
Get Your Spreadsheets Under (Version) Control

José Nuno Macedo13, Ricardo Moreira24, Jácome Cunha14, and João Saraiva13

1 Universidade do Minho, Portugal
2 Universidade NOVA de Lisboa, Portugal

3 HASLab/INESC TEC, Portugal
4 NOVA LINCS, Portugal

a72424@alunos.uminho.pt rm.moreira@campus.fct.unl.pt

{jacome,saraiva}@di.uminho.pt

Abstract. Spreadsheets play a pivotal role in many organizations. They
serve to store and manipulate data or forecasting, and they are often used
to help in the decision process, thus directly impacting the success, or
not, of organizations.
As the research community already realized, spreadsheets tend to have
the same problems “professional” software contain. Thus, in the past
decade many software engineering techniques have been successfully pro-
posed to aid spreadsheet developers and users. However, one of the most
used mechanisms to manage software projects is still lacking in spread-
sheets: a version control system. A version control system allows for
collaborative development, while also allowing individual developers to
explore different alternatives without compromising the main project.
In this paper we present a version control system, named SheetGit, ori-
ented for end-user programmers. It allows to graphically visualize the his-
tory of versions (including branches), to switch between different versions
just by pointing and clicking, and to visualize the differences between any
two versions in an animated way. To validate our approach/tool we per-
formed an empirical evaluation which shows evidence that SheetGit
can aid users when compared to other tools.

Keywords: Spreadsheets · Version Control System

1 Introduction

Spreadsheet systems are a success example in the history of software systems.
They have achieved an astonishing usage both in terms of the number of users
(55 million of end-users programmers in 2012 just in the USA alone [13]) and the
variety of domains in which they are nowadays used. Moreover, they are used
both by professional programmers at large worldwide organizations, and by non-
professional programmers in small family-run businesses. In fact, spreadsheet
systems are installed in 90% of all computers globally [3] .

Spreadsheet systems offer end users a high level of flexibility, making it easier
to get started working with them. Although spreadsheets start as a single user,
simple software artifact, as any other software system, they tend to quickly evolve

2 J. N. Macedo et al.

into a large and complex system! Moreover, in the age of cloud-based software
development, spreadsheets tend to be maintained in a collaborative environment.

In such a context, software is nowadays developed by relying on version
control systems that help collaboratively building complex systems. A version
control mechanism helps teams to manage changes to the same source code over
time. These systems usually track and provide control over changes in software
files and implicitly allow developers to return to any earlier stage of the software.

Although the spreadsheet research community has done considerable work,
for instance, in defining abstractions for complex spreadsheets [7, 6, 4] or develop-
ing testing frameworks [1, 2], unfortunately, little work has been done in support-
ing version control based spreadsheet development. As a consequence, version
control in spreadsheet development is rare, still! There are several reasons for
this situation. First, spreadsheet users, usually non-professional programmers,
are not familiar with systems for version control software. Second, spreadsheets
are easy to share - usually a single file artifact which has to be under version
control, thus making it difficult to control and maintain their integrity. Third,
version control systems, such as Git5, work very well for text-based languages,
but they cannot be directly applied to the visual-representation of spreadsheets.

Although, version control systems are rarely used in spreadsheet develop-
ment, research shows that version control does help end users [11]. Because the
traditional version control systems cannot be directly applied to (visual) spread-
sheets, end users perform their own versioning manually by adding a suffix/prefix
to a file name with the file’s version number! This can be seen even in large com-
panies such as Enron [9], where they often sent updated spreadsheets through
email. However, manual versioning holds numerous risks, as it is possible for a
user to receive an email with a wrong or already outdated version, which would
cause a problem whose root can be difficult to trace.

The goal of our work is three-fold: First, to bring version control to spread-
sheet end-users developers in an intuitive manner. Second, to incorporate yet
another modern software development methodology into the spreadsheet realm.
Third, to help end users to create, manage, and comprehend complex spread-
sheets. For this purpose, we created an add-in for Microsoft Excel, named Sheet-
Git, which automatically commits changes, creates branches when needed, al-
lows the user to change between versions, and see the spreadsheet differences
between versions. Because, the control version is to be used by end users, our
user interface has been carefully designed: an history slider is presented in our
plug-in allowing end-users to return/see any earlier version of their spreadsheet.
A new version of a spreadsheet is added to the control version by just pressing a
button (or by configuring such a commit to occur when a given number of cells
have been updated). This will be detailed in Section 3.2.

To evaluate SheetGit we performed an empirical evaluation with 18 partic-
ipants, doing two different kinds of tasks in two different spreadsheets. Evidence
show SheetGit helped end users being faster and more correct in most cases.
Section 4.5 presents this study in detail.

5 https://git-scm.com

Get Your Spreadsheets Under (Version) Control 3

2 Related work

In this paper we present a version control system, named SheetGit. The initial
ideas that motivated the development of this tool were presented in a preliminary
workshop paper [12]. We now present in great detail SheetGit, we extend the
visual interface of the tool, and we present a validation of our approach and tool.

Microsoft Excel’s official approach, which they simply call History, is avail-
able solely on the Windows platform. However, it is limited to spreadsheets
hosted on Microsoft Sharepoint, so one cannot make use of it without being
online, but it does allow collaboration between users. Versions are saved auto-
matically when the user saves the document; Excel will either create a completely
new version or merge the changes with the last one, with unknown criteria.

One of the important features in version control is the ability to see the
differences between versions of a file, but Excel does not have such a feature.

It is worth noting that Microsoft has actually developed an official tool to
detect spreadsheet differences called Spreadsheet Compare6 that comes alongside
some versions of Excel 2013 and 2016 in Windows. It works as an external
tool and can function without having Excel itself open, having no integration
with Excel’s version control system. In Spreadsheet Compare, spreadsheets are
displayed side-by-side without their formatting, and depending on the type of
change, have specific colors highlight the altered cells. Unfortunately, there is
no easy way to detect changes to entire rows and columns, as sometimes the
program’s algorithm merely sees them as regular changed cell values. While that
is indeed correct, it is not very useful for users as it does not represent what
happened in reality. When it does detect row/column changes, it adds them to
the list of all changes, but does not specifically show that in the spreadsheets.

Coopy7 is a spreadsheet version control tool which supports showing differ-
ences, patching, merging and conflict resolution on spreadsheets and database
tables. It is separated from spreadsheet programs, and focuses on keeping data in
synchronization with various people across multiple spreadsheet technologies by
converting the worksheets to an intermediate format called CSVS. This CSVS
format is based on the well known CSV format but with support for multi-
ple worksheets per file, unambiguous header rows, and a clear representation of
NULL. While Coopy does have a large feature-set, its interface is aimed more to-
wards professional programmers with its use of concepts, information and syntax
probably difficult for end users to know.

The revision history system of Google Sheets8 is very powerful. It begins
functioning immediately upon creating a new spreadsheet and automatically
commits a new version whenever a new change is made. If various changes are
done in a short period of time, Google Sheets may aggregate the changes into
a single commit. In the Revision History page, one is able to see a list of all

6 https://support.office.com/en-us/article/overview-of-spreadsheet-compare-
13fafa61-62aa-451b-8674-242ce5f2c986

7 http://share.find.coop
8 https://www.google.com/sheets/about/

4 J. N. Macedo et al.

versions right next to the actual spreadsheet, each having the list of people who
edited the spreadsheet in that particular version and their unique color. Upon
clicking one of the versions, the spreadsheet will change to show that particular
point in history but in a gray-scale color scheme; the cells that were edited in
some fashion will be tinted with the unique color of their author.

XLTools9 is a suite of various utilities for Microsoft Excel all in one VSTO
add-in, one of them being called Version Control. This tool can create a local
Git repository for the active workbook, where committing can be done either
manually or automatically when saving; commit messages can also be added. The
user also has access to the list of revisions, where they can choose to compare
or save individual worksheets. However, there is no option to directly restore
to a previous version. One has to save the file somewhere and then overwrite
the original when Excel is closed, as the original cannot be overwritten while
Excel and the add-on are open. Despite using Git, the system is fully local and
has no collaboration features. Spreadsheet comparing can only be applied to one
worksheet at a time. This will open a new Excel window with both old and new
spreadsheets, having the new cell values tinted in red and its text in bold. The
tool does not detect formatting changes and merely detects the actual cell value,
and since formatting when comparing sheets is not changed, if one is unfortunate
enough to have the same red cell formatting as the add-on uses, edited cells in
the document may be confused with cells that were never touched.

Xltrail10 is a recently created program that provides version control in spread-
sheets. It is not directly integrated with Excel, it instead functions by creating
a folder in the operating system that will be monitored by the program. Any
spreadsheets placed in it become versioned, and when they are edited, the pro-
gram will detect the changes and create a new version appropriately. It can also
work through the cloud by detecting changes on Dropbox or Sharepoint accounts.
In this case one would not need to download their personal client. Versions are
kept in a linear format, much like Microsoft Excel. The service provides diffing,
in a similar way to Coopy’s highlighter format. Xltrail does not work without
an internet connection nor does it support branching and merging.

Table 1 presents an overview of the features implemented by all tools.

Table 1. Table comparing SheetGit features with existing tools

Tool Commit Diff Merge Branch Collaboration Offline

SheetGit yes yes yes yes yes yes
Microsoft Excel yes no no no yes no

Spreadsheet Compare no yes no no no no
Coopy no yes yes no no yes

Google Sheet yes yes no no yes no
XLTools yes yes no no no yes

xltrail yes yes no no yes no

9 https://xltools.net
10 http://xltrail.com

Get Your Spreadsheets Under (Version) Control 5

3 The SheetGit Tool

In this section we describe several features for version control for spreadsheets
and introduce SheetGit. We have created our solution as an Excel add-in
to keep it as closely knit to Excel as possible, as this potentially increases its
acceptance among spreadsheet developers as opposed to have to be run as an
external tool. This will also enable us to present information directly in the
active spreadsheet, and grant us access to Excel’s proprietary file formats.

3.1 Technological Choices

Fig. 1. SheetGit’s task
pane, displaying various
commits

There are two main types of add-ins for Excel: i)
the Visual Studio Tools for Office (VSTO), add-ins
made with C# or Visual Basic, and ii) the new type
Microsoft calls Office add-ins. The latter are simply
web pages that can interact with the documents us-
ing an API in Javascript. They are sandboxed and
less closely integrated with Office, making them more
restrictive than VSTO add-ins, but in exchange, they
would also work in Excel for browsers.

We chose to create an VSTO add-in instead of us-
ing the new Javascript API, because we find the API
not powerful enough for what we intend to create.
We ultimately want the add-in to start immediately
when Excel is ran so there is no risk of the users for-
getting to enable the add-in, possibly losing data as a
result, something that is not possible in the Javascript
add-ins due to their sandboxed nature. As a result,
our solution will only support Microsoft Excel in the
Windows platforms.

The add-in consists of a self-contained task pane,
as seen in Figure 1, that includes an embedded
browser to allow us to make use of Javascript, while
retaining the advantages of VSTO add-ins. Our ver-
sion tree is created using Gitgraph.js11, a Javascript
library. We use Bitbucket12 in the background to actually manage the different
versions of the spreadsheet, that is, each commit is actually stored in a private
Bitbucket repository as a new file.

3.2 SheetGit Capabilities

We implemented a set of fundamental features: committing versions, switching
between commits/versions, the option to see the actual differences between two
versions, merge two different commits, and sharing these between various people.

11 http://gitgraphjs.com
12 https://bitbucket.org

6 J. N. Macedo et al.

Committing One of the most important features of a version control system
is to organize the history of the commits done by the different users. In our
particular case a commit is a set of changes in a workbook that occurred since
the last commit until the next one. These commits can be done automatically
(each time the user saves the file), or manually (when the user decides to commit
the changes). A commit can also be called a version of the spreadsheet.

The list of commits, or versions, is displayed in a tree format, as shown in
Figure 1. We use a tree because of its simplicity and adaptability, allowing for
an intuitive graphical representation of many version control functions such as
branches and merges. Very popular version control services such as Github13 or
Bitbucket also make use of a tree structure to display their version lists. The
commits are placed chronologically, with the topmost being the oldest and the
bottom most the youngest.

The large white commit is the currently active version, meaning it is the
spreadsheet the user is seeing. A user can click in a desired commit in the tree,
and the workbook will change so it is in the state of the particular version
selected. In this case, the user restored his spreadsheet to a previous version, so
it is not the most recent version of the spreadsheet.

By default, commits are generated automatically, reducing the burden on
the user. By using metrics such as time since last edit and amount of data
entered into the workbook, we combine various commits into blocks such that
the end result may be indifferent to the user. In fact, Google Sheets has a similar
behavior. An option to enable manual commits has also been added, for more
experienced users who know better when to actually commit changes.

Each commit is associated with an optional commit message, auto-generated
version number, and an automatically generated summary of the changes, which
is shown upon hovering a commit dot in the tree as illustrated in the text box
displayed in Figure 1.

Even though these messages are automatically generated, the user has always
the possibility of editing such message by clicking and directly editing it. Next
we list some of the messages shown for particular changes (the message should
be self explanatory, c being a cell address, v a value, col a column letter, row
a row number, and color a color): Cell c = v ; Deleted cell c content; Deleted
column col ; Inserted row row ; Cell c = color tinted.

Note that the formatting changes are also recorded and displayed. This is
necessary in spreadsheets as they are naturally visual tools. This is a feature
none of the professional version control systems hold.

Showing Differences Between Commits To make an easy to understand
comparison in complex spreadsheets, SheetGit presents a slider between two
consecutive commits. Dragging the slider from one commit to the other displays
the individual differences (e.g. cell changes) between them, one at a time. This
allows the user to see the differences step-by-step rather than being overwhelmed

13 https://github.com

Get Your Spreadsheets Under (Version) Control 7

with all of them at the same time. This scales well with spreadsheet size and
complexity as long as the user controls the speed of traversing the timeline.

Fig. 2. Comparison between
two versions in SheetGit

An option to skip to certain cells of the compari-
son also helps in this regard. The differences that
are shown as the user moves through the timeline
are also appropriately highlighted in the spread-
sheet as one needs to be able to tell it apart from
the rest of the spreadsheet. This can be done for
example by changing the affected areas color or
by drawing a circle around it.

In SheetGit, the Diff Pane, as shown in Fig-
ure 2, contains all functionality related to view-
ing differences between two versions.

The slider moves through each cell that has
differences between the two versions. The two di-
rectional buttons move the slider up and down,
one step at a time, for when more precision is re-
quired and because some users may favor click-
ing buttons rather than dragging the slider.

Collaborative Development Version control
systems are a great incentive for collaborative
work. Thus, the visualization of the commits
must reflect the changes introduced by the differ-
ent users. To do so, our tree has a different color
for each user working in a particular spreadsheet.

Moreover, in order to organize the collabora-
tive development, each user gets his own branch
so such particular development can be done
without interfering with the main development.
Branches other than the main one are thus colored with the user’s color, signal-
ing the respective author’s ownership. Thus, the commits are shown as colored
dots in the tree, each color uniquely representing the commit’s author. This can
be seen in Figure 1, where two different colors signal that two different authors
collaborated on the same spreadsheet.

Each user can have more than one branch. For instance, if the user begins to
edit the spreadsheet from an older version (recall the last version is the bottom
dot in the line), it will be created a new branch for the forthcoming commits.

Merging Since each user has its own branch, at some point she/he may desire to
integrate her/his changes in the main branch. When done, this will be displayed
in the tree structure in an analogous way to the new branch, as illustrated in
Figure 1, where the red author performed merges twice over the development
cycle. These merges are signaled by the red line joining the main branch.

8 J. N. Macedo et al.

4.8. AVAILABILITY

Figure 4.8: Resolving conflicts in SheetGit

31

Fig. 3. Example of conflict when merging with SheetGit: When a new branch was
created the original value of the conflicting cell was 86.7. Then, in the new branch (B)
that cell changed to 26.0, while it was also changed in the main branch/trunk (T) to
65.0. Thus, a conflict occurs when merging the branches.

To make the development process easier for end user, we decided that it is not
possible to merge changes between branches from different users. Nevertheless,
it is possible to merge branches from the same user.

In some cases, conflicts may happen when merging to the main branch. In
these cases two situations may occur. First, if there are concurrent changes to
cells, the user must solve the conflicts by hand, that is, he/she must decide which
version goes to the main branch. SheetGit will show the possible solutions,
allowing the user to choose the intended one, as displayed in Figure 3. The second
situation occurs when the changes are in different cells. In this case, all the cells
will be integrated in the spreadsheet without the need for user intervention.

SheetGit is available at http://spreadsheetsunl.github.io/sheetgit.

4 Empirical Evaluation

The aim of our study is to evaluate the effectiveness and efficiency of users using
SheetGit when compared to the use of Excel and Spreadsheet Compare.

4.1 Study Design

Hypotheses. With this study we intend to test two hypotheses:

1. In order to perform a given set of tasks, users spent less time when using
SheetGit instead of using only Excel and Spreadsheet Compare.

2. Spreadsheets used with the support of SheetGit have a correctness grade
higher than using only Excel and Spreadsheet Compare.

Formally, the two hypotheses being tested are: HT for the time that is needed
to perform a given set of tasks, and HC for the correctness grade found in
different types of spreadsheets. They are respectively formulated as follows:

1. Null hypothesis. HT0
. The time to perform a given set of tasks using

SheetGit is not less than that taken using Excel and Spreadsheet Compare.
HT0 : µd ≤ 0, where µd is the expected mean of the time differences.
Alternative hypothesis. HT1

: µd > 0. The time to perform a given set of
tasks using SheetGit is less than using Excel and Spreadsheet Compare.
Measures needed. Time taken to perform the tasks.

Get Your Spreadsheets Under (Version) Control 9

2. Null hypothesis. HC0
. The correctness grade in spreadsheets when using

SheetGit is not smaller than using Excel and Spreadsheet Compare. HC0
:

µd ≤ 0, where µd is the mean difference of the correctness grades.

Alternative hypothesis. HC1
: µd > 0. The correctness grade when using

SheetGit is smaller than when using only Excel and Spreadsheet Compare.

Measures needed. Correctness grade for each spreadsheet.

The independent variables are, for HT , the time to perform the tasks (effi-
ciency), and for HC , the correctness grades (effectiveness).

Subjects and Objects. The study was performed with freshmen computer science
students from the NOVA University of Lisbon. They were chosen because they
are likely to have minimal experience with Excel and not enough programming
experience to know about version control. To provide incentive for participation,
we decided to raffle a voucher with the value of fifty Euro for a retail store. From
the 18 subjects, 16 were male and 2 were female. All of the subjects were below
20 years old. 62% of the subjects had experience with Excel and only 25% have
had experience with version control.

The objects of this study are three spreadsheets. The spreadsheet used as a
tutorial, termed Southpoint, calculates the total gas usage when given input val-
ues. It was used to explain how to use SheetGit to half of the participants, and
Spreadsheet Compare to the other half. The second spreadsheet, termed Grades,
manages and calculates grades for students of an university course. The third
spreadsheet, termed Markets, calculates the income of Enron’s global markets.
The spreadsheets were retrieved from two widely used spreadsheet repositories:
EUSES [8] and VEnron [5].

Instrumentation. After the tutorial phase, each participant received two spread-
sheets: the Grades and the Markets. For each spreadsheet, the participants re-
ceived two tasks. The first task asks users to correct an error in a spreadsheet
that sprouted in a recent version, but was correct some time ago. So users would
have to diff the multiple versions to find out where the error occurred, and then
correct it in a new version. The second task asks users to unite two versions of a
spreadsheet that have diverged from a common ancestor. Users would then have
to compare the three spreadsheets (the ancestor and the two different children)
and then perform a three-way merge. During the study a pre-questionnaire a
post-questionnaire were given to participants.

Participants were randomly split between two groups as to have an equal
amount of people with and without SheetGit. Some participants started with
the Markets spreadsheet and others with the Grades spreadsheet. This is impor-
tant as during the tasks performed with their first spreadsheet, participants are
still learning and will gradually improve, so when they reach the second spread-
sheet, they will have more experience than they had at the start. Concentration
levels also begin to decrease over a period of time, which could influence the
time spent on each task.

10 J. N. Macedo et al.

Fig. 4. Box plots for the Grades tasks time (first/second task on the left/right chart).

Fig. 5. Box plots for the Markets tasks time (first/second task on the left/right chart).

4.2 Results Analysis

Time spent (efficiency). There are noticeable differences in the time the par-
ticipants used to perform the study. Figure 4 shows the time it took for the
participants to perform Grades spreadsheet tasks. The Y axis contains the time
in seconds and the X axis defines if SheetGit (box with label true) or Spread-
sheet Compare was used (box with label false).

Figure 5 presents the times for the Markets spreadsheet.

Correctness grade (effectiveness). In regards to correctness, we divided the type
of errors participants could perform into two categories: having incorrect values
inputted in the correct version and inputting the correct values in a wrong
version. As such, the bar chart in Figure 6a shows the number of participants
who committed the former error, while Figure 6b the latter. The charts show all
the spreadsheets’ results together.

Get Your Spreadsheets Under (Version) Control 11

(a) Wrong values in the right version. (b) Correct values in wrong version.

Fig. 6. Errors produced by the participants.

Hypothesis Testing. To test our hypothesis on efficiency, we ran a Welch unequal
variances t-test to determine if there is any statistical significance [10].

For Grades task 1, p = 0.682, task 2, p = 0.001, and for Markets task 1,
p = 0.116, task 2, p = 0.004.

We also calculated Cohen’s d to determine our effect size [10].
For Grades task 1 the results if 0.196974, task 2 2.499612, and for Markets

task 1 0.784395, task 2 1.819253.

Comparison of times. From the t-test results we can deduce that only task 2
has statistical significance for both spreadsheets. For the task 1, there was no
statistical significance within the study.

Through Cohen’s d we can see that in task 2 for both spreadsheets the
difference between the two means can be classified as very large (> 0.8). So
SheetGit in these tasks helped the participants in a scale of more than one
standard deviation, which is very impressive.

Comparison of correctness. A couple of different tests were conducted, such
as the Pearson Chi-Square and Fisher’s Exact Test but no statistical relevance
could be found, mostly due to the low count of errors in both cases.

4.3 Results Interpretation

The results from the analysis suggest that SheetGit does improve user per-
formance while performing these tasks. The second task, related to merging in
version control, had strong statistical relevance, being noticeably superior over
not using SheetGit. This is likely because SheetGit actually introduces a
new method that directly aids users in the merging process. An example would
be how it pinpoints conflicting cells while the counterpart users would have to
search for them manually. SheetGit also automates parts of the merging pro-
cess when possible to perform decisions without user input, which helps greatly
lower the time, difficulty and possibility of errors within the task.

12 J. N. Macedo et al.

Regarding the first task, related to diffing and correcting errors, there was
no statistical significance found, though the average time required to solve the
task was inferior for SheetGit users. This is likely because while SheetGit
allows one to move between versions and diff without changing windows, it is
not that much faster than performing a diff with Spreadsheet Compare. Even
if the interface proves to be simpler, both sides of the participants received
tutorials for their tools, so provided they understood the tool, it would be likely
for the difference to be small. The results can also be attributed to the fact that
there were few versions to compare, which can provide an edge to Spreadsheet
Compare, which displays all differences between two versions instantaneously.
SheetGit instead shows the changes one by one, though it can group changes
from multiple versions in a single diff. In this scenario, SheetGit would likely
be even faster because those without it would have to navigate through menus
several times to change the versions to compare.

While no statistical relevance was obtained from analyzing the correctness of
the tasks, SheetGit had less errors in terms of wrong values overall. This may
be because of the unified interface, all inside Excel, which keeps the users focused
and can lead to less human error. The lower average time when performing the
tasks would also help in terms of focus. It is interesting to note that SheetGit
did indeed have more errors when it comes to users inputting the correct values,
but in wrong versions. What this means is that they corrected what error they
had to find, but in an old version. So the new resulting version did not have
any of the changes that occurred between that old version and the latest. All of
these errors occurred in the exact version where the error had, which means the
users just did not return to the latest version to correct it there.

4.4 Threats to validity

A few threats to validity deserve being analyzed.
Regarding internal validity, in order to minimize any effects on the indepen-

dent variables that would reflect on the causality, several actions were taken.
First, half the participants started with the Markets spreadsheet, and the other
half with Grades. This would minimize any learning effects from happening
throughout the session. Second, the study was intentionally short in order to
prevent the participants from losing focus while performing their tasks. Third,
the study was performed over two sessions, one in which half the participants
used SheetGit and the other where the latter half did not. Fourth, all partici-
pants executed the exact same tasks, so no group received special treatment.

For conclusion validity, a concern is the low amount of participants, which
leads to a lower statistical power for the study. When calculating the correctness
grade, we grouped the tasks’ errors together to increase the statistical power.

As for construct validity, participants were informed beforehand that they
were not under any sort of evaluation to guarantee they would not be affected
by the study itself. The tasks we asked the participants to perform are common
issues that are solved by the use of version control, either with or without our
tool, such as merging and diffing spreadsheets. By choosing these sort of tasks,

Get Your Spreadsheets Under (Version) Control 13

our study construct can evaluate whether or not users are more effective and
efficient while using SheetGit.

Finally, regarding external validity, related to the strength to generalize the
results of this study to industrial practice, we have selected two spreadsheets from
the real-world: one from an actual company and another from the EUSES corpus,
which in turn retrieved it from a Google search as part of a real-world example.
Although the spreadsheets are real-world spreadsheets, the environment is not.
Nevertheless, the participants represent a wide range of spreadsheet users, and
thus, we believe that results are generalizable.

4.5 Discussion

The empirical study we conducted reveals promising results for SheetGit.
Most participants wrote on the post-questionnaire that SheetGit helped them
greatly in performing their tasks and that they thought it was a necessary tool.

Despite that participants had a short amount of time to learn a completely
new perspective on managing backups and versions with our add-in, they ac-
complished their tasks on average faster than those that did not use SheetGit.
Even if the first task did not achieve statistical significance, the users did in fact
finish on average faster than those without SheetGit, which is impressive if one
considers that they had to learn a new interface and perspective on Excel. That
said, it could be faster by, for example, giving ahead of time a small highlight to
every cell that would be changed. This way, users have a much better notion of
the version in its entirety and the train of thought behind the changes.

Regarding errors, most found were related to users correcting errors on ver-
sions that were not the latest. This may be due to a lack of understanding or
just an honest mistake due to the seamless nature of the interface, as this sort
of situation happened even with users that finished both tasks fairly fast and
otherwise correctly. A warning could be shown in case changes are attempted
on versions that are not the latest to prevent this sort of error. The version tree
could also be better labeled, much like SheetGit’s diff tab, which has a detailed
explanation of its functionality and appearance directly on the interface.

5 Conclusion

Spreadsheets are the most used programming environment in the world. How-
ever, they still lack many of the advanced features that modern programming
environments offer, and in particular lack a proper version control system. We
chose to alleviate this problem by bringing SheetGit to Excel. SheetGit func-
tions as an integrated add-in for Excel and aids users by providing various func-
tionalities of version control, such as automated version creation, collaboration,
version comparison, and uniting two versions together in one spreadsheet. We
offer all these features directly in Excel in a graphical and intuitive manner.

The empirical validation we performed showed that SheetGit does improve
the users’ efficiency when performing some tasks, while receiving praise from the
participants for its concept, ease of use and necessity in the spreadsheet world.

14 J. N. Macedo et al.

Version control systems still have some features which were not included in
SheetGit such as cherry picking, rebase and many others. But careful consid-
eration must be put into these more advanced control versions features as they
must be abstracted and adapted to spreadsheets and their end-user developers.
Otherwise the user interface will just become more complex which is against the
original purpose of the application. As future work we plan to study how such
advanced features can be incorporated to SheetGit.

References

1. Abraham, R., Erwig, M.: Autotest: A tool for automatic test case generation in
spreadsheets. In: Proceedings of the 2006 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC ’06). pp. 43–50. IEEE CS (2006)

2. Abraham, R., Erwig, M.: Mutation operators for spreadsheets. IEEE Trans. Soft-
ware Eng 35(1), 94–108 (2009), http://dx.doi.org/10.1109/TSE.2008.73

3. Bradley, L., McDaid, K.: Using bayesian statistical methods to determine the level
of error in large spreadsheets. In: 31st International Conference on Software Engi-
neering. pp. 351–354. IEEE (2009)

4. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Embedding, evolution, and val-
idation of model-driven spreadsheets. IEEE Transactions on Software Engineering
41(3), 241–263 (March 2015). https://doi.org/10.1109/TSE.2014.2361141

5. Dou, W., Xu, L., Cheung, S., Gao, C., Wei, J., Huang, T.: Venron: A versioned
spreadsheet corpus and related evolution analysis. In: 2016 IEEE/ACM 38th In-
ternational Conference on Software Engineering Companion. pp. 162–171 (2016)

6. Engels, G., Erwig, M.: Classsheets: Automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Procs. of the 20th IEEE/ACM Int.
Conf. on Automated Software Engineering. pp. 124–133. ACM (2005)

7. Erwig, M., Burnett, M.: Adding apples and oranges. 4th Int. Symp. on Practical
Aspects of Declarative Languages pp. 173–191 (2002)

8. Fisher, M., Rothermel, G.: The euses spreadsheet corpus: A shared resource for sup-
porting experimentation with spreadsheet dependability mechanisms. SIGSOFT
Softw. Eng. Notes 30(4), 1–5 (2005)

9. Hermans, F., Murphy-Hill, E.: Enron’s spreadsheets and related emails: A dataset
and analysis. In: Proceedings of the 37th International Conference on Software
Engineering. pp. 7–16. ICSE ’15, IEEE Press, Piscataway, NJ, USA (2015)

10. Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S.,
Gibbs, S., Pohthong, A.: Robust statistical methods for empirical software engi-
neering. Empirical Software Engineering 22(2), 579–630 (Apr 2017)

11. Kuttal, S.K., Sarma, A., Rothermel, G.: On the benefits of providing versioning
support for end users: An empirical study. ACM Trans. Comput.-Hum. Interact.
21(2), 9:1–9:43 (Feb 2014). https://doi.org/10.1145/2560016

12. Moreira, R.: Sheetgit: A tool for collaborative spreadsheet development. In: Mi-
lazzo, P., Varró, D., Wimmer, M. (eds.) Software Technologies: Applications and
Foundations. pp. 415–420. Springer International Publishing, Cham (2016)

13. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user
programmers. In: Visual Languages and Human-Centric Computing, 2005 IEEE
Symposium on. pp. 207–214 (Sept 2005). https://doi.org/10.1109/VLHCC.2005.34

