
Data in Brief 46 (2023) 108887

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

PROGpedia: Collection of source-code

submitted to introductory programming

assignments

José Carlos Paiva

a , b , ∗, José Paulo Leal a , b , Álvaro Figueira

a , b

a Department of Computer Science from the Faculty of Sciences, University of Porto, Porto, Portugal
b CRACS - INESC TEC, Porto, Portugal

a r t i c l e i n f o

Article history:

Received 5 December 2022

Revised 16 December 2022

Accepted 4 January 2023

Available online 10 January 2023

Dataset link: PROGpedia (Original data)

Keywords:

Programming learning

Source code

Semantic representation

Automated assessment

Abstract Syntax Tree

Control-flow

Data-flow

Code Property Graph

a b s t r a c t

Learning how to program is a difficult task. To acquire the re-

quired skills, novice programmers must solve a broad range

of programming activities, always supported with timely,

rich, and accurate feedback. Automated assessment tools play

a major role in fulfilling these needs, being a common pres-

ence in introductory programming courses. As programming

exercises are not easy to produce and those loaded into

these tools must adhere to specific format requirements,

teachers often opt for reusing them for several years. There-

fore, most automated assessment tools, particularly Mooshak,

store hundreds of submissions to the same programming ex-

ercises, as these need to be kept after automatically pro-

cessed for possible subsequent manual revision. Our dataset

consists of the submissions to 16 programming exercises in

Mooshak proposed in multiple years within the 2003–2020

timespan to undergraduate Computer Science students at the

Faculty of Sciences from the University of Porto. In particular,

we extract their code property graphs and store them as CSV

files. The analysis of this data can enable, for instance, the

generation of more concise and personalized feedback based

on similar accepted submissions in the past, the identifica-

tion of different strategies to solve a problem, the under-

Abbreviations: AST, Abstract Syntax Tree; CLI, Command-Line Interface; CPG, Code Property Graph; CS, Computer

Science; CSV, Comma-Separated Values.
∗ Corresponding author.

E-mail address: jose.c.paiva@inesctec.pt (J.C. Paiva) .

Social media: @josecpaiva (J.C. Paiva), @jpleal (J.P. Leal), @arfiguei (Á. Figueira)

https://doi.org/10.1016/j.dib.2023.108887

2352-3409/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.dib.2023.108887
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2023.108887&domain=pdf
https://doi.org/10.5281/zenodo.7449056
mailto:jose.c.paiva@inesctec.pt
https://twitter.com/josecpaiva
https://twitter.com/josecpaiva
https://twitter.com/jpleal
https://twitter.com/jpleal
https://twitter.com/arfiguei
https://twitter.com/arfiguei
https://doi.org/10.1016/j.dib.2023.108887
http://creativecommons.org/licenses/by/4.0/

2 J.C. Paiva, J.P. Leal and Á. Figueira / Data in Brief 46 (2023) 108887

standing of a student’s thinking process, among many other

findings.

© 2023 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

S

V

pecifications Table

Subject: Computer Science > Human-Computer Interaction

Specific subject area: Analysis of the code property graphs from the source code submitted by

undergraduate CS students into automated assessment tools.

Type of data: File system directories

MarkDown files

CSV files

Java, C, C ++ , and Python text files

How the data were acquired: Data were collected from Mooshak instances, which have supported

undergraduate Computer Science students at the Faculty of Sciences from the

University of Porto for multiple years within the 2003–2020 timespan.

Mooshak submissions include source code, binaries, and assessment results.

This data has been processed automatically to (1) extract the code property

graph into CSV (nodes’ and edges’ files) and (2) organize these files in a

three-level directory tree, in which: the first level is the problem folder; the

second is the result of the submission; and the third is the pair

submitter-order of attempt. The CSV files are inside the respective third-level

directory.

Data format: Raw

Analyzed

Filtered

Description of data collection: The source code must have been submitted to one of the selected

programming exercises and evaluated by Mooshak successfully (i.e., assigned a

classification). We required a minimum of 100 submissions of distinct

participants to include the programming exercise. Data is completely

anonymized, as no reference to the participant is kept. Only a newly

auto-increment ID per programming assignment is used to distinguish

different submitters.

Data source location: Institution: Faculty of Sciences from the University of Porto

City/Town/Region: Porto

Country: Portugal

Data accessibility: Repository name: Zenodo

Data identification number: 10.5281/zenodo.7449056

Direct URL to data: http://doi.org/10.5281/zenodo.7449056

alue of the Data

• These data are useful because they concentrate on the semantic and syntactic value of the

source code of all attempts to solve a set of programming problems from previous students.

Given a new attempt, this allows us to: (1) match it with the group of solutions following the

same/similar strategy; (2) identify the closest correct solution; and (3) draw the differences

that transform the current source code into a correct one.

• The data primarily benefit researchers in the area of automated assessment of programming

assignments, particularly, for improving automatically generated feedback, which is one of

the hottest topics [1] . Moreover, research in Learning Analytics for Computer Science educa-

tion can also obtain great value from these data (e.g., how a student progresses towards a

correct solution).

http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.5281/zenodo.7449056
http://doi.org/10.5281/zenodo.7449056

J.C. Paiva, J.P. Leal and Á. Figueira / Data in Brief 46 (2023) 108887 3

• These data can be used to research problems such as automatic feedback generation for pro-

gramming assignments, understanding students’ program development process, and assess-

ing the relationship between the different problem-solving strategies and difficulty in achiev-

ing a correct solution.

1. Objective

Practice is the key to programming learning. Every year undergraduate CS students submit

hundreds of source code files to the chosen automated assessment tool. Beyond the initial cor-

rectness assessment and storage for a possible manual verification, all this source code is typ-

ically just put aside as useless. At the same time, feedback generated by these tools is still far

from pedagogical effectiveness [1] . This dataset aims to reason over past submission data to pro-

duce feedback on how to rework the current erroneous attempt to make it correct. In particular,

given a new program, the idea is to (1) select the closest known working solution, (2) draw the

differences between both extracted graph representations, and (3) use them to generate concise

and incremental feedback messages. To this end, having a representation such as the code prop-

erty graph [2] that combines the syntactic and semantic values of a program is important. On

the one hand, measuring semantic similarity is far less complex than syntactical. On the other

hand, making the program semantically identical to a correct solution will most likely not fix it.

2. Data Description

The dataset [3] consists of the submissions to 16 programming assignments delivered to

undergraduate Computer Science (CS) students on intermittent years within the 2003–2020

through Mooshak [4] . Mooshak assigns twelve possible classifications to a program. For the pur-

pose of this dataset, we consider only four classifications which may correspond to multiple

Mooshak classifications, namely: Accepted, which is assigned to fully correct programs as well as

programs with minor presentation errors in output; Wrong Answer, which labels programs with

incorrect output; Compile Error, that specifies programs that do not compile; and Runtime Er-

ror, which classifies programs that error out during execution for any reason. Compilation Errors

typically prevent the extraction of a source code representation and, thus, were excluded from

the dataset. 44 programming assignments were excluded for lacking the amount of participants

considered as minimum to be part of the dataset, 100 (i.e., a total of 60 were initially consid-

ered). Table 1 summarizes the dataset according to the submission count, participant count, and

classification by problem. Note: participants are not matched across distinct problems.

Each submission consists of:

• a TCL file, named .data.tcl, with metadata about the submission such as the owner, program-

ming language, problem, and creation timestamp, and the obtained classification through the

typical input-output test-based assessment;

• the source code file, which is either .c, .cpp, .java, or .py depending on the programming

language used C, C ++ , Java, or Python respectively.

Submissions’ files are organized in a two-level directory tree, where the first level corre-

sponds to the problem ID and the second level is the submission folder, named by its ID.

After processing, a three-level directory tree is generated, in which: the first level is the prob-

lem folder; the second is the classification of the submission; and the third is the pair submitter-

order of attempt (submitter is an auto-generated index that updates both per problem and par-

ticipant). This last level holds two files:

• a CSV file, named as ∗.dsc.csv, containing information about the code property graph’s nodes.

Each row describes a node, including the ID, type, token, location in the source code, and

actual source code snippet;

4 J.C. Paiva, J.P. Leal and Á. Figueira / Data in Brief 46 (2023) 108887

c

a

t

3

d

d

p

s

(

e

T

s

m

T

S

• a CSV file, named like ∗.cpg.csv, describing the edges of the code property graph, including

the source and target nodes, type, index (i.e., defines the order for edges of the same type

between the same nodes), branch flag (i.e., for branches, indicates whether it is the truth

case - true - or the else case - false), and name (i.e., for passing input data into a function

through its named arguments).

Furthermore, the problems’ folders contain a Markdown file, statement.md, presenting the

hallenge to solve, in English, as well as one or more sample test cases. The root of the dataset

rchive contains a Markdown file, data.md, describing the names, definitions, and attributes of

he elements of this dataset (i.e., the data dictionary).

. Experimental Design, Materials and Methods

The designed data collection process starts with a manual file system copy of the submission

irectories of the old Mooshak instances’ backups to a common directory, which resembles that

escribed in the Data section (i.e., before processing). A python script, specifically developed to

repare this dataset, takes the path to the root of this directory to process it.

The processing phase consists of iterating through each programming assignment and each

ubmission inside these, and for each of them

1. parse metadata and analysis result from .data.tcl file of the submission;

2. create adequate missing branches in the directory tree within the output path for this sub-

mission (i.e., the folder named as the problem ID, a folder inside with the classification of

the submission, and another inside named with the pair submitter-order of attempt sepa-

rated with underscore);

3. extract the code property graph from the source code and export as CSV into the respective

directory.

For the latter, an existing Kotlin library [5] , designed to extract the code property graph

CPG) out of source code in C/C ++ (C17) and Java (Java 13), with experimental support for sev-

ral other programming languages such as Python, Golang, and TypeScript, has been adapted.

he changes were twofold: (1) develop functionality to export the representations into comma-

eparated value (CSV) format and (2) integrate the CLI in a Docker container. The container is

anaged from the main Python script, which completely builds the dataset.
able 1

tatistics of the dataset before processing.

Classification

ID Submission Count Participant Count ACCEPTED WRONG ANSWER RUNTIME ERROR

0 0 0 0 0 0 06 546 226 211 141 194

0 0 0 0 0 016 263 121 156 72 35

0 0 0 0 0 018 349 102 71 65 213

0 0 0 0 0 019 663 205 244 303 116

0 0 0 0 0 021 937 176 156 439 342

0 0 0 0 0 022 372 120 119 164 89

0 0 0 0 0 023 405 123 128 136 141

0 0 0 0 0 034 839 199 403 65 371

0 0 0 0 0 035 833 258 241 249 343

0 0 0 0 0 039 1027 237 256 297 474

0 0 0 0 0 042 671 210 223 281 167

0 0 0 0 0 043 576 192 288 250 38

0 0 0 0 0 045 652 212 224 313 115

0 0 0 0 0 048 367 160 191 112 64

0 0 0 0 0 053 372 133 197 68 107

0 0 0 0 0 056 245 100 108 106 31

Total 9117 2774 3216 3061 2840

J.C. Paiva, J.P. Leal and Á. Figueira / Data in Brief 46 (2023) 108887 5

Problem statements, present in each problem folder, were manually translated to English

from their original Portuguese version. These statements are copied using the script to the re-

spective problem folder.

Ethics Statements

Participation in this dataset is fully anonymized and voluntary. Participants have been in-

formed upfront that the data they produce and submit would be automatically processed by

static analysis tools.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-

tionships that could have appeared to influence the work reported in this paper.

Data Availability

PROGpedia (Original data) (Zenodo).

CRediT Author Statement

José Carlos Paiva: Conceptualization, Methodology, Software, Validation, Formal analysis, In-

vestigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visual-

ization, Project administration, Funding acquisition; José Paulo Leal: Conceptualization, Method-

ology, Validation, Resources, Writing – review & editing, Supervision, Project administration,

Funding acquisition; Álvaro Figueira: Conceptualization, Methodology, Validation, Resources,

Writing – review & editing, Supervision, Project administration, Funding acquisition.

Acknowledgments

Funding: This work is financed by National Funds through the Portuguese funding agency,

FCT - Fundação para a Ciência e a Tecnologia , within project LA/P/0063/2020 . J.C.P. also wishes

to acknowledge the FCT for the Ph.D. Grant 2020.04430.BD.

References

[1] J.C. Paiva, J.P. Leal, Á. Figueira, Automated assessment in computer science education: a state-of-the-art review, ACM

Trans. Comput. Educ. 22 (2022) 1–40 .

[2] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling and discovering vulnerabilities with code property graphs, 2014
IEEE Symposium on Security and Privacy, IEEE, 2014, doi: 10.1109/sp.2014.44 .

[3] J.C. Paiva, J.P. Leal, Á. Figueira, PROGpedia, 2022, doi: 10.5281/zenodo.7449056 .
[4] J.P. Leal, F. Silva, Mooshak: a Web-based multi-site programming contest system, Software. 33 (2003) 567–581. https:

//doi.org/10.1002/spe.522 .
[5] GitHub - Fraunhofer-AISEC/cpg: A library to extract Code Property Graphs from C/C++, Java, Golang and Python,

GitHub. 2019. https://github.com/Fraunhofer-AISEC/cpg . Accessed November 16, 2022.

https://doi.org/10.5281/zenodo.7449056
https://doi.org/10.13039/501100005153
http://refhub.elsevier.com/S2352-3409(23)00005-7/sbref0001
https://doi.org/10.1109/sp.2014.44
https://doi.org/10.5281/zenodo.7449056
https://doi.org/10.1002/spe.522
https://github.com/Fraunhofer-AISEC/cpg

	PROGpedia: Collection of source-code submitted to introductory programming assignments
	Value of the Data
	1 Objective
	2 Data Description
	3 Experimental Design, Materials and Methods
	Ethics Statements
	Declaration of Competing Interest
	Data Availability
	CRediT Author Statement
	Acknowledgments

	References

