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Abstract. The use of the odometry and SLAM visual methods in
autonomous vehicles has been growing. Optical sensors provide valu-
able information from the scenario that enhance the navigation of
autonomous vehicles. Although several visual techniques are already
available in the literature, their performance could be significantly
affected by the scene captured by the optical sensor. In this context,
this paper presents a comparative analysis of three monocular visual
odometry methods and three stereo SLAM techniques. The advantages,
particularities and performance of each technique are discussed, to pro-
vide information that is relevant for the development of new research
and novel robotic applications.
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1 Introduction

The increased use of the autonomous vehicles is related to the fact that their
properties allow its application in diverse tasks that can be dangerous and repet-
itive for the human. To ensure that vehicles are completely involved in vari-
ous applications it is relevant to augment their capacity to reliably navigate
autonomously even in unknown environments. In this context, a large effort is
being made by the researchers to explore the concepts of the odometry and
SLAM (Simultaneous Localization and Mapping) in order to support the activ-
ity of mobile robots in different scenarios. Odometry allows estimation of the
robot’s position from a single reference and the SLAM technique localizes the
robot and constructs a map of the environment. Therefore, SLAM techniques can
use odometry-based methods to provide an estimation of motion. The biggest
advantage of SLAM is related with the revisiting capability, which means that,
the technique reduces the positioning error along the navigation path once a
revisited area is detected. Optical systems have the ability to provide informa-
tion with high quality at a reasonable cost. Therefore, the development of visual
odometry and SLAM approaches have been an active line of research that was
followed by a large number of institutions worldwide. The appearance of several
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visual-based techniques have triggered a fundamental question: what technique
is suitable for a specific application? Therefore, the major contribution of this
paper include: to provide a comparative study of some of the visual odometry
and SLAM techniques that are currently available in the literature. Moreover,
this paper discusses the performance of these methods for typical applications
related to mapping and data fusing with other sensors. Thus, it is important to
highlight this kind of studies because it allows to understand the main properties,
advantages and disadvantages of each implementation, as well as its results in dif-
ferent environments and testing conditions. Therefore, it is possible to select the
best and more convenient method for particular applications. This paper is orga-
nized as follows: Sect. 2 presents conventional methods for visual odometry and
SLAM. The comparative study is presented in Sect. 3, where the results obtained
by several techniques are evaluated in common testing scenarios. Finally, Sect. 4
shows the major conclusions of this paper.

2 Methods

As a prerequisite of the many tasks that involve the robot motion, the localiza-
tion is the most crucial feature for an autonomous robot. In this sense, the visual
odometry estimates motion with only input images from of one or multiple cam-
eras. The use of visual odometry presents advantages compared to traditional
method (encoders in wheels) since it is more reliable in slipping events, namely
in rugged lands where drift errors can occur frequently. However, the analysis of
egomotion from sequence of images are very complicated due to the presence of
the external objects moving in the scenario (which violates the motion coherent
assumption [1]). It is also necessary to ensure that the rate of acquisition is fast
enough to avoid any aliasing phenomenon (and to increase the overlapping area
between images). On the other hand, the SLAM is a more sofiscated approach
that constructs a local map according to the navigation of the robot in the envi-
ronment. Within this map, it provides the estimation of the robot’s position. The
implementation of visual approaches for both the odometry and SLAM (often
called as vOdometry and vSLAM, respectively) usually resorts to feature-based
analysis to increase the performance and, as a consequence, the frame rate of the
output data from the visual system. With the aim to simulate the human vision it
is possible to use stereo cameras to acquire the 3D information from the environ-
ment. It should be highlighted that non-structured and dynamic environments
usually impose severe challenges for visual-based techniques and, therefore, the
detection of revisited areas is a key point for the navigation stack of mobile
robots since it decreases the positioning error. Considering the high number of
the implementation of techniques available in the literature, the current research
had selected the most promising one by considering factors such as, performance
expectation reported in scientific articles, public availability of the methods and
other particularities (robustness of features, internal assumptions and others).
A comparative analysis is conducted by taking into consideration a set of three
monocular odometry methods and three stereo-based SLAM methods.
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For odometry method three algorithms were selected, namely mono-vo, viso2
and mORB-SLAM. Mono-vo [2] implementation was developed in 2015 and it is
based on OpenCV. Uses the FAST for features detection and the Kanade-Lucas-
Tomasi to search the correspondence in the next image. Incorporates a mecha-
nism that searches for new features and uses an outliers removal mechanism. This
implementation aims the use the scale information from an external source of
data and, therefore, it is possible to correct the previous estimations. Moreover,
the mono-vo follow a heuristic to estimate the forward motion as the dominant
motion. The viso2 [3] implementation was developed in 2011 and calculates the
camera position estimation using a set of rectified images. The method has avail-
able a large number of configurable parameters which increases the flexibility,
but turns the method very difficult to setup. Frequently, a motion estimation
system cannot estimate with a metric scale from monocular sequences. Thus,
viso2 assumes that the camera motion follows a fixed and known height from
the ground (used to predict the scale factor). This method uses a bucketing
technique to the correct distribution of features in images however, it has a rel-
evant limitation related to pure rotations which degradates the estimation. The
mORB-SLAM is the monocular implementation of the ORB-SLAM presented
in [4]. Therefore, this method uses keyframes and ORB as features extractor,
detecting corners from the FAST and BRIEF descriptor, to ensure the (soft)
real-time capacity. A bundle adjustment is conducted with a new keyframe in
order to remove some erroneous estimations (and features) and provides a better
positioning.

For SLAM technique three algorithms were selected, namely RTAB-Map, S-
PTAM and ORB-SLAM?2. The RTAB-Map [5] system was developed in 2014
to capture a Graph-Based SLAM implementation and to present an incremental
approach for loop closure detection. It is important to note that the calculation
of the egomotion, with the own method of odometry called “s_.odom”, presents
limitations in situations comprising “Empty Space Environments” (when the
features are a distance to the camera larger than 4m). This means that, the
performance is affected by image sequences presenting large egomotion (reduces
the feature matching in consecutive frames) however, it is possible to use other
visual odometry methods to solve this limitation such as, viso2. The RTAB-Map
was particularly developed for scenarios involving cars and based on two cam-
eras with large focal distances. Although being used in different robotic applica-
tions, the method only estimates a new position when 6DOF motion is detected
between consecutive frames. The loop closure detection is constructed online
through a bag-of-words approach (with SURF descriptors). A Graph Optimiza-
tion approach is used to correct the map during the robot navigation. Consider-
ing that mapping large-scale environments during long-terms navigation paths
is constrained by the computational power available onboard. The RTAB-Map
implements a memory management approach that considers only part of the map
to fulfill online processing requirements of todays applications. The S-PTAM 6]
implementation was developed with the goal to obtain a stereoscopic system able
to help the robot navigation, by providing more reliable estimations. Divides the
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SLAM-based approach into two tasks: Tracking and Map Optimization. Uses
the BRIEF descriptor with binary features to reduce the storage requirements
and speedup the feature correspondence. The Shi-Tomas algorithm imposes a
good spatial distribution of the features. Like the ORB-SLAM, the S-PTAM
uses a keyframe-based approach to estimate the motion. During the creation
of map, the method adjusts the nearby points by excluding those points that
are considered erroneous. This task is presented as a maintenance process inde-
pendently of the Tracking, which is an advantage in terms of the processing
time. The ORB-SLAM?2 [4] implementation was developed in 2015 and it is
able to use monocular, stereo and RGB-D cameras. It is a feature-based app-
roach that uses the ORB extractor because of time constraints (important in the
real-time applications). Therefore, the egomotion determination is characterized
by a reliable motion estimation, since it is invariant to view point and illu-
mination changes (FAST corners with BRIEF descriptors). In terms of motion
estimation, it is keyframe-based approach and avoids an excessive computational
demand. Allows a camera relocalization in real-time when the Tracking process
was lost, by following a bag-of-words approach. Uses the Covisibility Graph con-
cept to bring the possibility of adding new keyframes and, consequently, to obtain
an environment ideal reconstruction. The Covisibility Graph helps the closure
loop detection, because this detection can be achieved by a similarity measure
between bag-of-words vector and all neighbors of the Covisibility Graph. Finally,
an Essential Graph provides a real-time effective loop closure since it maintains
the words that represent a strong match (assuming a vocabulary constructed
offline using the DBoW?2 library [7]).

3 Comparative Analysis

Two set of experiments were conducted in this section. The first aims to provide
evidences about the accuracy of egomotion estimation considering monocular
images sequences - odometry trials. The second aims to provide a comparative
study of different vSLAM-based approaches without any constraint about the
environment or navigation path. A simple but effective comparative analysis
is performed by considering all techniques introduced in the previous section.
During the analysis some public datasets were considered to allow replicability
of results by other scientific works (when proposing other visual-based meth-
ods). The performance of the methods are discussed by taking into consideration
some metrics, namely the Central Processing Unit (CPU) utilization in percent,
processing time and normalized Euclidian error between the ground-truth and
estimated trajectories in the same conditions, for example data acquisition rate
and image size. Regarding the results obtained in the monocular odometry, a
normalization of trajectories are conducted due to the unknown scale factor
between different methods. Moreover, the images sets that were choosen rep-
resent paths that do not evidence revisited areas since the analysis is focused
on the accuracy of the egomotion estimation. Following a similar methodology,
vSLAM techniques discussed in the previous section are evaluated by taking
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into account the same metrics used in the odometry evaluation. In this case, the
detection of the closure loop is also contemplated since it is a key feature for
all SLAM techniques. Quantitative analysis can be retrieved by measuring the
accuracy of each SLAM technique in two checkpoints (since not all techniques
provide estimatives in all frames), represented by “error_pointl;error_point2” in
the Tables 4, 5 and 6. Qualitative discussion is made using graph representations
of the trajectories. A very relevant phenomenon that it is usually ignored by the
literature is the aliasing. This research discussed this phenomenon during the
trials which means, the influence of the processing time in the overall accuracy
of each method is investigated. To evaluate the methods were selected three test
scenarios, that represent indoor and outdoor environments. These environments
show a clear image of the behavior that will be expected for each technique. The
three public datasets comprise KITTI, MIT Stata Center and New College.

The KITTI' dataset is composed of 22 stereo images sequences with different
trajectories obtained, in urban and freeway environments, see Fig.1(a). The
height of the camera in relation to the ground and the no-oscillation have been
taken into account. The camera calibration parameters are available as well as
the ground-truth of the trajectory made during the acquisition of high resolution
image sequences. The MIT Stata Center? is an indoor dataset, obtained from
a robot, see Fig. 1(b). This dataset was made to support the development of
visual SLAM algorithms and, therefore, the trajectories are longer and present
various direction changes. The New College® dataset provides data that was
acquired in gardens, see Fig. 1(c). All data is synchronized: images, laser, GPS
and IMU information and odometry data (ground-truth) are available.

Fig. 1. Illustrative example of the used datasets: (a) KITTI (b) MIT Stata Center (c)
New College

Table 1 presents a summary of the testing conditions and scenarios evaluated
to each technique.

! Dataset available on http://www.cvlibs.net/datasets/kitti/eval_odometry.php.
2 Dataset available on http://projects.csail.mit.edu/stata/downloads.php.
3 Dataset available on http://www.robots.ox.ac.uk/NewCollegeData/.
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Table 1. Test Conditions to methods evaluation

Method =~ ROS embedded Dataset PC (Ubuntu 16.04)
Mono-vo KITTI 12 GiB RAM
Odometry Viso2 No + i7-4720HQ @ 2,60GHz x 8
mORB-SLAM New College SSD 128 GB
16 GiB RAM DDR4
ORB-SLAM No i7-6700HQ @ 2,60 GHz x 8
SSD 240 and 512 GB
KITTI
SLAM +
S-PTAM MIT Stata Center Virtual machine:
Yes (Ubuntu 14.04)
SSD 512 GB
RTAB-Map 7 GiB RAM
4 CPU

3.1 Results

Odometry

KITTI — Sequence 07. As visible in the Fig. 2, the mono-vo implementation
follows the movement of the camera for most of the time. However, the incor-
rect detection of a direction change caused a little error between the real and

estimated trajectories.
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Fig. 2. Normalized trajectories obtained by KITTI dataset (07)

On the other hand, mORB-SLAM implementation estimates the camera posi-
tion correctly, but with lower error, since it captures all direction changes with
a satisfactory accuracy. It can be noticed in Table2 that the mORB-SLAM
presents the better egomotion estimation but it takes longer processing time
(in average)?. In the majority of cases, the mono-vo implementation captures

4 KFr represents the number of keyframes used to egomotion estimation.
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the egomotion during for a large part of the trajectory made by the observer,
however the largest maximum error was caused by a wrong detection of one
direction change. The viso2 implementation presents a higher error, because of
the deviations of the first positions.

Table 2. Comparison of the normalized trajectories obtained by KITTI dataset (07)

Processed frames Normalized error Time CPU
Maximum | Average | Std
Mono-vo 1000 0,64 0,13 0,17 | 85 s | >35% max.=40%
Viso2 999 0,62 0,32 0,18 | 74 s | >12% max. =15%
mORB-SLAM | 996 KFr =374 0,36 0,10 |0,10 109 s| >18% max.=20%

New College. The mORB-SLAM and mono-vo implementations try to follow
the circular motion of the observer, see Fig. 3.
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Fig. 3. Normalized trajectories obtained by New College dataset

The viso2 provides an incorrect estimation, that can be justified by some
oscillations in the camera during the motion of the observer as well as the rela-
tive changes of depth, according to the literature. Therefore, the performance of
viso2 is severely affected by these conditions (which reduces its robustness and
reliability). From the Table3, it is visible that, although all implementations
present errors, the mORB-SLAM is the best. However, neither this implemen-
tation nor mono-vo can obtain the final position intended.

In terms of the processing time, the mono-vo implementation presents better
results, even using more frames but with a slightly higher CPU usage.
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Table 3. Comparison of the normalized trajectories obtained by New College dataset

Processed frames Normalized error Time CPU
Maximum | Average | Std
Mono-vo 2500 1,22 0,61 0,26 | 127 s | >28% max.=34%
Viso2 1765 1,11 0,85 0,19 1124 s | >13% max. =18%
mORB-SLAM | 1657 KFr =293 0,69 0,37 0,16 | 273 s | >19% max.=24%
SLAM

KITTI — Sequence 05. According to the Fig.4, it is possible to observe that
the ORB-SLAM?2 implementation is the only one that estimates all camera posi-
tions, detects the loops and adjusts its trajectory. It should be noticed that, as
expected, the RTAB-Map system (with the viso2 providing the egomotion esti-
mation) try to replicate the motion made by observer however, there are devia-
tions. These deviation could be justified by the susceptibility of the method in
situations with inclination changes or even with camera rotations.
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Fig. 4. Trajectories obtained by KITTI dataset (05)

Taken into account the results presented in Table 4, it is safe to say that ORB-
SLAM2 lead to lower errors between the real trajectory and ground-truth. In
terms of the CPU utilization and processing time, the ORB-SLAM2 implemen-
tation presents higher values comparatively with the S-PTAM implementation.

KITTI — Sequence 09. Figureb depicts that ORB-SLAM?2 has some drifts
during the estimation of the trajectory in this sequence. Moreover, the tech-
nique do not detect any revisited area and, as a consequence, the trajectory was
not adjusted by the closure loop detection mechanism. In relation to the other
implementations, is not possible to conclude about the effectiveness of closure
loop, once the estimated final position was not close enough of the initial posi-
tion (circular path). One relevant issue was the number of frames that were not
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Table 4. Comparison of the trajectories obtained by KITTI dataset (05)

ORB-SLAM2 RTAB-Map S-PTAM
viso2 s_odom
Processed frames 2761 1224 2745 1916
Error | Maximum 1,64 m 420,91 m — 123,29 m
Average |0,55 m;1,05 m | 30,84 m;17,73 m — 33,05 m;8,41 m
Processing time 5min 32 s 4min 57 s 2min 19s| 4min 43 s
CPU 47% 57% 28% 54%
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Fig. 5. Trajectories obtained by KITTI dataset (09)

considered by the SLAM techniques, which lead to aliasing situation - and some
motion components were not captured by these visual techniques. Although the
other implementations try to follow the camera motion, they get lost along the
trajectory.

Table 5 demonstrates that the ORB-SLAM?2 has the ability to characterize
the observer motion with better accuracy and reliability (no aliasing phenom-
enon because the entire image sequence was processed). The CPU utilization and
processing time have higher values, but it uses all frames to trajectory estima-
tion. On the other hand, the RTAB-Map (viso2) does not estimate the realistic
path, being difficult to provide a quantitative analysis of the performance of this
method.

MIT Stata Center. Figure 6 shows that RTAB-Map, with the odometry incor-
porated directly by the implementation, is not able to provide data (lack of
inliers). It is important to emphasize that were modified some parameters to
the features extraction but without changes in the obtained results. This fact
can be explained because of the limitation of this method in indoor environ-
ments, in particular the presence of large homogeneous spaces (halls), represent
a challenging problem for this method.



472 A.R. Gaspar et al.

Table 5. Comparison of the trajectories obtained by KITTI dataset (09)

ORB-SLAM2 RTAB-Map S-PTAM
viso2 s_.odom
Processed frames 1591 648 1557 884
Error | Maximum 28,87 m 145,14 m — 115,06 m
Average | 11,46 m;37,62 m | —;207,656 m — 60,61 m;103,25 m
Processing time 3min 4 s 2min 49 s | 1min 20 s 2min 40 s
CPU 36% 55% 30% 80%
25| ——— Ground-truth
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Fig. 6. Trajectories obtained by MIT Stata Center dataset

The S-PTAM implementation estimates correctly the trajectory since the
loops are correctly detected and, therefore, the method redefines the trajectory
taken by the observer. In fact, this technique was able to estimate the entire path
with a realistic scale. The RTAB-Map implementation (viso2) tries to follow the
direction changes occured during the path. The result of RTAB-Map (viso2)
shows that the path has suffered from a wrong estimation at the beginning of
the sequence (y-axis) which caused a total deviation. This fact can be explained
by the existence of a high and fast rotation at the start of the trajectory which
clearly demonstrates that this method is quite susceptible to errors in these
situations. All methods have demonstrated similar CPU usages (see Table 6),
however, ORB-SLAM2 had the best performance in this metric. Although the
best CPU usage, the ORB-SLAM?2 did not have the best accuracy since the
localization was lost for a while (during a transition to a darker area) and the
method was not able to detect the loop closure. Thus, it is possible to conclude
that was calculated wrongly the first direction change and, consequently, it is
quite difficult to characterize the error. The RTAB-Map (viso2) system was also
unable to determine the loop closure, because discards many frames, possibly
due to the lack of the 6DOF motion, between consecutive frames.
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Table 6. Comparison of the trajectories obtained by MIT Stata Center dataset

ORB-SLAM2| RTAB-Map S-PTAM
viso2
Processed frames 2312 2730 2962
Error | Maximum 38,92 m 26,95 m 2,57 m
Average 6,30 m;— | 3,29 m;14,67 m | 8,87 m;0,34 m
Processing time 4min 47 s 4min 23 s 4min 10 s
CPU 33% 53% 68%

4 Conclusion

This article studies several visual-based techniques. It presents a comparative
analysis of odometry and SLAM approaches in realistic indoor and outdoor
scenarios. Moreover, a quantitative and qualitative discussion is presented by
taking into account several metrics such as, graphic representation of the navi-
gation path, processing time and the aliasing phenomenon (considering real-time
constraints). This phenomenon causes positions error along the trajectory, once
are lost some frames between consecutive samples.

The results showed that the mono-vo follows relatively well the motion of
the majority of the trajectories, but any motion detected provide a new position
even when the camera does not move, which causes an increase in the error. The
viso2 presents a good motion estimation always that detects 6DOF, however it
provides erroneous estimations when the camera presents oscillations or changes
its height in relation to the ground. The mORB-SLAM also generates good
results in most cases, The mORB-SLAM also generates good results in most
cases, with errors lower in relation to the others (approximately 45%). Thus, the
mORB-SLAM and viso2 are the most complete with the principal difference in
the requirement by the mORB-SLAM estimator of a vocabulary constructed a
prior. In the case of the SLAM implementations, the ORB-SLAM?2 presents, in
the majority of the cases, a good motion estimation and provides estimations
with lower errors (decrease more than 80%). It is important to reinforce that the
RTAB-Map with own odometry method is difficult to parametrize and highly
dependent on the environment, such as in the case of the KITTI dataset that
can be possible to considered a “Empty Space Environment”. The S-PTAM is
suitable only for MIT Stata Center dataset and, in this case, it was the only
one that provided correct results. This fact can be explained by the higher time
between images input in relation to the KITTI dataset. Thus, it is notable that
the S-PTAM and ORB-SLAM2 are the most adequate. These implementations
are differentiated by the fact of the S-PTAM does not present an approach for
loop closure detection, but only Bundle Adjustment, which does not provide
results so good to known revisited areas.
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To future work, the authors will conduct novel datasets (and incorporate
these datasets in the discussion), including new environments, to support the sci-
entific community and intend to reinforce the study namely with other methods.
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