulator S first initializes
the public parameters, and then A is allowed to interact with
S, as described in Figure 11, receiving the leakage associated

with each operation via L = (LSetup,LUpdate,LSearch), detailed
in Figure 10.

For clarity of presentation, our security model prevents the
adversary from creating arbitrary IEEs, from attempting to
forge requests from the IEE to the client and vice-versa, and
from changing the order of requests. Indeed, our proof can
be extended to an active adversary in the IEE model of [3]
with all these capabilities. However, since this cannot be done
in a black-box manner, the technical details orthogonal to our
contribution (e.g. bookkeeping of arbitrary inputs to arbitrary
IEEs) would make the model and proof significantly more
convoluted. We thus prefer to present a model that highlights
the necessary mechanisms for BISEN to be secure against
active adversaries, assuming the security of the underlying
mechanisms. Briefly, the intuition as to why these behaviours
are not an issue is threefold. The security of attested key
exchange ensures that no more than a single instance of an IEE
loaded with the exact code of BISEN successfully performs the
setup (key exchange) with the client, so no advantage is gained
from launching additional IEEs; the secure channel prevents an
external adversary from producing any valid inputs to either
the client or the IEE; and the usage of sequence numbers
allows for the rejection of any request that is presented in an
incorrect order.

Given the previous definitions, Theorem 1 states BISEN’s
security:

Theorem 1. If encryption scheme Θ ensures IND-CCA secu-
rity, F is a pseudorandom function and IEE provides a secure
channel with IND-CCA security, then the BISEN scheme
presented in Figure 2 is (LSetup,LUpdate,LSearch)-secure ac-
cording to Definition 1.

PROOF OF THEOREM 1

Let Θ = (Gen,Enc,Dec) be an IND-CCA encryp-
tion scheme following the security definitions of [27]. Let
F = (Gen,Run) be a pseudo-random function of domain
D and output range R ensuring prf-security for genera-
tor Func(D,R) following the definitions of [5]. Let Γ =
(New,Put,Get) and Γ = (uInit, uPut, uGet) be structures for
safe/unsafe storage (respectively) described in Section IV-A.
Let IEE = (Setup,Send,Receive) be the secure channel
protocol for IEEs described in Section IV-A. Let PBQ refer
to ProcessBooleanQuery detailed in Section IV. For clarity in
presentation, we simplify the process of lines 15 − 23 where
entries are inserted using a Γ structure to use lists, and thus
we denote Sort as the probabilistic algorithm that sorts a list
and produces the employed permutation, which can afterwards
be recovered using Reorder. Let ids be the fixed length of
document identifiers, ops be the fixed length of operations, fs
be the fixed length of F output, and let Usize denote the fixed
size of updates, such that

Usize = ops + ids + fs

Proof. Our proof is a sequence of eight games, presented in
Figures 12 to 19.

11



Setup(1λ)

Client:
1: kE←$ Θ.Gen(1λ)
2: kF ←$ F.Gen(1λ)
3: W← Init()
4: nDocs← 0

Server:
5: I← Init()

Update(op, w, id)

Client:
1: if id > nDocs then
2: nDocs++
3: c← Get(W, w)
4: if c = ⊥ then
5: c← 0
6: else
7: c← c+ 1

8: kw ← F.Run(kF , w)
9: l← F.Run(kw, c)

10: id∗←$ Θ.Enc(kE , {l, op, id})
11: Send l, id∗ to Server.
12: W← Put(W, w, c)

Server:
13: I← Put(I, l, id∗)

Search(q)

Client:
1: {w̄, φ} ← ProcessBooleanQuery(q)
2: Q← Init()
3: for all w ∈ w̄ do
4: kw ← F.Run(kF , w); c← Get(W, w)
5: L← [ ]
6: for all ci ← 0 . . . c do
7: l← F.Run(kw, ci); L← l : L

8: Q← Put(Q,w,L)

9: L′ ← Flatten(Q); Π←$ RandomPermutation(1λ)
10: L′ ← Π(L′)
11: Send L′ to Server.

Server:
12: D′ ← [ ]
13: for all l ∈ L′ do
14: id∗ ← Get(I, l); D′ ← id∗ : D′

15: Send D′ to Client.
Client:

16: D′ ← Π−1(D′); D ← [ ]
17: for all id∗ ∈ D′; l′ ∈ L′ do
18: {l, op, id} ← Θ.Dec(kE , id

∗); Verify(l, l′)
19: D ← {op, id} : D

20: Q′ ← Join(Q,D)
21: R← Resolve(φ,Q′, nDocs)

Fig. 7: A variant of BISEN without IEEs, based solely on PRF F = (Gen,Run) and authenticated encryption scheme Θ = (Gen,Enc,Dec).

Game RealΠ,A(1λ):
prms←$ IEE.Init(1λ)

(st, t)←$ Π.Setup(1λ, prms)
stA ← t

Return AUpdate,Search
1 (1λ, t)

Oracle Update(op,w, id):
(st, t)←$ Π.Update(st, op,w, id)
stA←$ A2(stA, t)
Return stA

Oracle Search(q):
(st, t1)←$ Π.Search1(st, q)
(stA,m)←$ A3(stA, t1)
(st, r, t2)←$ Π.Search2(st,m)
(stA)←$ A4(stA, t2)
Return (r, stA)

Game IdealL,A,S(1λ):
(stL, l)←$ LSetup(1

λ)

(stS , t)←$ S1(1λ, l)
stA ← t

Return AUpdate,Search
1 (1λ, t)

Oracle Update(op,w, id):
(stL, l)← LUpdate(stL, op,w, id)
(stS , t)←$ S2(stS , l)
stA←$ A2(stA, t)
Return stA

Oracle Search(q):
(stL, l)← LSearch(stL, q)
(stS , t1)← S3(stS , l)
(stA,m)←$ A3(stA, t1)
(stS , r, t2)←$ S4(st,m)
(stA)←$ A4(stA, t2)
Return (r, stA)

Fig. 8: Security experiment

Game GA0 is the real world of Figure 8, extended with
the protocol of Figure 9. In game GA1 , a uPut is always
accompanied by an idealised storage Put, and Search instead
uses the ideal storage to process the query. We upper bound
the distance between these two games, by constructing an
adversary B against the existential unforgeability of Θ, such
that

|Pr[GA0 (1λ)⇒ T]− Pr[GA1 (1λ)⇒ T]| ≤
AdvufΘ,B(λ)

s ∗ i

Adversary B simulates the environment of GA1 as follows. At

Algorithm Setup(1λ, prms):
kf ←$ F.Gen(1λ)

(kc, t)←$ IEE.Setup(1λ, prms)
W← Γ.New()

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
Return ((kc, ke, kf , 0,W), (t, I))

Algorithm Update(st, op, id,w):
(kc, ke, kf , nDocs,W)← st
kw ← F.Run(kf ,w)
c∗←$ IEE.Send(kc, (op, id, kw))
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
If id > nDocs:

nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
Return ((kc, ke, kf , nDocs,W), (c∗, It))

Algorithm Search1(st, q):
(kc, ke, kf , nDocs,W)← st
L← [ ]; n← 0
q∗←$ IEE.Send(kc, q)
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L← l : L; n← n+ 1

(∆, Lp),←$ Sort(L)
Return ((st,∆, Lp, n), (Lp, q

∗))

Algorithm Search2((st,∆, Lp, n),m):
D← [ ]
For i ∈ [0..n]:

(l, (op, id))← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort
D← (op, id) : D

D′ ← Reorder(∆, D)
r ← Resolve(φ,D′, nDocs)
r∗←$ IEE.Send(kc, r)
Return (st, r, r∗)

Fig. 9: Boolean SSE protocol

Algorithm LSetup(1
λ):

Return (([ ],Γ.New, 0, 0),⊥)

Algorithm LUpdate(st, op, id,w):
(W,A, c, nDocs)← st
If w 6∈ W: W← w : W
A← Γ.Put(A, c, (op,w, id, c))
If id > nDocs: nDocs← nDocs + 1
st← (W,A, c+ 1, nDocs)
Return (st,⊥)

Algorithm LSearch(st, q):
(W,A, n, nDocs)← st
C← [ ]; D← [ ]; N ← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W: N ← N + 1
qisize ← |φ|+N ∗ fs
For (op,w, id, c) ∈ st ∧ w ∈ Wq :

C← (c : C); D← (id : D)
(·,C′)←$ Sort(C)
r ← Resolve(φ,D, nDocs)
qosize ← |r|
Return (st, r, (qisize, qosize,C

′))

Fig. 10: Leakage functions
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Algorithm S1(1λ, l):
g←$ Func(D,R)

(stS , t)←$ SIEE(1λ)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
Return ((stS , ke, g, 0), (t, I))

Algorithm S2(st,⊥):
(stS , ke, g, c)← st
c∗←$ SIEE(stS , ({0}Us ))
l← g(c)

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
Return ((stS , ke, g, c+ 1), (c∗, It))

Algorithm S3(st, qisize, qosize,C)):
(stS , ke, g, c)← st
L← [ ]; n← 0

qin ← {0}qisize
q∗in←$ SIEE(stS , qin)
For k ∈ C:
l← g(k)
L← l : L; n← n+ 1

Return ((st, L, n, qosize), (L, qin))

Algorithm S4((st, L, n, qosize),m):
(stS , ke, g, c)← st
qout ← {0}qosize
q∗out←$ SIEE(stS , qout)
For i ∈ [0..n]:

(l, ?)← Θ.Dec(ke,m[i])
If L[i] 6= l: abort

Return ((stS , ke, g, c), q
∗
out)

Fig. 11: Simulator behavior

Game GA0 (1λ):
prms←$ IEE.Init(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

(kc, t)←$ IEE.Setup(1λ, prms)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
st← (kc, ke, kf , 0,W)
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs,W)← st
kw ← F.Run(kf ,w)
c∗←$ IEE.Send(kc, (op, id, kw))
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs,W)← st
L← [ ]; n← 0; D← [ ]
q∗←$ IEE.Send(kc, q)
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L← l : L; n← n+ 1

(∆, Lp),←$ Sort(L)
(stA,m)←$ A3(stA, (Lp, q

∗))
For i ∈ [0..n]:

(l, (op, id))← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort
D← (op, id) : D

D′ ← Reorder(∆, D)
r ← Resolve(φ,D′, nDocs)
r∗←$ IEE.Send(kc, r)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 12: Extended real world.

the beginning of the game, B has to try and guess which
uGet to Search will be distinguishable. As such, it samples
uniformly from [1..s] a request s, and from a maximum size
of searched labels [1..i] a document i. Whenever Update is
required to perform an encryption, B requests the ciphertext
to the corresponding oracle in IND-CCAΘ,B. Upon the s-th call
to Search, and upon the i-th decrypted document, B presents
to the IND-CCAΘ,B experiment the ciphertext m[i]. Observe
that, if

(op, id)← Γ.Get(I′, L′p[i])

(l, (op′, id′))← Θ.Dec(ke,m[i])

(op, id) = (op′, id′)

then Pr[GA0 (1λ)⇒ T] = Pr[GA1 (1λ)⇒ T]. It remains to show
that, whenever (op, id) 6= (op′, id′), m[i] is a valid forgery.

To see this, observe that this is a valid ciphertext, as the
decryption of m[i] is performed previously, and the result
was not ⊥. It suffices to establish that m[i] could not have
been constructed by the encryption oracle of IND-CCAΘ,B.
From the construction of Update and the behaviour of B, one
can infer that the encryption oracle in IND-CCAΘ,B is only

Game GA1 (1λ):
prms←$ IEE.Init(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

(kc, t)←$ IEE.Setup(1λ, prms)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0,W, I

′)
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs,W, I′)← st
kw ← F.Run(kf ,w)
c∗←$ IEE.Send(kc, (op, id, kw))
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, l, (op, id))
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs,W, I′)← st
L← [ ]; n← 0; D← [ ]
q∗←$ IEE.Send(kc, q)
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L← l : L; n← n+ 1

(∆, Lp),←$ Sort(L)
(stA,m)←$ A3(stA, (Lp, q

∗))
For i ∈ [0..n]:

(op, id)← Γ.Get(I′, Lp[i])
D← (op, id) : D
(l, ?)← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort

D′ ← Reorder(∆, D)
r ← Resolve(φ,D′, nDocs)
r∗←$ IEE.Send(kc, r)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 13: Game 1.

called once for every l, as each w has a unique counter that
is incremented on Update. That exact call (op, id) is stored in
I′. Since we know that l = L′p[i], and since we have the
precondition of (op, id) 6= (op′, id′) for label l, then m[i]
could not have been produced by the encryption oracle in
IND-CCAΘ,B, and is thus a forgery.

In game GA2 , the secure channel with the IEE is now handled
by a simulator executing SIEE. Intuitively, any adversary that
is able to distinguish these two games can actively break the
secrecy of the secure channel with the IEE. We are directly
using the key exchange scheme proposed in [3], we can apply
the same Utility theorem. Since we are only establishing a
secure channel with a single party, this can be applied only
once, and thus

|Pr[GA1 (1λ)⇒ T]− Pr[GA2 (1λ)⇒ T]| ≤ AdvUTAttKE,A(λ)

In game GA3 , the resolution of the query is no longer
performed by the originally described Search. Instead, all
requests for Update are stored in the ideal structure I′. Search
becomes a full table scan for all entries of I′ for which
the identifiers are relevant, and Resolve executes upon that
structure. This hop is derived from the correctness property of
BISEN.

Search(K, φ(w̄),DB) = DB(φ(w̄))

which ensures that the output of Search according to the
original BISEN description (left side), is exactly the same
as that of simply executing the query on the clean database
(right side). Since a plaintext database I′ is managed on
Update, and the set of φ(D) is selected from I′ according
to (Wq, φ) ← PBQ(q), such that ∀w ∈ Wq ∩ I′ : w ∈ D it
follows that

Pr[GA2 (1λ)⇒ T] = Pr[GA3 (1λ)⇒ T]
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Game GA2 (1λ):
(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0,W, I

′)
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs,W, I′)← st
kw ← F.Run(kf ,w)

c∗←$ SIEE(kc, {0}Us )
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, l, (op, id))
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs,W, I′)← st
L← [ ]; n← 0; D← [ ]

q∗←$ SIEE(kc, {0}|q|)
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L← l : L; n← n+ 1

(∆, Lp),←$ Sort(L)
(stA,m)←$ A3(stA, (Lp, q

∗))
For i ∈ [0..n]:

(op, id)← Γ.Get(I′, Lp[i])
D← (op, id) : D
(l, ?)← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort

D′ ← Reorder(∆, D)
r ← Resolve(φ,D′, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 14: Game 2.

Game GA3 (1λ):
(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0, 0,W, I

′)
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs, c′,W, I′)← st
kw ← F.Run(kf ,w)

c∗←$ SIEE(kc, {0}Us )
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs, c′,W, I′)← st
L← [ ]; n← 0; D← [ ]

q∗←$ SIEE(kc, {0}|q|)
(Wq, φ)← PBQ(q)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L← l : L; n← n+ 1

(∆, Lp),←$ Sort(L)
(stA,m)←$ A3(stA, (Lp, q

∗))
For i ∈ [0..n]:

(l, ?)← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 15: Game 3.

In game GA4 , we replace the encryption of document
identifiers by dummy messages of the same length. Observe
that, since query resolution is being performed over I′, these
identifiers are no longer necessary for Search. Let u be the
number of calls to Oracle Update. Since A does not have
access to ke, we upper bound the distance between these two
games, by constructing an adversary C against the IND-CCA
security of Θ such that

|Pr[GA3 (1λ)⇒ T]− Pr[GA4 (1λ)⇒ T]| ≤
AdvIND-CCA

Θ,C (λ)

u

Adversary C simulates the environment of GA4 as follows. At
the beginning of the game, C as to try and guess which call to
Update will be distinguishable. As such, it samples uniformly

Game GA4 (1λ):
(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0, 0,W, I

′)
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs, c′,W, I′)← st
kw ← F.Run(kf ,w)

c∗←$ SIEE(kc, {0}Us )
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs, c′,W, I′)← st
L← [ ]; n← 0; D← [ ]

q∗←$ SIEE(kc, {0}|q|)
(Wq, φ)← PBQ(q)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L← l : L; n← n+ 1

(∆, Lp),←$ Sort(L)
(stA,m)←$ A3(stA, (Lp, q

∗))
For i ∈ [0..n]:

(l, ?)← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 16: Game 4.

from [1..u] a request u. Upon the u-th call to Update, C
presents to the IND-CCAΘ,C experiment the message pair
((op, id), {0}Us) and proceeds GA4 with the received ciphertext.
C presents the result of GA4 as the guessing bit of IND-CPAΘ,B.
Given that the difference between the two games is exactly
that of presenting either the encryption of (op, id) or {0}Us ,
the advantage of A distinguishing between GA4 and GA3 is
exactly that of breaking the IND-CCA security of Θ for the
u-th instance of Update.

In game GA5 , instead of maintaining a counter c for each
unique word, we maintain a global counter c′, as well as a
structure for counting unique keywords W. This means that,
for label generation, instead of running F over w, and then F
over that specific c, we run F over a unique c′. We want to
show that

Pr[GA4 (1λ)⇒ T] = Pr[GA5 (1λ)⇒ T]

This has two major implications. It changes how labels are
computed in Update, and changes how they are recovered
in Search. We argue that this is indistinguishable for an A
without access to kf by analysing each process individually.
• Update: Each label is now generated by running F on

the unique insertion counter. Observe that this is only
distinguishable from the alternative if it is possible to
run F on duplicate (id, c) pairs. From the construction of
Update on GA4 , this is not the case. The structure W is
also correctly updated whenever a new w is inserted.

• Search: We no longer execute the F for each unique word
to determine |L|, but this can be computed by multiplying
the fixed size of the output of F and size of counter c
by the number of unique words in structure W: N ∗ fs.
Furthermore, where GA4 computed the labels for all (w, c)
in W for which w ∈ Wq , the same can be achieved
by computing all c′ in A for which w ∈ Wq . This
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Game GA5 (1λ):
(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0, 0, I

′, [ ])
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs, c′, I′,W)← st
c∗←$ SIEE(kc, {0}Us )
If w 6∈ W: W← w : W
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
l← F.Run(kf , c

′)
If id > nDocs: nDocs← nDocs + 1

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs, c′, I′,W)← st
L← [ ]; n← 0; D← [ ]
N ← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W: N ← N + 1
qisize ← |φ|+N ∗ fs
q∗←$ SIEE(kc, {0}qisize )
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
l← F.Run(kf , c

′)
L← (l : L)
n← n+ 1

(∆, Lp),←$ Sort(L)
(stA,m)←$ A3(stA, (Lp, q

∗))
For i ∈ [0..n]:

(l, ?)← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 17: Game 5.

Game GA6 (1λ):
(kc, t)←$ SIEE(1λ)
g←$ Func(D,R)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, g, 0, 0, I

′, [ ])
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, g, nDocs, c′, I′,W)← st
c∗←$ SIEE(kc, {0}Us )
If w 6∈ W: W← w : W
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
l← g(c′)
If id > nDocs: nDocs← nDocs + 1

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, g, nDocs, c′, I′,W)← st
L← [ ]; n← 0; D← [ ]
N ← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W: N ← N + 1
qisize ← |φ|+N ∗ fs
q∗←$ SIEE(kc, {0}qisize )
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
l← g(c′)
L← (l : L)
n← n+ 1

(∆, Lp),←$ Sort(L)
(stA,m)←$ A3(stA, (Lp, q

∗))
For i ∈ [0..n]:

(l, ?)← Θ.Dec(ke,m[i])
If Lp[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 18: Game 6.

ensures consistency in the document identifiers retrieved
in Search.

In game GA6 , we replace all calls to F by calls to a randomly
generated function g. Since A does not have access to kf ,
we upper bound the distance between these two games, by
constructing an adversary D against the prf-security of F such
that

|Pr[GA5 (1λ)⇒ T]− Pr[GA6 (1λ)⇒ T]| = AdvprfF,D(λ)

Adversary D simulates the environment of GA6 as follows.
Whenever a label has to be produced, the result is retrieved
by calling the Oracle of prfF,D. D presents the result of GA6 as
the guessing bit of prfF,D. Given that the difference between
the two games is exactly that of presenting either the result of
F(c) or g(c), the advantage of A distinguishing between GA6
and GA5 is exactly that of breaking the prf security of F.

Finally, GA7 matches the ideal world of Figure 8, extended
with the behaviour of the leakage function of Figure 10 and

Game GA7 (1λ):
stL ← ([ ],Γ.New(), 0, 0)
g←$ Func(D,R)

(kc, t)←$ SIEE(1λ)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
stS ← (kc, ke, g, 0)
stA ← (t, I)

Return AUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(W, I′, c′, nDocs)← stL
c∗←$ SIEE(kc, {0}Us )
If w 6∈ W: W← w : W
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
If id > nDocs: nDocs← nDocs + 1
stL ← (W, I′, c′ + 1, nDocs)
(kc, ke, g, c)← stS
l← g(c)

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
stS ← (kc, ke, g, c+ 1)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(W, I′, c′, nDocs)← stL
C← [ ]; D← [ ]; n← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W: N ← N + 1
qisize ← |φ|+N ∗ fs
qi← {0}qisize
q∗←$ SIEE(kc, qi)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

C← (c′ : C); D← (id : D)
(·,Cp),←$ Sort(C)
r ← Resolve(φ,D, nDocs)
qosize ← |r|
stL ← (W, I′, c′, nDocs)
(kc, ke, g, c)← stS
L← [ ]; n′ ← 0
For k ∈ Cp:
l← g(k)
L← l : L; n′ ← n′ + 1

(stA,m)←$ A3(stA, (L, q
∗))

qo← {0}qosize
r∗←$ SIEE(kc, qo)
For i ∈ [0..n′]:

(l, ?)← Θ.Dec(ke,m[i])
If L[i] 6= l: abort

stS ← (kc, ke, g, c)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 19: Extended ideal world.

the simulator detailed in Figure 11. This final game is achieved
by reorganizing the code of GA6 , and thus

Pr[GA6 (1λ)⇒ T] = Pr[GA7 (1λ)⇒ T]

Let

AdvAtt
Π,S,A(λ) = |Pr[RealΠ,A(1λ)⇒ T]−

Pr[IdealS,A(1λ)⇒ T]|

To conclude, we have that

AdvAtt
Π,S,A =

7∑
i=0

|Pr[GAi (1λ)⇒ T]− Pr[GAi+1(1λ)⇒ T]|

≤
AdvufΘ,B(λ)

s ∗ i
+ AdvUTAttKE,A(λ)+

AdvIND-CCA
Θ,C (λ)

u
+ AdvprfF,D(λ)

≤ µ(λ)

and Theorem 1 follows.
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