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Abstract: Background: Malaria is a leading cause of death and disease in many developing countries, 
where young children and pregnant women are the most affected groups. In 2012, there were an esti-
mated 207 million cases of malaria, which caused approximately 627 000 malaria deaths. Around 80% 
of malaria cases occur in Africa, where the lack of access to malaria diagnosis is largely due to a 
shortage of expertise, being the shortage of equipment the secondary factor. This lack of expertise for 
malaria diagnosis frequently results on the increase of false positives, since prescription of medication 
is based only on symptoms. Thus, there is an urgent need of new tools that can facilitate the rapid and 
easy diagnosis of malaria, especially in areas with limited access to quality healthcare services. Methods: Various image 
processing and analysis approaches already proposed on the literature for the detection and segmentation of malaria para-
sites in blood smear microscopic images were collected and reviewed. This timely review aims to support the increasing 
interest in the development of low cost tools that can facilitate the rapid and easy diagnosis of malaria, especially in areas 
with limited access to quality healthcare services. Results: Malaria parasites detection and segmentation techniques in mi-
croscopic images are, in general, still in need of improvement and further testing. Most of the methodologies reviewed in 
this work were tested with a limited number of images, and more studies with significantly larger datasets for the evalua-
tion of the proposed approaches are needed. Despite promising results reported during the past years, the great majority of 
the computer-aided methods found on the literature for malaria diagnosis are based on images acquired under well con-
trolled conditions and with proper microscopic equipment. However, one should take into account that 80% of malaria 
cases occur in Africa, where this type of equipment is scarce or even nonexistent in common healthcare facilities. Conclu-
sion: This work collects and reviews various image processing and analysis approaches already proposed on the literature 
for the detection and segmentation of malaria parasites in blood smear microscopic images. This timely review aims to 
support the increasing interest in the development of image processing-based systems to be used in rural areas of develop-
ing countries, which might be the next future trend in malaria computer-aided diagnosis. 
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1. INTRODUCTION 

 Malaria is one of the most severe public health problems 
worldwide. It is a leading cause of death and disease in many 
developing countries, where young children and pregnant 
women are the groups most affected. In 2012, there were an 
estimated 207 million cases of malaria, which caused ap-
proximately 627 000 deaths. An estimated 3.4 billion people 
continue to be at risk of malaria, mostly in Africa and south-
east Asia. 
 Around 80% of malaria cases occur in Africa [1]. It is 
worth taking into account that the number of malaria cases 
and their geographical distribution are not stable because of 
several factors, like the increasing prevalence in some areas 
due to expanding drug resistance; the widespread availability 
of fake and substandard medicines; global warming and  
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expansion of malaria into favorable areas at higher eleva-
tions; and population mobility of different kinds [2].  
 The increasing interest in the development of computer-
aided diagnosis (CAD) systems for malaria diagnosis is 
closely related with common practical difficulties experi-
enced in under-resourced health facilities of developing 
countries, such as the excessive workload due to shortage of 
staff. Image processing approaches are often used in CAD 
systems to reduce the dependence of manual microscopic 
examination of blood smears, which is an exhaustive and 
time consuming activity, simultaneously requiring a consid-
erable expertise of the laboratory technician.  

 During the last years, several image processing tech-
niques have been proposed for malaria diagnosis using mi-
croscopic images, addressing the detection of a wide variety 
of different malaria parasites, in different growth stages and 
using images acquired from different types of blood smears. 
Under the scope of this paper, various image processing and 
analysis approaches already proposed on the literature for the 
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detection and segmentation of malaria parasites in blood 
smear microscopic images were collected and reviewed. This 
timely review aims to support the increasing interest in the 
development of low cost tools that can facilitate the rapid 
and easy diagnosis of malaria, especially in areas with lim-
ited access to quality healthcare services. 
 This document is structured into five sections. Section 1 
corresponds to Introduction and presents the motivation and 
objectives of this bibliographic survey. Section 2 gives an 
overview of the malaria disease in terms of parasite stages, 
species and life cycle stages; Section 3 provides an overview 
about the current malaria diagnosis methodologies, with a 
focus on the characterization of stained components in thin 
and thick blood smears; Section 4 gives a literature review 
regarding the analysis of malaria infected blood smears using 
image processing and analysis; Section 5 summarizes and 
gives a critical appreciation of the review works; Section 6 
provides the final remarks about the discussed subjects.  

2. MALARIA DISEASE CHARACTERIZATION 

 Malaria is caused by a parasite in the blood and can be 
seen only under a microscope with high magnification. For 
the visualization of the parasites, a blood film must be made, 
dried, stained and examined under the microscope. When the 
microscopist sees stained parasites, the diagnosis of malaria 
is confirmed by identifying the stage and species of the ma-
laria parasite, as well as the infection density [2].  

2.1. Malaria Parasites Stages 

 In the human host, malaria parasites pass through 3 dif-
ferent growth stages that can be detected in the peripheral 
blood: the trophozoite stage, the schizont stage and the ga-
metocyte stage. Trophozoites are often called the ring stage, 
being the most commonly seen stage, appear incomplete in 
thick films, and can vary from small to quite large within the 
host cell. Usually, trophozoites have one chromatin dot, but 
two are common for the P.falciparum species. The cyto-
plasm takes different shapes, from a well-defined, fine ring 
to forms that are irregular or bizarre, sometimes called 
‘amoeboid’ [1]. The schizont stage begins when the tropho-
zoite has reached its full capacity and the parasite starts to 
divide into daughter cells called merozoites. Several more 
divisions of the chromatin follow, which mark the growth of 
the schizont, until there are many chromatin bodies, each 
with its accompanying cytoplasm. The number of chromatin 
and merozoite divisions helps to identify the species. These 
clearly delineated new parasites are now ready to leave the 
host cell to invade new red blood cells [2]. Gametocytes are 
round or banana-shaped, depending on the species. The way 
in which the parasite takes up the stain helps to identify the 
sex of the parasite in thin films, being difficult to differenti-
ate between male and female in thick films [3]. 

2.2. Malaria Parasites Species 

 Four species of Plasmodium can infect and be transmit-
ted by humans: the P.falciparum, P.vivax, P.ovale and 
P.malariae. P.falciparum is the commonest species in the 
tropical parts of the world and can evolve rapidly to severe 
illness and death if not recognized and treated with effective 

medicines [2]. It is the species responsible for most cases of 
severe malaria and death. P.vivax is the commonest species 
in the cooler parts of the tropics, being the largest of the hu-
man malaria parasites and the cause of much illness and ab-
senteeism from work and school [2]. P.ovale is considered a 
rare species, but relatively common in West Africa and other 
parts of the African continent. Because of morphological 
similarities, P.ovale is sometimes mistaken for P.vivax by 
less experienced microscopists [2]. Moreover, the existence 
of a new genotype for P.ovale has been recently hypothe-
sized [4]. P.malariae is found worldwide and causes a 
chronic infection that in some cases can last a lifetime. In 
some chronically infected patients, P.malariae can cause 
serious complications such as the nephrotic syndrome [5]. As 
a final note, P.knowlesi is a malaria parasite that is found in 
nature in macaques, and naturally acquired human infections 
were thought to be extremely rare, however a large focus of 
human infections was reported in 2004 [6]. 

3. MALARIA DIAGNOSIS CHARACTERIZATION 

 Malaria infection can be suspected based on the patient’s 
symptoms, travel history or physical findings at examination. 
However, for a definitive diagnosis, laboratory tests must be 
made to prove the presence of the malaria parasites. The 
microscopy examination remains the gold standard for labo-
ratory confirmation of malaria, which consists in preparing a 
blood smear, staining it (most often with the Giemsa stain) 
and examining it through a microscope [5]. The importance 
of reliable malaria diagnoses cannot be overstated, since 
false negatives can be potentially fatal, and false positives 
increase the drug resistance of the patients, leading conse-
quently to unnecessary economic burden [7]. Laboratory 
diagnosis of malaria can be made through microscopic ex-
amination of two kinds of blood smears, thin and thick, taken 
most often from a finger prick. Thick blood smears are 20-40 
times more sensitive in detecting malaria parasites because 
the blood is more concentrated, which allows for a greater 
volume of blood to be examined. The thick smear is ap-
proximately 6-20 times as thick as a single layer of red blood 
cells, which results in a larger volume of blood being exam-
ined. However, thick smears are more difficult to read, so 
thin smears aid in parasite species identification and quanti-
fication [5], [7]. 

3.1. Malaria Parasites Stages 

 The images used on the reviewed works can be divided in 
two different groups according to their characteristics: full 
view images (FV) and manually cropped sub-images (CS). 
FV consists on images corresponding to the entire micro-
scopic field of view (see Figs. 1 and 2). CS consists on 
cropped patches of the FV images, corresponding to regions 
of interest manually cropped (see Figs. 3 and 4). 

 Moreover, the vast majority of the proposed approaches 
found on literature use high quality equipment in the acquisi-
tion process, particularly commercial cameras that are spe-
cifically customized for the acquisition of microscopic im-
ages, for instance easily attached to microscopes. The excep-
tion is [7], which uses a smartphone built-in camera to ac-
quire images (see Fig. 5). 
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Fig. (1). Example of full view image on thick smear (from [8]). 
 

 

 
 

Fig. (2). Full view image on thin smear (from [9]). 

 

 
 
Fig. (3). Cropped images on thick smear (from [10]). 
 
3.2. Performance Metrics 

 The classification results of the reviewed works are usu-
ally presented in terms of two metrics ordinarily used for this 
purpose: 1) Sensitivity (SE), i.e. the percentage of structures 
correctly classified as positive cases of malaria parasites; and 
2) Specificity (SP), i.e. the percentage of structures correctly 
classified as negative cases of malaria parasites. 

4. IMAGE PROCESSING TECHNIQUES 

 This section critically reviews the main studies found in 
the literature regarding the analysis of malaria infected blood 
smears using image processing and analysis. Since typical 
approaches usually comprise four different image processing 
and analysis tasks, the reviewed works were divided into the 
following sub-sections: 1) Segmentation; 2) Feature Extrac-
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tion; 3) Feature Selection; and 4) Classification. For each 
sub-section, the methods proposed to date for malaria para-
sites (MP) stained components analysis, both on thin and 
thick blood smears, were separately reviewed. 
 

 
 
Fig. (4). Cropped sub-images on thin smear (from [11]). 
 

4.1. Segmentation 

 Image segmentation is the process that partitions a digital 
image into disjoint (non-overlapping) regions, each of which 
typically corresponds to one object. Once isolated, these ob-
jects can be measured and classified, as discussed in the fol-
lowing sub-sections. This sub-section groups and reviews the 
methods proposed on the literature for the segmentation of 
malaria-stained components on thin and thick blood smears.  

4.1.1. Thresholding 

 Thresholding is an essential region-based image segmen-
tation technique that is particularly useful for scenes contain-
ing solid objects resting on a contrasting background. All 
pixels at or above/below the threshold are assigned to the 
foreground and all pixels below/above the threshold are as-
signed to the background [12].  

4.1.1.1. Thin Blood Films 

 In [13], the authors suggest a scheme based on HSV 
color space that segments red blood cells (RBC) and identi-
fies the RBC infected with MP. The RBC segmentation is 
achieved by dividing the entire hue range of 360º into six 
segments and finding the dominant color type to be the rep-
resentative of the background. Each segment is centered on a 
color type, which is defined according to the follow degree 

 
 
Fig. (5). Mobile acquired image patches on thin smear, with positive cases at the top and negative cases at the bottom (source: [7]). 
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values: 0º for red; 60º for yellow; 120º for green; 180º for 
cyan; 240º for blue; and 300º for magenta. The authors state 
a SE and SP of 83% and 98%, respectively, however this 
method uses images taken from Leishman-stained blood 
smears, while the gold standard recommended by WHO for 
malaria diagnosis is the usage of Giemsa staining. Further-
more, they assume that the dominant color in these images is 
representative of the background, which might not be true in 
images highly populated of RBC (see Fig. 3). 
 Another segmentation approach proposed in [3] for RBC 
on thin blood smears is based on the Annular Ring Ratio 
(ARR) transform. This transform consists in obtaining a ratio 
transformed image by calculating the ratio between the aver-
age intensities of a dilated image using annular concentric 
ring structuring element and an eroded image using a disk 
shaped structuring element. The ARR transform method 
mainly aims at locating the center of each cell present in the 
image. It is worth taking into account that this segmentation 
methodology uses fixed parameter values defined manually, 
such as the radius of the annular ring and disk, which can 
substantially vary depending on the image resolution. 
 The authors in [14] used a modified ARR transform 
method for the detection of stained cells through the direct 
application of the ratio transform on grayscale images, 
eliminating the morphological dilation and erosion. A 
threshold-based peak detection algorithm is then used to de-
termine the coordinates of each stained component. This 
approach results in locating all the stained components in the 
image, with the drawback of picking up artifacts and other 
noises present in the image.  

 For blood cells components segmentation in thin smears, 
[15] uses the Otsu's Method, a well-known histogram shape-
based image thresholding routine. This method assumes that 
the input image has two classes of pixels, and calculates the 
threshold that minimizes the intra-class variance. A hole 
filling process in then applied, due to the biconcave nature of 
the RBC. Using the knowledge that MP cytoplasm appear 
lighter while MP nucleus appear darker than the cytoplasm 
of the RBC, the authors state that is possible to confirm that 
it is actually an infected cell by dividing it into 3 different 
regions (MP nucleous, MP cytoplasm and RBC cytoplasm) 
using multiple thresholding. However, how this multiple 
thresholding segmentation is achieved is not explained in the 
paper, and one should also take into account that possible 
artifacts could also be separated into 3 different regions. 

 In [16], P.vivax parasites from Leishman-stained thin 
blood film are segmented using divergence based threshold 
selection. The proposed modified fuzzy divergence method 
is based on Cauchy membership function, and applied to the 
C channel in the CMYK color space, which was the color 
channel that delivered the best results. However, it is not 
clear if this approach can be also applied to Giemsa stained 
thin blood films.  
 A methodology based on phase spectrum is used in [17] 
for malaria parasite detection in thin blood films. The 
method uses the Quaternion Fourier Transform (QFT) to 
obtain the amplitude spectrum and phase spectrum for blood 
smear images. Afterward, the reconstructed image is ob-
tained using the Inverse Quaternion Fourier transform 

(IQFT) on a constant amplitude spectrum and the original 
phase spectrum. The authors concluded that the most sensi-
tive channels for MP detection were the B and G channels 
from the RGB space, as well as the I channel from the HSI 
space. 
 The proposed automated method in [18] for parasite de-
tection and identification on thin blood film comprises two 
different segmentation steps: The foreground-background 
segmentation and the stained pixels segmentation. The pro-
posed segmentation is performed using morphological area 
top-hats (using the average cell area value) and morphologi-
cal double thresholding. For the stained pixels segmentation, 
the authors modeled the stained and unstained pixel distribu-
tions with RGB space histograms and used the probability 
density function to determine whether a pixel on the input 
image is stained or not. This work also comprises significant 
pre-processing effort, like the granulometry-based cell size 
estimation, which considers the peak index of the granulo-
metry distribution as the average cell area. It also addresses 
problems like the non-uniform illumination, which is re-
moved using a pre-recorded illumination image, or using a 
morphological closing operation with a structuring element 
with size of 5 times the average cell area. Despite this work 
being only focused on thin blood films, the authors high-
lighted the importance of future work to investigate the 
automatic analysis of thick films, since they are more sensi-
tive for malaria parasites density estimation. 
 In [19], the authors combined the binary images from 
Otsu’s method with the edge detection images from Canny’s 
method for RBC segmentation, followed by a hole filling 
process. This work also proposes a pre-processing step based 
on the estimation of the image illumination, which is then 
subtracted from the original image.  

4.1.1.2. Thick Blood Films 

 For non-background objects detection on thick blood 
films, i.e. MP, white blood cells (WBC) and possible Giemsa 
stain-derived artifacts, the authors in [20] used adaptive 
threshold found according to information of the V-Value 
histogram. However this methodology needs further valida-
tion since it was only tested on 20 microscopic images.  
 The G and B channels of the RGB color space were iden-
tified in [8] as very good features to identify objects contain-
ing chromatin in Giemsa stained blood films, being not only 
considered highly discriminative but also almost independent 
of differences in illumination and staining intensity. They 
transformed the color input image into a monochrome image 
I(x,y), that highlights objects containing chromatin: I(x,y) = 
arctan(IGREEN(x,y)/IBLUE(x,y)). The authors also used a black-
top-hat morphological operator to separate MP from both 
leukocytes and platelets, with a non-flat paraboloid structur-
ing element of radius of 9 and a slope of 1 pixel. It should be 
taken into account that these fixed parameters might not be 
suitable for images with different pixel resolutions. The 
black-top-hat operator is followed by a thresholding opera-
tion with a fixed threshold, which according to the authors is 
reliable given the independence of the G and B channels 
with regard to illumination and staining intensity. However, 
the authors do not define the value of this fixed threshold on 
the publication.  
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 A dark stretching technique is applied in [21] for contrast 
enhancement of MP-infected thick blood smear images. The 
dark stretching is a process that uses an auto scaling method, 
being the dark areas stretched and the bright areas com-
pressed. The authors state that the dark areas correspond to 
the MP in the infected images. To segment the MP, they use 
a single threshold value on the stretched image. However, 
the thresholds have been chosen empirically, and different 
thresholds had to be applied for different images in order to 
achieve good segmentation results.  

4.1.2. Boundary-based Segmentation 

 Boundary-based techniques seek to extract object 
boundaries directly, based on identifying the edge pixels 
located at the boundaries in the image [12].  

4.1.2.1. Thin Blood Films 

 An improved Circle Hough Transform (CHT) was used 
in [22] to detect RBC, based on the consideration that RBC 
have a circular pattern. The authors highlighted that CHT has 
the advantage of handling the segmentation for highly over-
lapping and oval cells, and noted that the RBC are much 
more noticeable in the green channel of the RGB color 
space. However, RBC might present shapes significantly 
different from the expected circular/oval pattern, which 
might difficult the detection using this approach.  

4.1.2.2. Thick Blood Films 

 A combination of Absence of Gradients and Nernstian 
Equilibrium Stripping (AGNES), and Morphological Gradi-
ent techniques is used in [23] for the detection of P.vivax 
parasites in thick blood films. A morphological gradient 
method is first applied in order to enhance the borders of the 
objects present in the image. This is followed by a threshold 
detection stage using the K-Median method. The AGNES 
and K-Median techniques were then used to assign the re-
maining number of pixels to each region, using as starting 
points the image regions previously identified as objects and 
background. These techniques were locally applied on rec-
tangular sectors corresponding to 20% of the input image, a 
percentage defined experimentally. According to the authors, 
this approach might induce the appearance of objects that are 
not part of the original image in the border of the defined 
rectangular sectors. 

4.1.3. Clustering Methods 

 Clustering is a machine learning technique that can be 
used for segmentation purposes when applied as an indicator 
of the similarity of different image regions, based on a set of 
measurements that describes those regions. 

4.1.3.1. Thin Blood Films 

 The application of 3 different clustering algorithms to 
segment blood cell images is studied in [24]: Mean-shift, K-
means and Fuzzy C-means. The authors support that K-
means clustering algorithm achieves best results for blood 
cell images segmentation, and they used a Median-cut algo-
rithm after applying the K-means in order to reduce the 
number of regions to an optimum level. However, this ap-

proach needs further validation since it only used 5 cropped 
sub-images. 
 A segmentation approach using k-means clustering is 
also proposed in [25] for the detection of P.vivax parasites. 
Different color components of RGB, HSI and C-Y color 
models have been analyzed, and the S component of C-Y 
color model has proven to be the best, with segmentation 
accuracy and F-score of 99.46% and 0.9370, respectively. 
 In [26], the authors used the b*-color channel from the 
CIE L*a*b* color space for k-means clustering as an unsu-
pervised segmentation approach to identify malaria parasite 
tissues. They used 118 Leishman-stained microscopic im-
ages with reported results of 76% and 60% for SE and SP, 
respectively. It is worth noting that these results refer to clas-
sifying the images as infected/not infected, thus not giving 
information about the precise number of correctly identified 
MP in each image. 

4.1.4. Graph Partitioning Methods 

 Graph partitioning methods model the images as a 
weighted and undirected graph, which defines the 
(dis)similarity between the neighborhood pixels. It can be 
used for segmentation purposes when the graph is partitioned 
according to a specific criterion that creates reliable pixel 
clusters.  

4.1.4.1. Thick Blood Films 

 The authors in [11] present an optimized normalized cut 
(NCut) algorithm for the segmentation of RBC infected with 
MP in thick blood smears. The NCut algorithm is based on a 
global criterion, and it maximizes both the total dissimilarity 
between the different groups and the total similarity within 
the groups. For detection of trophozoites and schizonts, the 
NCut algorithm performs best in the HSV color space. How-
ever, several artifacts appear on the segmented images, and 
the usage of a global criterion makes this methodology prone 
to error with significant variation of the illumination condi-
tions and/or staining intensity.  

4.1.5. Classifier-based Methods 

 Classifier-based methods for segmentation rely on the 
usage of two-class models for segmentation purposes. 

4.1.5.1. Thin Blood Films 

 In [9], a Bayesian pixel classifier has been employed in 
order to differentiate between the stained and non-stained 
pixels. The class conditional probability density functions of 
the stained and the non-stained classes were estimated using 
the non-parametric histogram method. 

4.2. Feature Extraction 

 The primary objectives of feature extraction are reducing 
the computational complexity of the subsequent process and 
facilitating a reliable and accurate recognition for unknown 
novel data, being the last objective particularly important for 
computer vision and pattern recognition systems. Moreover, 
the in-depth understanding of the domain-specific knowledge 
gained by human experts on the problem being addressed 
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can be of extreme importance for the design of a reliable and 
effective feature extraction engine [27].  

4.2.1. Binary Objects Measures 

 A binary object can be described in terms of its size (e.g. 
area, perimeter), pose (e.g. centroid, orientation), shape 
measures (e.g. thinness ratio, rectangularity, circularity, 
Euler number, moments, elongation), shape descriptors (e.g. 
differential chain code, fourier descriptors, media axis trans-
form, graph representation) or distance to other objects (e.g. 
Euclidean distance, city-block distance, chessboard distance) 
[12].  

4.2.1.1. Thin Blood Films 

 In [13], the infected RBC detection in thin blood smears 
is based on relative ratios between chromatin dots and RBC 
terms of area and centroids distances. For the same purpose, 
the work in [18] uses shape measurements like compactness 
and moments of inertia. 

4.2.1.2. Thick Blood Films 

 The segmented non-background objects are distinguished 
in [20] according to size, and the MP species P. falciparum 
and P.vivax are distinguish according to the chromatin size. 
However, this methodology was tested only on 20 images 
and the thresholds were defined in number of pixels, thus not 
suitable for images with different pixel resolutions.  

4.2.2. Gray-Level Objects Measures 

 Gray-level objects measures consist on measurements 
derived from the intensity distribution of the object. There 
are 3 main categories of gray-level object measurements: 
Intensity measures (e.g. integrated and average optical inten-
sity, contrast) histogram measures (e.g. mean, standard de-
viation, skew, entropy, energy) and texture measures (e.g. 
statistical texture measures, power spectrum features) [12]. 

4.2.2.1. Thin Blood Films 

 For detection and differentiation between WBC and 
P.falciparum gamecocytes, the authors in [14] start by find-
ing the centroids of each detected stained component. The 
proposed algorithm considers as candidates the neighbor-
hood of the listed centroid coordinates within the diameter of 
the WBC. The candidates are marked as WBC if the neigh-
borhood region presents low mean intensity and less vari-
ance, and as gametocyte of P.falciparum if the region has 
high eccentricities (variance) and average intensity. 
 The authors in [22] observed that nucleated components 
result in distinctively high intensity values in the B channel 
of the RGB color space, while the same nucleated compo-
nents in the G channel exhibit very low intensity values. 
Therefore, they proposed an intensity measure based on the 
differences between the B and the G color intensity channels, 
in order to stretch the contrast for visual perception and em-
phasize nucleated objects. 
 The methodology proposed by [15] aims to detect 3 re-
gions inside the infected RBC, particularly the MP nucleous, 
MP cytoplasm and RBC cytoplasm. Features of those re-

gions are then extracted for classification purposes, based on 
area ratios and range of intensities of each region.  
 In another work [9], the following gray-level measures 
were extracted for further MP/non-MP classification in thin 
blood films: Hu moments, relative shape measurements, his-
togram and color auto-correlogram. According to the 
authors, the last two features are the most effective for MP 
classification. 
 The color histogram is used in [18] after quantization into 
32 colors, as well as the local area granulometry for each 
RGB channel. It worth noting that the features were normal-
ized (for zero mean, 1 variance) first on the training set, be-
ing the mean and standard deviation calculated and then used 
for the normalization of the testing set. 
 The authors in [19] extracted four different features: 1) 
Gradient; 2) Flat texture (determined by computing the dif-
ference between the original image and the filtered image 
using median filter); 3) Color histogram; and 4) Area granu-
lometry. 

4.2.2.2. Thick Blood Films 

 In order to differentiate MP from artifacts in thick blood 
films, the authors in [8] extracted 174 different features. The 
features were grouped in 3 main groups: 1) Statistical mo-
ment features - 4 central moments (mean, variance, skew-
ness, and kurtosis), Hu’s set of 7 invariant moments [28], 49 
Zernike moments of orders up to 12 [29]; 2) Texture fea-
tures: Haralick’s 13 co-occurance matrix features [30]; Un-
ser’s 18 sum and difference histogram features [31]; Chen’s 
16 statistical geometrical features [32]; 5 features proposed 
by Young et al. [33] that describe the distribution of chroma-
tin in the ROI; 3) Color features: 60 features representing a 
60-bin histogram of the hue channel of the ROI; 2 features 
described by Kovalev et al. [34] that represent cyan shifts in 
the ROI. 
 The following features were extracted in the work pre-
sented in [10]: mean; standard deviation; kurtosis; skewness; 
entropy of the histograms of R,G and B channels from RGB 
space, H channel from HSV space, and H channel of HSI 
space. 
 In another recent work, 3 groups of features were ex-
tracted in [23] for each RGB channel: 1) Color features: 
standard deviation, 7 Hough moments of color and color 
range; 2) Texture features based on the co-occurrence matrix 
(in 4 directions): homogeneity, contrast, GLMSR (General 
Linear Model Simple Regression), standard deviation, sec-
ond angular moment and correlation; 3) Texture features 
based on the Wavelet transform: energy, mean and standard 
deviation. Four wavelet families were used (Haar; bior-
thogonal 1,3; Daubechies 2; and Daubechies 8) considering 2 
decomposition levels, being applied in each level a low and 
high pass filter. 
 In [7], the authors extract two types of features: 1) Con-
nected component features: Perimeter; Moment of Inertia; 
Elongation; Jaggedness; and Maximum λ (consists in the 
maximum child gray level minus the current gray level); 2) 
Moment features: the moment m00, the central moments, u11, 
u20, u02 and Hu moments h0, h1, h2. 
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4.3. Feature Selection 

 In order to build a good classification model, the reduction 
of the number of attributes used on the classification process 
may not only have positive impact in terms of the processing 
time, but also in terms of the classification results. Feature 
selection techniques play an important role in this context, 
and they can be organized into three categories: filter meth-
ods, wrapper methods and embedded methods [35]. 
 Filter Methods rank each feature according to some uni-
variate searching function and select the highest-ranking 
features, where the scoring should reflect the discriminative 
power of each feature. Some of the most common univariate 
filter methods includes Bayesian Network, Information Gain, 
Signal-to-Ratio, Euclidean Distance or Correlation Squares 
(R2) [35]. Filter methods are usually very efficient and fast to 
compute, but comprise some significant drawbacks like the 
redundancy of the selected features, which can carry the 
same information. Another important disadvantage of the 
filter methods is the fact that this selection does not consider 
some important relationships between features, since features 
can receive a low score by the ranker algorithm when used 
by itself, but be very useful when combined with other fea-
tures. 
 Opposite to filter techniques that consider the ranking of 
each feature independently, Wrapper and Embedded Meth-
ods are specific to a given machine-learning algorithm. In 
the Wrapper Method, a search is conducted using a specific 
classifier in order to find the subset of features with which 
the classification algorithm performs the best. For instance, 
using forward selection, the Wrapper Method estimates the 
accuracy of adding each unselected feature to the feature 
subset, and the feature that most improves the accuracy is 
selected. These methods typically terminate when the esti-
mated accuracy of adding any feature is less than the esti-
mated accuracy of the feature set already selected [36].  

4.3.1. Thick Blood Films 

 An optimal feature subset was chosen in [8], based on the 
174 previously extracted features for MP detection. The fea-
tures were first normalized to have zero mean and a standard 
deviation of one. The authors proposed a 2-step feature se-
lection methodology: an univariate ranking is first applied in 
order to keep only the 60 features that have the highest uni-
variate discriminative power, and then a genetic algorithm 
(GA) is used for automatic selection of an even smaller fea-
ture subset. 
 Another example of feature selection for MP detection is 
referred in [23], where the Principal Component Analysis 
(PCA) was used to identify features that are redundant and 
do not carry new information, thus also involving feature 
transformation.  

4.4. Classification 

 In machine learning and statistics, classification is the 
problem of identifying to which of a set of categories (sub-
populations) a new observation belongs, on the basis of a 
training set of data containing observations (or instances) 
whose category membership is known. In the terminology of 
machine learning, classification is considered an instance of 

supervised learning, i.e. learning where a training set of cor-
rectly identified observations is available [37]. 

4.4.1. Naïve Bayes Classifier 
 The Naïve Bayes classifier assumes that the presence (or 
absence) of a particular feature of a class is unrelated to the 
presence (or absence) of any other feature, meaning that it 
assumes the independency of variables given the class. In 
spite of its naive design and apparently over-simplified as-
sumptions, Naïve Bayes can often outperform more sophisti-
cated classification methods applied in many complex real 
word situations. An advantage of the Naïve Bayes classifier 
is that it requires a small amount of training data to estimate 
the parameters of the model [38]. 

4.4.1.1. Thin Blood Films 
 In [15], the classification model for the identification of 
infected RBC achieved a SE of 92.59% and a SP of 99.65% 
using a Bayes Decision Rule classifier. However, only 60 
images were used for training and 20 for testing. 

4.4.2. K-Nearest Neighbor 

 One of the most fundamental and simple classification 
methods is K-nearest neighbor (kNN), being often used 
when there is little or no prior knowledge about the distribu-
tion of the data. Nearest neighbor algorithm is based on the 
principle that the instances within a dataset will generally 
exist in close proximity to other instances with similar prop-
erties [39]. 

4.4.2.1. Thin Blood Films 
 For detection of MP in thin films, in [9] the authors pro-
posed a distance weighted kNN classifier trained with the 
extracted features, and a detailed performance comparison is 
presented. The authors state that the proposed method 
achieved 74% of SE and 98% of SP. 
 The authors in [18] proposed an automated method for 
MP detection and identification on thin blood film, where 
three classifiers were tested: the kNN classifier achieved 
72.4% of SE and 97.6% of SP; the Fisher Linear Discrimi-
nant achieved 71.5% of SE and 93.9% of SP; and the Back 
Propagation Neural Network achieved 70.5±1.7% of SE and 
96.6±0.4% of SP. Furthermore, the authors proposed and 
compared three different classification models for species 
and life-cycle-stage identification: The first model (20-class) 
performs detection, species, and life-cycle-stage recognition 
in a single classification, simultaneously considering non-
parasite classes. The second and third models perform a bi-
nary detection beforehand followed by a single 16-class clas-
sification or two 4-class classifications for identification, 
respectively. The 20-class model was considered the most 
favorable model. 
 In another recent work, the authors in [19] tested five 
different classifiers, and stated that the kNN outperformed 
others with 80% of SE and 95.5% of SP. 

4.4.3. Support Vector Machine 
 A support vector machine (SVM) constructs a hyperplane 
or set of hyperplanes in a high-or infinite-dimensional space, 
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which can be used for classification. Intuitively, a good sepa-
ration is achieved by the hyperplane that has the largest dis-
tance to the nearest training data point of any class (so-called 
functional margin), since in general the larger the margin the 
lower the generalization error of the classifier [40]. 

4.4.3.1. Thick Blood Films 

 For MP classification, the authors in [8] used a SVM 
with a radial basis function kernel with gamma G = 0.125, 
and a cost factor of C = 1.0. The stated results showed a SE of 
97% combined with 0.8 false-positive detections per image. 

4.4.4. Neural Networks 

 Neural Networks (NN) are based on the way biological 
nervous systems process information and are applied to a 
large number of real world problems. They are especially 
well suited to problems that people are good at solving, but 
the algorithm solution is too complex to be defined. The 
most common NN model is the multilayer perceptron, which 
is a feed-forward artificial NN that maps sets of input data 
onto a set of appropriate output, using three or more layers of 
neurons with nonlinear activation functions [41]. 

4.4.4.1. Thick Blood Films 

 A NN with 5 neurons in the output later was used in [23], 
of which three neurons represent the parasites of interest 
(gametocytes of P.falciparum, squizonts of P.vivax and 

gametocytes of P.vivax), and the two remaining neurons cor-
respond to sediments and WBC.  

4.4.5. Genetic Programming 

 Genetic programming is an evolutionary algorithm-based 
methodology inspired by biological evolution to find com-
puter programs that perform a user-defined task. Essentially 
genetic programming is a set of instructions and a fitness 
function to measure how well a computer has performed a 
task. It is a specialization of genetic algorithms where each 
individual is a computer program, being a machine learning 
technique used to optimize a population of computer pro-
grams according to a fitness landscape determined by a pro-
gram's ability to perform a given computational task [42]. 

4.4.5.1. Thick Blood Films 

 In [10], the classification was made using Genetic Pro-
gramming to identify parasites and also to detect type and 
phase of the parasite. Two different classification models 
were considered using a dataset of 180 thick blood film sub-
images cropped manually: a first model (two classes) with an 
accuracy of 95.49% for non-parasites and 95.58% for para-
sites, and a second model (six classes) with an average accu-
racy of 90.25% for non-parasites, 82.25% for P.vivax thro-
pozoites, 75.83% for P.vivax schizonts, 81.75% for P.vivax 
gametocytes, 90.75% for P.falciparum thropozoites and 
86.75% for P.falciparum gametocytes. 

Table 1. Proposed approaches for the detection and/or segmentation of malaria parasites in thick blood films. 

Author Year Segmentation Features Classifier #Images SE/SP (%) 

(Kaewkamnerd  
et al., 2011) 

2011 Adaptive  
Thresholding 

- Hue histogram. 

- Chromatin size. 

- 20 (FV) - / - 

 (Elter et al., 2011) 2011 Thresholding - 60 statistical moment features. 

- 52 texture features. 

- 62 color features. 

SVM 256 (FV) 97 / - 

(Yunda et al., 2012) 2012 AGNES + 

Morphological 
gradient tech-
niques 

- 27 color features. 

- 72 co-occurrence matrix texture features. 

- 62 Wavelet transform texture features. 

Neural  
Network 

248 (FV) - / - 

(Purnama et al., 
2013) 

2013 - - Mean and standard deviation. 

- Kurtosis. 

- Skewness. 

- Entropy of the histograms of:  

(a) R, G and B channels from RGB space;  

(b) H channel from HSV space;  

(c) H channel of HIS space. 

Genetic  
Programming 

180 (CS) 96 / 96 

(Quinn et al., 2014) 2014 - - Connected component features (Perimeter; Moment of 
Inertia; Elongation; Jaggedness; and Maximum λ). 

- Moment features (moment m00, the central moments, 
u11, u20, u02 and Hu moments h0, h1, h2). 

Extremely 
Randomized 
Trees 

2703 
(M) 

*ROC 
AUC = 
0.97 

#Images indicates the number of images used to validate the proposed approach; SE and SP indicates the reported sensitivity and specificity of the proposed approach, respectively; 
AGNES stands for “Absence of gradients and Nernstian equilibrium stripping”; FV stands for full view images; CS stands for manually cropped sub-images; M stands for mobile 
acquired images. 
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4.4.6. Extremely Randomized Trees 

 Extremely Randomized Trees is a tree-based ensemble 
method for classification that consists of randomizing 
strongly both attribute and cut-point choice while splitting a 
tree node. In the extreme case, it builds totally randomized 
trees whose structures are independent of the output values 
of the learning sample. The strength of the randomization 
can be tuned to problem specifics by the appropriate choice 
of a parameter [43]. 

4.4.6.1. Thick Blood Films 

 The authors in [7] used a Extremely Randomized Trees 
classifier with an ensemble of 250 trees and a maximum tree 
depth of 5. The authors stated that this classifier has the ad-

vantages of being fast and memory-efficient, which might be 
useful in situations where classification must be carried out 
for instance on a mobile device with limited computational 
resources. The authors stated an area under the curve (AUC) 
of 0.97 for the receiver operating characteristic (ROC) curve. 

5. SUMMATION AND CRITICAL APPRECIATION 

 The proposed methodologies were divided in two main 
groups: MP in thick blood films (see Table 1) and MP in thin 
blood films (see Table 2).  
 Malaria parasites detection and segmentation techniques 
in microscopic images are, in general, still in need of im-
provement and further testing. Most of the methodologies 
reviewed in this work were tested with a limited number of 

Table 2. Proposed approaches for the detection and/or segmentation of malaria parasites in thin blood films. 

Author Year Segmentation Features Classifier #Images SE/SP (%) 

(Tek et al., 2006) 2006 Bayesian pixel 
classifier 

- Histogram. 

- Hu moments. 

- Relative shape measurements. 

- Color auto-correlogram. 

kNN 260 (FV) 74 / 98 

(Makkapati and 
Rao, 2009) 

2009 Thresholding - Area ratios. 

- Centroids distances between RBC measurements 
and chromatine dots. 

- - (FV) 83 / 98 

(Zou et al., 2010) 2010 Circle Hough 
transform 

- - (FV) - 

(Mandal et al., 
2010) 

2010 Normalized cut - - 37 (CS) - 

(Tek et al., 2010) 2010 Thresholding - Color histogram. 

- Local granulometry. 

- Shape measurements (e.g. compactness, moments 
of inertia). 

kNN 630 (FV) 72 / 98 

(Kareem et al., 
2011)  

2011 Thresholding - - - (FV) - 

(Muda and Salam, 
2011) 

2011 K-means clustering 
+ Median-cut 

- - 5 (CS) - 

(Anggraini et al., 
2011) 

2011 Otsu’s method - Range of intensity of infected and normal RBC. 

- Area ratios. 

Bayes  
Classifier 

80 (FV) 93 / 99 

(Ghosh et al., 2011) 2011 Fuzzy divergence - - 150 (CS) - 

(Fang et al., 2011) 2011 Thresholding - - 100 (FV) 87 / 97 

(Kareem et al., 
2012) 

2012 Thresholding - - 200 (FV) - 

(Malihi et al., 2013 2013 Otsu’s method + 

Canny’s method 

- Gradient. 

- Flat texture. 

- Color Histogram. 

- Area Granulometry. 

kNN 363 (FV) 80 / 96 

(Abdul et al., 2013) 2013 K-means clustering - - 100 (CS) 94 / 96 

(Khan et al., 2014) 2014 K-means clustering - b*-color channel from the CIE L*a*b* color space. - 118 (FV) 76 / 60 

#Images indicates the number of images used to validate the proposed approach; SE and SP indicates the reported sensitivity and specificity of the proposed approach, respectively; 
kNN stands for the k-Nearest Neighbor; FV stands for full view images; CS stands for manually cropped sub-images. 
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images, and more studies with significantly larger datasets 
for the evaluation of the proposed approaches are needed. 
Despite promising results reported during the past years, the 
great majority of the computer-aided methods found on the 
literature for malaria diagnosis are based on images acquired 
under well controlled conditions and with proper micro-
scopic equipment. However, one should take into account 
that 80% of malaria cases occur in Africa, where this type of 
equipment is scarce or even nonexistent in common 
healthcare facilities. 
 Furthermore, the analysis of thin blood smears is much 
more addressed in the literature when compared with thick 
blood smears. This is probably because the image processing 
tasks required on thick blood smears analysis are considera-
bly more challenging, given the fact that thin blood smears 
consist on a single layer of blood elements. Thus, several 
additional image artifacts are avoided in thin blood smear 
analysis, like the overlap of blood elements or the recurrent 
appearance of unfocused structures caused by the location of 
those structures in different focal planes. Thick blood smears 
are considered 20-40 times more sensitive in detecting ma-
laria parasites, and therefore should be equally addressed, 
despite the additional image processing challenges. 

CONCLUSION 

 This work collects and reviews various image processing 
and analysis approaches already proposed on the literature 
for the detection and segmentation of malaria parasites in 
blood smear microscopic images. This timely review aims to 
support the increasing interest in the development of image 
processing-based systems to be used in rural areas of devel-
oping countries, which might be the next future trend in ma-
laria computer-aided diagnosis.  
 The development of new mobility-aware microscopic 
devices (and ideally low cost) is an area that can greatly im-
prove the chances of the successful deployment of computer 
vision CAD solutions for malaria diagnosis in the field. Tak-
ing into account the high customs taxes and import duties 
currently in practice in most of the African countries, the 
easy replicability of these microscopy devices in third world 
countries should also be an issue to address. Several others 
additional requirements for this type of microscopic devices 
can be equally considered, like automating the device as 
much as possible, discarding the need of considerable exper-
tise and train of the technician in terms of maneuvering the 
microscope, or supplying the energy needed for the illumina-
tion and/or any type of automation through the mobile device 
battery, thus discarding the need of an additional power 
source.  
 The mobile phone is currently Africa’s most important 
digital technology, and is boosting African health as it 
emerges as a platform for diagnosis and treatment. In 2000, 
few Africans had a phone, but today about three-quarters do 
[44]. Just as African telecommunications largely skipped 
over landline infrastructure and went straight to mobile 
phones, some experts say African medicine can skip over 
centralized labs [45]. Considering the recent significant im-
provements of the new generation of mobile devices in terms 
of image acquisition and processing power, if a reliable 
automatic diagnostic performance is ensured through the 

usage of those devices, one would dramatically reduce the 
effort in the exhaustive and time consuming activity of mi-
croscopic examination. 
 Moreover, the lack of highly trained microscopists on 
malaria diagnosis in rural areas could then be complemented 
by a significantly less specialized technician that knows how 
to operate the system and prepare blood smears. The usage 
of mobile devices in the system architecture can also bring 
significant improvements in terms of portability and data 
transmission. Finally, malaria diagnosis might be just one 
element of a suite of diagnostic software tests running on this 
type of system. Several other tests could simultaneously be 
carried out using the same images, for instance cell counting 
or detection of other hemoparasites like microfilaria or try-
panosoma.  
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