An overview on the exploitation of time in
collaborative filtering

Jodo Vinagre3, Alipio Mério Jorge!?, and Joao Gama??
'FCUP - Universidade do Porto, Portugal
2FEP - Universidade do Porto, Portugal
SLIAAD - INESC TEC, Porto, Portugal
jnsilva@inesctec.pt, amjorge@fc.up.pt, jgama@fep.up.pt

Abstract

Classic Collaborative Filtering (CF) algorithms rely on the as-
sumption that data are static and we usually disregard the tempo-
ral effects in natural user-generated data. These temporal effects in-
clude user preference drifts and shifts, seasonal effects, new users and
items entering the system — and old ones leaving —, user and item
activity rate fluctuations and other similar time-related phenomena.
These phenomena continuously change the underlying relations be-
tween users and items that recommendation algorithms essentially try
to capture. In the past few years a new generation of CF algorithms
has emerged, using the time dimension as a key factor to improve rec-
ommendation models. In this overview we present a comprehensive
analysis of these algorithms and identify important challenges to be
faced in the near future.

1 Introduction

Over the past two decades, an increasing number of researchers has focused
on Recommender Systems. Collaborative Filtering (CF) is one of the most
studied recommendation methods and has been successfully used in a large
number of applications, such as e-commerce websites [55] and other on-line
communities in a series of domains [78, 35, 89]. Competitions like the Net-
flix prize [7], the KDD-Cup 2011 [23], the Million Song Challenge [62], the

successive ACM RecSys Conferences, Workshops and Challenges, as well as

the increased demand from both the academic community and the industry,
have motivated many notable contributions in the field.

Although a great amount of research has been dedicated to the develop-
ment and improvement of CF algorithms, many challenges still prevail. Some
are related with technical dimensions such as accuracy and scalability — easy
to measure offline. Others are more closely related to the users’ perspective,
such as trust, novelty and serendipity, diversity and general user engagement
and perceived quality, which are more difficult to measure. This overview
focuses on algorithms that try to exploit temporal dynamics to improve ac-
curacy.

The contributions studied in this overview try to solve the problems that
arise from temporal effects. It is reasonable to assume that user preferences
change over time. Some of these preference changes may occur in a short time
frame, while others may occur more slowly and gradually over a large period
of time. Moreover, the systems themselves are dynamic. New users and items
enter the systems and old ones leave. These phenomena that occur over time
continuously change the underlying user-item relations CF algorithms try to
capture. This overview reviews the literature on state-of-the-art algorithms
and techniques that try to deal with time related issues in CF recommenders,
and identifies future challenges of related research.

In this overview we distinguish between two categories of algorithms ac-
cording to how they approach the time dimension: time-aware and time-
dependent. The first explicitly model time features, such as the day of
month, hour or week. The latter approach treats ratings as a chronological
sequence, implicitly trying to capture temporal dynamics. The distinction
between time-aware and time-dependent algorithms is introduced in a recent
survey by Shi et al. [90]. For the sake of clarity, we also separate between
neighborhood-based algorithms, matrix factorization algorithms, and other
fundamentally different approaches. In another recent survey on temporal
CF [12], Campos et al. review recommendation algorithms that deal with
time, emphasizing evaluation. In this overview, we add other approaches
to temporal CF, as well as the most recent work. Our approach is meant
to be a quick reference both to academics and practitioners that intend to
gain a general and not very technical introduction to the state-of-the-art in
temporal recommendation.

The remainder of this overview is structured as follows. We begin in
Section 2 by briefly describing the most relevant CF methods that do not
use time information. In Section 3 we review all relevant literature related
to time-aware and time-dependent CF. The issues related to evaluation are
described in Section 4. We present a discussion in Section 5 and possible
future challenges in Section 6. Finally, we conclude in Section 7.

2 Classic collaborative filtering methods

In many on-line virtual communities there is a large number of users that
browse through items in the system. Items can be movies, music, books,
touristic attractions, restaurants or any other kind of product of interest.
In such systems, users are frequently allowed to give their personal opinion
about items, by rating that item either explicitly — e.g. using a “like” button
or a 5 star rating scale — or implicitly — e.g. number of times a user listens
to a music track, or whether a user has bought some item or not. Suppose
a system has n users and m items. By collecting feedback from users, it is
possible to build a user-item feedback matrix R, ., containing all ratings
given by users to items. Typically R is a very sparse matrix — users usually
only rate a very small proportion of the items in the system. The core
task of CF algorithms is to predict those missing values and, based on these
predictions, offer personalized recommendations to individual users.

DR e D ERER e
u; 1 5 u; v \

u; 4 2 u; 2 %
Us 3 Us v

Uy 1 5 Uy v v

Upn 2 Un v

Figure 1: Example of feedback matrices. On the left, a typical numerical
ratings matrix. On the right a positive-only ratings matrix.

In this section, we introduce the two main variants of the recommenda-
tion task and introduce the traditional CF methods that do not use time
information.

2.1 Task definition

The ultimate task of any recommender system is simple: given a set of
preferences provided by a user, recommend a set of items that are relevant
for that user. For example, given that a user has shown interest in a certain

set of books, the main task of a book recommender system is to provide
suggestions to the user of other books which might be interesting to her.
Typically, the kind of items that users have shown interest for — e.g. books,
movies, music — is the same as the recommended items, although cross-
domain recommendation [8, 15, 24| is also possible. The recommendation
problem can be cast in several ways, depending on the domain, interface,
customer profiles and the business model of the system as a whole. In [34],
Herlocker et al. identify and describe the most common recommendation
tasks. In this paper we focus on the most conventional task of recommender
systems, as defined by Herlocker et al., which is the Find good items task.
This task consists of presenting the users personalized recommendation of
items — typically in the form of a list — which may be of interest — good — to
them.

2.1.1 Types of feedback

One important distinction, which is determinant on the choice or develop-
ment of an algorithm, is the one between the two possible types of user
feedback data:

e Numeric ratings feedback: typically composed of triples in the form
(u,i,r), consisting of the rating value r being given by user u to item
i

e Positive-only or unary feedback: a set of pairs in the form (u,), rep-
resenting a positive interaction between user v and item 1.

When numeric ratings are available, the main task consists of predicting
missing values in the user-item matrix. This is a natural formulation when
numeric ratings are available, and the problem is often seen as a regression
task. However, some systems employ positive-only ratings. These systems
are quite common — e.g. “like” /”favorite” buttons, music streaming, shop-
ping carts, news reading. In these cases, the matrix R is a boolean value
matrix (Fig. 1), where true values indicate a positive user preference, and
false —typically the vast majority — may indicate one of two things: the user
either does not like or does not know the item. In systems with positive-only
user feedback, the task is to predict true values in R, which is more closely
related to classification problems. This type of feedback is also known in
the literature as “binary ratings” or “implicit feedback”. We adopt the term
positive-only, since the term binary may suggest the existence of both pos-
itive and negative feedback and the term implicit may not be accurate —
for instance, clicking a “like” button can hardly be considered an implicit

4

preference. Recommendation using positive-only feedback is also known in
the literature as one-class collaborative filtering [69].

Considering our focus on the most common recommendation task — to
recommend lists of good items to users — the type of feedback being used is
highly relevant. For example, when using numeric ratings, a recommendation
list can be easily produced by sorting items by descending predicted rating.
This, however, is not so trivial when using positive-only data. Generally,
we either need to predict some kind of preference level for items — in order
to sort them for each user — or to directly approach the task as a ranking
prediction problem.

2.2 Classic algorithms

Most state-of-the-art CF algorithms are based on either neighborhood meth-
ods or matrix factorization methods. Fundamentally, these differ on the
strategy used to process data in the feedback matrix R.

2.2.1 Neighborhood-based algorithms

Neighborhood-based CF algorithms essentially compute user or item neigh-
borhoods using similarity measures such as the cosine or Pearson correlation
[85]. If the rows of R represent users and the columns correspond to items,
similarity between two users u and v is obtained using the rows correspond-
ing to those users, R, and R,. Similarity between two items ¢ and j can
be obtained between the columns corresponding to those items R} and R .
Recommendations are computed by searching and aggregating through user
or item neighborhoods. The main advantages of neighborhood methods are
their simplicity and ease of implementation, as well as the easy explainability
of recommendations — user and item similarities are intuitive concepts. The
main downside of neighborhood-based methods is the lack of scalability, since
that both size and space complexity grow simultaneously with the number
of users and the number of items in the system.

2.2.2 Matrix factorization methods

Over the last decade several Matrix Factorization (MF) algorithms for CF
have been proposed and greatly popularized. So far, MF methods have
proved to be generally superior to neighborhood methods in large scale prob-
lems, in terms of both predictive ability and run-time complexity [90].
Matrix Factorization for CF was initially inspired by Latent Semantic In-
dexing [19], a popular technique to index large collections of text documents,

used in the field of information retrieval. LSI performs the Singular Value
Decomposition (SVD) of large document-term matrices. In a CF problem,
the same technique can be used in the user-item matrix, uncovering a latent
feature space that is common to both users and items. One problem with
SVD is that classic factorization algorithms, such as Lanczos methods, are
not defined for sparse matrices. This issue has been addressed by performing
some form of value imputation in the user-item matrix [9, 86]. This, however,
is a potential source of systematic error, especially taking into account that
the user-item matrix in CF problems is typically very sparse.

As an alternative to classic SVD, optimization methods [6, 26, 72, 93] have
been proposed to decompose (very) sparse user-item matrices!. Supposing
we have a user-item matrix R, the algorithms decompose R in two factor
matrices A and B that, similarly to SVD, cover a common latent feature
space. Matrix A spans the user space, while B spans the item space. Given
this formulation, the predicted rating by user u to item ¢ is given by the dot
product R,; = A,.BT.

Training is performed by minimizing the Lo-regularized squared error for
known values in R and the corresponding predicted ratings:

min 37 (Ry — A BD? 4 (AP +11B))
7 '(u,i)eD

In the above equation, D is the set of user-item pairs for which ratings
are known and A\ is a parameter that controls the amount of regularization.
The regularization term A(||A,||*> + || Bi||?) is used to avoid overfitting. This
term penalizes parameters with high magnitudes, that typically lead to overly
complex models with low generalization power. The most successful methods
to solve this optimization problem are Alternating Least Squares (ALS) [6]
and Stochastic Gradient Descent (SGD) [26]. It has been shown [26, 72] that
SGD based optimization generally performs better than ALS when using very
sparse datasets, both in terms of model accuracy and run time performance.

Given a training dataset consisting of tuples in the form < user, item, rating >,
SGD performs several passes through the dataset — iterations — until some
stopping criteria is met — typically a convergence bound and/or a maximum
number of iterations. At each iteration, SGD sweeps over all known ratings
R,; and updates the corresponding rows A, and B}, correcting them in the
opposite direction of the gradient of the error, by a factor of n <1 — known
as step size or learn rate. For each known rating, the corresponding error

~

is calculated as err,; = R,; — R.;, and the following update operations are

'In some of the literature, these methods are often referred to as SVD, despite being
formally different methods.

performed:

Ay A, +nlerry By — MNAy) @)
B < B; + n(erryi Ay — AB;)
One obvious advantage of SGD is that complexity grows linearly with the
number of known ratings in the training set, actually taking advantage of the
high sparsity of R.
Other proposed factorization methods include probabilistic Latent Se-
mantic Analysis (pLSA), used in [36] and [92], and CF via Principal Com-
ponent Analysis (PCA) [31].

2.2.3 Other methods

Although the majority of research on algorithms for recommender systems
is focused on either neighborhood or matrix factorization methods, other
alternatives have been proposed to solve CF problems. Since early work [10]
probabilistic strategies have been presented, such as clustering and Bayesian
networks. Clustering is motivated by the assumption that it is possible to
group users in clusters according to their preferences. In [30, 91, 17], co-
clustering — or bi-clustering — simultaneously clusters users and items, with
gains in computational performance and without significant accuracy loss.
The reasoning behind co-clustering it that it is frequent that users in a cluster
prefer specific subsets of items.

Other probabilistic approaches are based on Graph Theory [4, 40, 39, 25,
33, 94]. For systems with binary ratings, Association Rules [84, 65, 54] and
Markov Chains [88, 76] have also been proposed.

In [44], the MF problem is reformulated as an Euclidean embedding prob-
lem that joins users and items in a common Euclidean space. The model is
learned with SGD in a analogous process to MF and Euclidean distances
between users and items are directly used to predict ratings.

3 Collaborative filtering and time

The relevance of time information in recommender systems is based on the
assumption that one or more concepts modeled by recommender systems —
e.g. user preferences, item popularity — naturally change over time. Tra-
ditional CF algorithms do not account for this and need to be frequently
retrained to adjust to time related phenomena. For example, travel des-
tination recommendation models would probably need to be retrained to

adjust to the current season. This has motivated researchers to investigate
new techniques that automatically adjust models to time-evolving phenom-
ena, therefore avoiding complicated maintenance of recommendation models.
The main distinction between algorithms that deal with time lies on how the
time dimension is approached.

3.1 Approaching the time dimension

One strategy to exploit time is to use it as context information when training
recommendation models. Using time as context, CF algorithms use times-
tamps as an additional source of information, thereby enriching the model.
The natural reasoning behind this strategy is that users tend to repeat habits
at regular time intervals or moments. By capturing the time at which user
preferences are observed in the past, time-aware algorithms make better pre-
dictions in similar time patterns occurring in the future. For example, when
requesting movie recommendations for the weekend, predictions would be ex-
pected to match the general preferences of the user during weekends. These
predictions would possibly be different from those that would have been made
for weekdays. Following the terminology used in [90], we refer to algorithms
using this approach as time-aware algorithms. Generally, they are a spe-
cial case of contert-aware algorithms [2], in which the context is given by
some kind of temporal information, such as the time of day, day of week or
other similar time feature. This information is typically exploited to adjust
recommendations to the time for which they are requested.

Another way to approach time is to look at user preference data as a
chronologically ordered sequence, such as a time series or a data stream. For
this approach, timestamps are not strictly required, since time information
itself is not necessarily used. Instead, the approach is to train the model in a
way that the chronological order is captured and used to improve predictions.
Model training is preferably — but not necessarily — performed in incremental
steps, and some kind of recency-based modeling scheme can be used to tackle
time-varying concepts. As in [90], we refer to algorithms using this approach
as time-dependent algorithms, although terms such as sequence-aware CF or
simply sequential CF can be used, since these are algorithms that exploit
user feedback sequentially. Within this approach we also identify some con-
tributions in which time is used to categorize the users’ preferences in terms
of their temporal stability. If one considers that users have some preferences
more persistent than others, these can be explicitly modeled as long-term
and short-term preferences.

3.2 Time-aware algorithms: time as context

Time-aware algorithms specifically use time-related information as context.
Typical time features are time of day, day of week, working/non-working
hours and seasonal information — e.g. winter/summertime, holidays. In the
context-aware framework, these time features can be used in three ways,
identified by Adomavicius et al. in [2]:

1. Pre-filtering: filter input data considered by the recommender accord-
ing to the time for which recommendation is requested. One extreme
example is to ignore all ratings given by a user in weekdays when she
requests recommendations for weekends. In general, pre-filtering is
achieved by modifying the input data previously to modeling;

2. Post-filtering: filter out irrelevant items from recommendations origi-
nally produced by a conventional time-agnostic model. This generally
works by filtering out from conventional, time-unaware recommenda-
tions the items that do not match the time for which the recommen-
dation is requested;

3. Modeling: explicitly model the time features at the learning stage.
Here the model should be able to produce adequate recommendations
according to the time for which recommendations are generated.

A considerable body of work is available specifically on context-aware
recommendation, although most of it is beyond the scope of this overview.
We will only refer to those works that deal specifically with time.

3.2.1 Time-aware factorization models

Tensor decomposition models By projecting the user-item matrix in the
time dimension, a three-dimensional tensor can be obtained. By factorizing
this tensor, it is possible to model ratings according to the time at which past
ratings occurred — a time modeling approach. The assumption is that users
tend to have cyclic habits, — e.g., watching comedies on sundays, or listening
to classical music in the evening. Let R € RIVXIIXITI he a three-dimensional
tensor where dimensions span U, I and T, respectively the set of users, set
of items and set of time features — e.g time of day, day of week. There
is a considerable number of methods to perform the actual decomposition
[46], however the CONDECOMP/PARAFAC (CP) decomposition model has
shown to be well suited for sparse tensors [1]. The CP decomposition model
is illustrated in Fig. 2. Three factor matrices can be obtained, each spanning

one of the tensor’s dimensions, by minimizing the prediction error on known
ratings. The tensor can then be rewritten as (o denotes the outer product):

k

]A%:ZUdo[don (3)
d=1

In the 2010 Challenge in Context-aware Movie Recommendation - CAMRa2010
[81] —, one of the tasks consisted of recommending movies for specific weeks.
Two contributions to this challenge rely on tensor factorization. In [28],
Gantner et al. use a tensor factorization model (Pairwise Interaction Tensor
Factorization - PITF) originally developed for tag recommendation [77]. The
PITF model separately performs pairwise factorizations between every two

dimensions. Formally,

k k k
R=> Upls+ > UsTu+ Y 1T, (4)
d=1 d=1 d=1

The authors use weekly time-bins — with some overlapping — according
to the week of rating. By adding this new dimension to the user-item matrix
and obtaining the corresponding tensor factorization the model is capable
of taking advantage of the temporal context. Despite this, the method was
unable to outperform a state-of-the-art time-agnostic algorithm [75] that does
not use time information.

Also within CAMRa2010, in another contribution [56], Liu et al. pro-
pose two time-aware methods for the same task in the competition. The
first method is based on CP tensor factorization — by adding time bins as
a dimension to the user-item matrix — and the other is a sequential ma-
trix factorization model that consists of several factorizations, one for each
time bin — a pre-filtering method. Both methods were successful in outper-
forming baselines that consisted of time-agnostic versions of the proposed
algorithms. In [57], Liu et al. provide a more detailed description of se-
quential matrix factorization and show that combining temporal and social
network context information, enables the method to outperform state-of-the-
art time-independent algorithms.

Other time-aware factorization models In [5], Baltrunas and Ama-
triain use a time-aware factorization algorithm that subdivides user profiles
in micro-profiles. Each micro-profile is a representation of a user within a
specific time frame — e.g. weekend, weekday, morning, winter. One advan-
tage is that pre-filtering can be performed using overlapping criteria. For
example, recommendations for a user in a summer weekend morning can be

10

; uj
R b iy > iz g In
t i, iy i3 iy in u,
t, iy i iz g in ﬁ
u, 1 5 3 I f, 6z f ... f
u, 4 4 :> Iy
Us
i
uy 1 5 1 & n
T | f; 6 30 .|
Un 2 t,
t;

Figure 2: CANDECOMP /PARAFAC tensor factorization model: three ma-
trices are obtained covering the same latent feature space f; . The time-
related dimension ¢y ...t; is a time feature extracted from the ratings times-
tamp — e.g. day of week, month, hour of day. Every cell in the original tensor
can be predicted using the inner product of the three corresponding vectors

Ry = 25:1 UuiliaTig.

based on three — summer, weekend, morning — micro-profiles. One surprising
finding in this work is that the best improvement is achieved when using an
apparently meaningless micro-profile — even vs odd hours —, which actually
challenges the authors’ reasoning.

A different approach is followed by Gao et al. in [29]. The authors use
non-negative matrix factorization using the time of day on a Point-Of-Interest
(POI) recommender system. The algorithm is able to build a model that is
sensitive to check-in times in referenced locations. A total of 24 user factor
matrices are obtained by factorizing separately for each of the day’s 24 hours,
while using the same location factor matrix throughout the learning process.
Additionally, consecutiveness is exploited by means of a regularization term
that penalizes predictions based on distant times of day. Recommendations
are obtained by aggregating recommendations obtained from each of the 24
time-based sub-models. The algorithm is able to considerably outperform the
baseline time-agnostic factorization method as well as a classic neighborhood-

11

based algorithm.

3.2.2 Time-aware neighborhood models

Youan et al. propose a time-aware Point-Of-Interest (POI) recommendation
system in [102], by incorporating the time-of-day information in the cosine
similarity calculation between users in a classic user-based CF algorithm.
This explicit modelling approach is based on the assumption that users that
check-in in the same locations at the same time of day share a higher similar-
ity than users that check-in in the same places but at different times of the
day. Additionally, the authors use a probabilistic model to capture popular-
ity patterns over time — e.g. restaurants at meal time, theaters in the evening.
Results suggest that modeling the time context for POI recommendation can
significantly improve accuracy.

3.2.3 Other time-aware contributions

There are several other examples of algorithms that use time as context avail-
able in the literature on context-aware recommendation. Some examples are
[3, 22, 71, 32, 52, 70]. We do not elaborate on these since they use broader
contexts in which time is not studied separately from the other context fea-
tures, and therefore the impact of the usage of time features is not evaluated.

3.3 Time-dependent algorithms: time as sequence

Time-dependent algorithms try to capture the phenomena related to con-
tinuous temporal dynamics. These phenomena encompass individual user
preference changes, drifts in item popularity, fluctuations in activity rates
and virtually any temporal effect that may underlie in sequential usage data.
Unlike time-aware algorithms, the main objective is not to model cyclic phe-
nomena, but rather to be able to adjust to unprecedented changes. A large
variety of contributions have been made to deal with this. Like time-aware
algorithms, both neighborhood and factorization time-dependent algorithms
have been proposed and/or adapted. Additionally, given the approach to
data as a chronologically ordered sequence, there is a natural approxima-
tion to the field of data stream mining. As a result, algorithms designed
for streaming data have been used or adapted for recommendation tasks
as well. Combined short-term and long-term user modeling have also been
used to tackle natural variations in users’ preferences. We also reference two
data pre-processing approaches that drive time-agnostic algorithms to reflect

12

time-dependency, and another approach that embeds users, items and time
in a common Euclidean space.

3.3.1 Time-dependent neighborhood models

One simple way to adapt neighborhood-based algorithms to temporal effects
is to give more relevance to recent observations, and less to past observa-
tions, based on the assumption that recent data is more representative of the
current reality. This can be achieved using a series of techniques, most of
which are based on either discrete time windows [66, 50, 95] or continuous
decay functions [20, 58, 95].

Decay function algorithms The main idea of using a decay function is
to reduce the importance of past data gradually. An example of a time-decay
function is:

flt)y=e 0<a<l (5)

In (5) t is the time elapsed since a given moment in time. The longer the
time, the lower the function value. The parameter o controls the amount of
decay.

Early work on time-dependent neighborhood-based CF is presented by
Ding and Li in [20], in an item-based algorithm. The authors use (5) in
the recommendation step, giving higher weight to recently rated items. The
rating prediction for an item is weighted by the most recent ratings given to
similar items. Formally, rating prediction R,; is obtained by using f(t) to
weight the similarities between the candidate item and its neighbors sim(z,)
(J is the set of top-k neighbors). In practice, recently rated items have a
stronger weight than those rated longer ago.

> es(sim(i, j)Ru; (1))
> jes(sim(i, 7) f(t))

In later work, the same authors propose in [21] a recency-based weighting
method. The rating prediction is weighted by the most recent ratings given

to similar items. o
> jes(sim(i, j) R W)

ZjeJ(Sim(ia 7IW;)

where the weight W; = 1— W, with 7.; being the most recent rating

given to item j and M the maximum value in the rating scale.
In [58], Liu et al. introduce decaying time functions in both the similarity
computation and the rating prediction steps of an item-based algorithm. The

Ry = (6)

Rui =

(7)

13

authors use (5) in the similarity computation which, in practice, causes pairs
of items to be less and less similar as their ratings are given farther apart in
time. At the rating prediction step a similar decay function g(t) = e™# is
used to make rating predictions, using the same method as in [20]. The only
difference between f and g are the decay parameters a and § — which can
optionally be the same.

Given two items ¢ and j:

o > uevy; Buif (tui) -Ruj f (tu))
sim(i, j) =

= (8)
\/ZueUi(f(tui)Rui)Q . \/Zuer (f(tuj)Ruj)2

In the above equation U; and U; are the sets of the users that rated
items ¢ and j respectively and U;; = U; N U;. The times ¢,; and t,; are
the times at which user u rated items ¢ and j, respectively. This penalizes
similarities between pairs of items when large time intervals occur between
the corresponding ratings.

In [95] Vinagre and Jorge apply a decay function in incremental user-
based and item-based neighborhood algorithms for binary ratings. This is
done by multiplying the frequencies of items by a constant factor o < 1
at each incremental step, when new data is processed. In practice the re-
sult is the same as applying a decay function at the similarity computation
step in non-incremental algorithms, but retaining the scalability benefits of
incremental algorithms.

Sliding-window algorithms Sliding-window algorithms work by consid-
ering only data in a window (sliding window) that contains either the latest
N instances — for example, the latest 1000 ratings — or the instances con-
tained in the latest time interval — for example, all ratings given in the last
24 hours.

A user-based neighborhood algorithm is proposed by Nasraoui et al. in
[66]. The algorithm uses a sliding window containing a fixed number of in-
stances. The algorithm computes similarities between the latest user sessions.
Each user session consists of a number of ratings given by a user in a short
period of time — for instance, during 1 hour.

A different approach is made by Lathia et al. [50] using time intervals.
The authors use a set of item-based algorithms differing only in the number
of nearest neighbors considered to predict ratings. Algorithms are retrained
at fixed 7 day intervals with data in the last interval. Error is continuously
monitored for all algorithms, and the algorithm with the lowest error so far
is selected to provide recommendations.

14

Vinagre and Jorge [95] present a user-based and an item-based algorithm
that compute similarities using the latest n user sessions. These algorithms
use a bounded and approximately fixed amount of data to rebuild the simi-
larity matrix, with obvious scalability improvements, but still far worse than
the run-time performance of incremental algorithms.

Other approaches Min and Han [64] use a mixture of item hierarchies,
user clustering and time-weighted correlation to improve product recommen-
dations.

3.3.2 Time-dependent factorization models

Matrix Factorization (MF) algorithms have also been adapted to deal with
sequential data. In [48], Koren extends his SVD++ algorithm [47] to tackle
temporal dynamics. This is done by considering the model’s time dependent
variables as time functions. In the original SVD++ algorithm, Koren sepa-
rates the model in a baseline model that relies solely in user and item biases
b, and b; — individual deviations from the global average rating p — and the
factor model, that captures the actual user-item preferences, based on (1),
with the addition of implicit data extracted from the same dataset. In the
time-dependent algorithm both the user/item biases and the factor model are
approached as time functions. To model temporal item biases, time is split
in discrete time windows (bins) and for user biases, a decay function is used.
Another decay function is used to weigh past ratings at the prediction step.
According to the author, time-varying item biases capture item popularity
changes, time-varying user biases capture the variations in how individual
users use the rating scale and time-varying factors essentially capture the
actual preference changes. Empirically, this time-dependent algorithm sig-
nificantly improves accuracy with the well-known Netflix dataset.

Tensor factorization revisited Tensor factorization has been also pro-
posed for time-dependent recommendations. Here, the tensor’s time dimen-
sion contains actual time intervals, so the tensor can be viewed as a periodic
collection of ratings over time. The time dimension essentially captures the
latent features’ trends over time.

In [100], Xiong et al. use a CP tensor factorization model by adding a
time dimension to the user-item matrix, splitting time in equal length inter-
vals. The authors use Probabilistic Matrix Factorization algorithms studied
in [82] and [83] to estimate optimal hyper-parameters. Another contribution
using CP tensor factorization is made by Rafailidis and Nanopoulos in [74].
The authors use a smoothing factor based on the observed levels of preference

15

change to weigh down the corresponding user-item interactions in previous
time intervals. In practice, this scheme produces a tensor where past prefer-
ences are given less importance in the same measure as the user changes her

habits.

Other temporal factorization models Another approach was presented
by Das et al. [16]. The proposed algorithm combines a neighborhood model
with pLSA and MinHash clustering [42] using the parallel computation with
MapReduce [18] in a news recommender. In their work, the authors introduce
a time-decaying function in click-rates made by each cluster in news items
and a time-based window on co-visitation of news.

In [60] Matuszyk and Spiliopoulou propose and evaluate several selective
forgetting strategies for incremental matrix factorization algorithms with rat-
ings data. In [61], Matuszyk et al. extend the study with several other for-
getting methods and test them with positive-only data in addition to ratings
data. In both publications, the authors show that selectively forgetting some
of the past users’ feedback is beneficial to the system. Also using incremental
matrix factorization, Vinagre et al. [97] use a recency-based scheme to arti-
ficially introduce negative feedback data, tackling a known problem [69, 38|
that arises from the absence of negative feedback.

Pélovics et al. [68] use the social influence between users in a social net-
work to improve recommendations. Social influence is modeled using com-
mon preferences shown close together in time by two users connected in the
social graph.

3.3.3 Short-/Long-term preference modeling

Another way to approach sequentially ordered data is to model the users’
short-term and long-term preferences separately. Conceptually, this means
that each user has potentially two models, one for long-term preferences and
another for short-term preferences. In [79], Ricci et al. identify the im-
portance to deal with the duality of short-term preferences — goal oriented
and highly dependent on context — and long-term preferences — durable and
stable. A hybrid — both content-based and CF-based — recommender is devel-
oped and evaluated online with real-users, showing a considerable reduction
on the users’ effort in finding travel-related products.

Xiang et al. [99] propose a graph-based model to capture the users’ short-
term and long-term preferences. User nodes in the graph — connected to all
the user’s preferred items — encode long-term preferences, and session nodes,
which are time-restricted, encode the user’s short-term preferences. Items
that match both the long-term and the short-term preferences of a user are

16

recommended. In [37], Hong et al. explicitly model short-term user pro-
files by using consecutive stages, which correspond to periods of time where
the user’s shopping habits are dominated by items belonging to set of cat-
egories within an existing taxonomy. Long-term user preferences are given
by multiple stages. The authors use clustering-based and graph-based rec-
ommendation algorithms to exploit stage information, outperforming other
time-dependent algorithms.

Jannach et al. [43] also emphasize the importance of short-term prefer-
ences by re-ordering recommendation lists using short-term preference data,
with considerable accuracy gains in an e-commerce dataset.

By maintaining a model consisting of an offline component and an online
component, Liu and Aberer [59] are able to capture long-term influences —
offline component — and short-term preferences — online component. The
online component is updated frequently with fresh incoming data, and is
therefore more sensitive to context and short-term infulences, while the of-
fline component, containing more stable preferences, is updated much less
frequently using the data meanwhile stored in the online compontent. Using
this approach, combined with contextual text reviews, the proposed method
is able to outperform other state-of-the-art time-dependent algorithms on a
dataset extracted from a large ratings website.

3.3.4 Data-stream algorithms

In [53], Li et al. propose an approach to drifting preferences of individual
users using the CVFDT algorithm [41]. This is a popular classification al-
gorithm for high speed data streams that automatically adapts to concept
drifts. The CVFDT algorithm is used to build a decision tree for each item
in the dataset, given the ratings of other highly correlated items. The ratings
given by users to these correlated items are used to predict the ratings for
the target item. The algorithm can be extended to use item hierarchies —
if they exist — with considerable improvements. The mechanics of CVFDT
provides automatic adjustment to drifts in user interests, avoiding accuracy
degradation.

In the previously mentioned work by Nasraoui et al. [66] a second algo-
rithm uses the TECHNO-STREAMS stream clustering algorithm [67], using
a sliding window through user sessions.

3.3.5 Data pre-processing

Two time-dependent methods in the literature consist of data pre-processing
techniques — rather than algorithms. The objective is to encode temporal or

17

sequence information in the data itself, which can therefore be used with any
time-agnostic algorithm. In [103], Zimdars et al. approach the recommenda-
tion as a univariate time series problem, an apply two data transformations
that encode sequence in the data. Using a decision tree model, the authors
are able to improve accuracy over the baseline that ignores data order. Cao
et al. use a data pre-processing approach in [13], which the authors claim
to be possible to use with any algorithm. The process consists of identifying
four common user behavior patterns and manipulating user data according
to the detected pattern. The authors identify one of the patterns as being
noisy behavior and remove data generated according to this pattern. Addi-
tionally, some pruning is performed on data generated by users identified as
having drifting preferences, by retaining the latest interest. The technique is
evaluated using neighborhood-based algorithms.

3.3.6 Euclidean embedding

A different proposal is made by Yin et al. in [101], as an extension to the
Euclidean embedding framework proposed in [44], where users and items are
embedded in the same Euclidean space. By adding time factors to that user-
item Euclidean space, the authors claim superior accuracy over the baseline
algorithm.

3.4 Algorithms both time-aware and time-dependent

Theoretically, time-aware and time-dependent are not mutually exclusive ap-
proaches. However we only found a single contribution that encompasses
both techniques. This is done by Campos et al. [11] in the context of
the aforementioned CAMRa2010 [81] competition, where the authors use a
user neighborhood algorithm that computes recommendations considering
recently rated items in the neighborhoods — a time-dependent technique —
and ratings given on the same months and days in previous years — in a
pre-filtering time-aware technique.

4 FEvaluation of temporal algorithms

Reliable and thorough evaluation methodologies for recommender systems
are still a very active research topic in the field. However, the variety of eval-
uation metrics in Tables 1 and 2 indicates that a solid, consensual and easily
applicable evaluation framework for recommender systems is still not avail-
able. As a result, interpretability and reproducibility problems may occur.

18

This problem has been recently noted by Said and Bellogin in [80], where
three widely used recommendation libraries yield sometimes radically differ-
ent results for the same algorithm/dataset/parameters/evaluation method
combination. Online evaluation — e.g. with A/B testing [45] or user surveys
—, while being more informative about the real performance of a recommender
system interacting with real users, is not possible to perform in many cases,
because access to large scale production systems is not easily available.

In this section we describe important issues with the offline evaluation of
time-aware and time-dependent CF. We will not focus on online evaluation,
since we do not find significant implications of time-awareness and time-
dependency in online evaluation methodologies.

4.1 Offline evaluation

Offline evaluation protocols allow researchers to evaluate and compare algo-
rithms by simulating user behavior. This typically begins by splitting the
ratings dataset in two subsets — training set and testing set — randomly
choosing data elements from the initial dataset. The training set is initially
fed to the recommender algorithm to build a predictive model. To evaluate
the accuracy of the model, different protocols can be used. Generally, these
protocols group the test set by user — or user session — and “hide” user-item
interactions randomly chosen from each group. These hidden interactions
form the hidden set. Rating prediction algorithms are usually evaluated by
comparing predicted ratings with the hidden ratings. Item recommendation
algorithms are evaluated performing user-by-user — or session-by-session —
comparison of the recommended items with the hidden set.

The most common protocols using this strategy are All-but-N and Given-
N. The All-but-N protocol hides exactly N items from each user in the test
set. One often used sub-protocol is the All-but-One protocol, which hides
exactly one item from each user in the test set. The Given-N protocol keeps
exactly N items in the test set and hides all others. In the classic versions
of both protocols, hidden ratings are randomly chosen from each user.

Offline protocols try to simulate user activity. However there are a few
limitations to consider:

e Dataset ordering: randomly selecting data for training and test sets
first, and random hidden set selection second, shuffles the natural se-
quence followed by users in rating items. However some algorithms are
designed to deal with chronologically ordered data;

e Time awareness: many recent recommenders use timestamped ratings
to produce time-aware models. By shuffling data, protocols break the

19

logic of such systems. For example, by potentially using future ratings
to predict past ratings;

e Previous user activity requirement: in order to evaluate recommenda-
tions using All-but-N or Given-N, only users with at least N + 1 can
be considered for evaluation;

e Online updates: some recommender systems have the ability to perform
online updates of their models as new ratings are available. This means
that neither models or training and test data are static. Models are
continuously being retrained with new data;

e Recommendation bias: in an online system, user behavior is — expect-
edly — influenced by recommendations themselves. For example, it is
reasonable to assume that recommended items will have a substantially
higher probability to be rated or consumed than if they were not rec-
ommended. Simulating this off-line usually requires complicated user
behavior modeling which can be expensive and prone to systematic
error.

These limitations weaken the assumption that user behavior can be ac-
curately modeled or reproduced in offline experiments. Nevertheless, they
still provide a useful tool. In fact, some solutions hav been proposed to solve
most of the problems.

In [87] some clues are provided on how to solve some of these problems.
One straightforward solution to the first two problems is simply not to shuffle
data — or if timestamps are available, pre-order ratings accordingly. That is,
to pick a moment in time or a number of ratings in the dataset as the split
point for the dataset. All ratings given before the split point are used to
train the model and all subsequent ratings are used as testing data. One
problem with this approach is how to select the hidden set. In [87] and [49]
the authors suggest that all ratings in the test set should be hidden, assuming
that users already have had activity before the split point — those who had
not are simply ignored. Another possibility is to adapt the Given-N and
All-but-N protocols to preserve order. The hidden set can contain the last
N items for each user — All-but-N — or hiding all but the first N items —
Given-N. One downside with order-preserving splits, is that cross-validation
is not applicable because it necessarily breaks the order of the data. As an
alternative, a prequential validation scheme [27] can be used instead.

In our overview, we found that the majority of the evaluation methods is
not substantially altered by time related constraints. In most cases, the most

20

important difference from time-agnostic algorithm evaluation is the preser-
vation of the datasets’ natural order. This is perhaps because the main
objective of most evaluations performed is to prove that by adding temporal
information, time-enabled algorithms improve with respect to their baselines
and/or other time agnostic algorithms. This requires evaluation method-
ologies that are compatible with classic algorithms. The obvious exceptions
are algorithms that learn incremental models. To solve this particular is-
sue, Vinagre et al. [96] propose the usage of a prequential methodology
[27], frequently used in the field of data stream mining. Evaluation is made
approaching incoming ratings data as a data stream and evaluation is contin-
uously performed in a test-then-learn scheme: whenever a new rating arrives,
the corresponding prediction is scored according to the actual rating. This
new rating is then used to update the model.

One important contribution on temporal evaluation is made in [51]. By
conducting a user survey, Lathia et al. identify temporal diversity as an
important factor for recommendation, from the users’ perspective. Then the
authors propose new metric that measures diversity over time, and develop
a method that maximizes this metric.

We also include the use of accuracy metrics in the overviewed literature.
When ratings are available, Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are frequently used — in our overview, ten contribu-
tions are evaluated using these metrics. These metrics — and some variants —
essentially measure the difference between predicted ratings and the actual
ratings given by real users. RMSE is especially practical in matrix factoriza-
tion using gradient descent, because this is typically the error measure that
the algorithm minimizes.

On positive-only data, measuring the error in the same way would be
less informative, since we are typically not dealing with predictions within
a scale. Instead, metrics are adapted from information retrieval, and mea-
sure the accuracy directly on recommendation lists. For example, given a
recommendation list consisting of 10 items, accuracy can be measured by
finding how many relevant items are within that list. Hit ratio — the pro-
portion of correct recommendations in a recommendation list — is perhaps
the simplest metric of this kind and is used in two contributions. However
the most common metrics, observed in ten overviewed contributions, are
Precision / Recall / F1. We group them together, since in the overviewed
papers they either appear together as complementary measures or are easily
obtained as a function of the other — e.g. F1 is a function of both precision
and recall, and precision and recall are easily obtained from one another if
the number of relevant items — all possible good recommendations — and the
recommendation list size are known. Precision, recall and derived metrics

21

do not account for the order of recommendations. However, when dealing
with recommendation lists, the items’ position in the list may be important.
Mean Average Precision (MAP) and Discounted Cumulative Gain (DCG)
are metrics that score both correctness of the recommended items and the
order by which they are recommended. In our overview, two contributions
use at least one of these metrics. The Area Under Curve (AUC) — used in two
time-aware contributions — is intended to measure the discrimination power
of the algorithms.

4.2 Online evaluation

Offline evaluation is important to assess the predictive ability and runtime
performance of algorithms. However it is arguable if it is enough [63]. There
is no guarantee that an algorithm with good offline results will have good
online performance, from the users’ perspective. The only way to perform
user-centric evaluation is to interact with real users [73]. Obviously, this also
applies to algorithms that use time. While time may have relevant impli-
cations in offline evaluation methodologies, it has little or no implications
on online evaluation methods. This is because online evaluation is not de-
pendent on the algorithms’ mechanics. In fact the same online evaluation
setting can be used to evaluate any kind of recommender. At most, metrics
may be added or adjusted to measure the impact of time exploitation in the
algorithms’ performance. The major downside of online evaluation is the
difficulty to obtain access to an online production system. Moreover, as a
consequence, reproducibility is nearly impossible. This is maybe the expla-
nation to why, in our overview, only Ricci et al. [79] evaluate a recommender
system online, with real users.

One relevant note about online evaluation methods is that prequential
evaluation [27] is designed to run online. One of the benefits is that it can be
used to perform online measurements on the user side for posterior analysis.
Additionally these measurements are available in real time, which can be
useful, for instance, to perform automatic online adjustments.

5 Discussion

All time-aware and time-dependent contributions studied in this paper sig-
nificantly improve the predictive ability of algorithms. This is clear in the
various comparisons between algorithms capable of capturing temporal dy-
namics and the equivalent algorithms without this capability. This means
that adding time-awareness or time-dependency to algorithms that do not

22

have it is clearly beneficial. However, it is also shown by some authors that
some state-of-art algorithms without temporal capabilities are quite hard to
outperform. Until these algorithms are given the ability to deal with the
dynamics of time — and compared with the respective baselines —, it will be
hard to adopt them as state-of-the-art algorithms.

5.1 Comparison of time-aware algorithms

Table 1 summarizes the main aspects of time-aware algorithms described
in Sections 3.2.1 and 3.2.2. Besides the distinction between matrix/tensor
factorization and neighborhood models, we provide the type of filtering —
as defined for context-aware recommendation in [2] — the dataset(s) used,
evaluation metric and what we identify as the key distinctive strategy — or
strategies — of the corresponding contribution.

From our literature review it became clear that time-aware strategies are
advantageous in most cases, when compared with the corresponding baseline
time-agnostic algorithms. However, when compared with other state-of-the-
art algorithms these are not clearly outperformed — e.g. [28]. From the
five time-aware algorithms, four rely on matrix factorization — of these, two
use tensor factorization — and one is a neighborhood-based algorithm. One
explanation for this is that context information — including time — can be
easily integrated in an existing factorization model, either by using tensor
factorization or by using multiple matrix factorizations. One other possible
explanation is related to research timing. The earliest contribution for time-
aware recommendation is quite recent. Given that many of the state-of-the-
art recommendation algorithms are based on factorization, it makes sense to
use these as a basis for research.

Regarding the context-driven — or time-driven — filtering approach, as
specified in Section 3.2, the studied algorithms either use a pre-filtering ap-
proach or a direct modeling of time features. Post-filtering was not used.
All of the datasets used for evaluation are originally positive-only, although
Baltrunas and Amatriain [5] map the implicit information to ordinal ratings.
This is consistent with the accuracy metrics used to evaluate the algorithms,
which are MAE for the contribution that uses ratings, and Precision / Recall
or AUC for the others. One important note is that from the five datasets
used in all works, only one is publicly and openly available.

23

Approach Algo- Filtering Datasets Metric Key strategies
rithm
Baltrunas Pre- Last.fmT MAE Time-based
o and filtering segmentation of user
Factorization Amatriain profiles
2009 [5] (micro-profiling).
Gantner et Modeling CAMRa AUC / PITF tensor
al. 2010 20107 Preci- factorization.
[28] sion
Liu et al. Modeling CAMRa AUC / CP Tensor
2010 / / Pre- 20107 Preci- factorization /
2013 filtering sion Multiple sequential
[56, 57] matrix factorizations.
Gao et al. Modeling Crawled Precision Multiple matrix
2013 [29] / Pre- from / Recall factorizations based
filtering Foursquare® on time of day.
Neighborhood = Yuan et al. Both Pre- Foursquare Precision Time-based user
2013 [102] filtering and Gowalla /Recall similarity.
and check-in
Modeling datal

t Proprietary / Subject to request
§ Available from http://www.public.asu.edu/ hgaol6/dataset.html

Table 1: Comparison of time-aware CF algorithms.

5.2 Comparison of time-dependent methods

In Table 2, we summarize the main characteristics of the overviewed time-
dependent algorithms. We identify some key characteristics of the contri-
butions, namely the type of approach — neighborhood-based, factorization-
based or other —, the mechanics of model learning — batch or incremental
—, the data type, as defined in Section 2.1.1, for which the algorithms are
developed, the datasets and metrics used for evaluation, as well as what we
identify as the key distinctive strategy — or strategies — of the contributions.

24

IS¢

Table 2: Time-dependent CF algorithms and main strategies.

Approach Algorithm Training Data Datasets Evaluation Key strategies
type metric
Ding and Li Batch Ratings EachMovie! MAE Decay function in rating
2005 [20] Movielens-1Ml prediction.
Ding et al. Batch Ratings EachMovie| MAE Recency-based weighting
2006 [21] Movielens-1Ml in rating prediction.
Liu et al. Incremental Ratings Netflix' RMSE Decay function in both
2010 [58] similarity ~ computation
Neighborhood and rating prediction.
Nasraoui et Incremental Pos- Web log? Precision / Recall Data stream approach
al. 2007 [66] only / F1 with sliding window.
Lathia et al. Batch Ratings Netflix' RMSE Adaptive neighborhood
2009 [50] size controlled by error
rate.
Vinagre et Batch and Pos- Music stream- Precision / Recall Forgetting with sliding
al. 2012 [95] incremental only ing log®/ web windows (batch) and de-
log$ cay functions (incremen-
tal).
Koren 2010 Batch Ratings Netflix' RMSE SVD model with time
[48] varying biases and factors.
Xiong et al. Batch Ratings Sales history®/ MAE / RMSE Probabilistic tensor fac-
2010 [100] Movielens-1Ml torization.
Factorization / Netflix!
Rafailidis Batch Pos- Lastfm# Precision / Recall Coupled CP tensor factor-
and only ization.
Nanopoulos
2014 [74]

Continued on next page

9¢

Table 2 — continued from previous page

Approach Algorithm Training Data Datasets Evaluation Key strategies
type metric
Das et al. Batch w/ Pos- Movielens- Precision / Recall pLSA with MinHash clus-
2007 [16] incremental ~ only 100k!l / News tering.
adjustments reading®
Péalovics et Incremental Pos- Lastfm# Discounted Cu- Temporal social influence
al. 2014 [68] only mulative Gain in social graph.
Vinagre et Incremental Pos- Movielens-IMT Precision / Recall Online updates of fac-
al. 2015 [97] only / Lastfm# Mu- tor matrices with recency-
sic streaming?/ based negative feedback.
Playlisting®
Matuszyk Incremental Ratings Netflix' / RMSE Selective forgetting.
and Epinions”
Spiliopoulou
2014 [60]
Matuszyk et Incremental Ratings Netfix' / Incremental Selective forgetting.
al. 2015 [61] and Epinions / RMSE and
Pos- Movielens-1M/l Precision/Recall
only / Lastfm? Mu-
sic streaming®/
Playlisting®
Liet al. 2007 Incremental Ratings Eachmovie MAE / Squared- CVFDT stream mining al-
Data Streams [53] MAE gorithm for drifting user
preferences.
Nasraoui et Incremental Pos- Web log? Precision / Recall TECHNO-STREAMS
al. 2007 [66] only / F1 stream clustering algo-
rithm.
Ricci et al. Batch Ratings Travel website Online evaluation Hybrid recommender.

2003 [79]

Long-/Short-term

Continued on next page

[}
-3

Table 2 — continued from previous page

Approach Algorithm Training Data Datasets Evaluation Key strategies
type metric
Xiang et al. DBatch Pos- CiteULike’. / Hit ratio Graph-based with dis-
2010 [99] only Delicious™ criminatory nodes (long-
vs short-term).
Hong et al. Batch Pos- Shopping Precision / Recall ~ User profile separation in
2012 [37] only history® / Fl temporal stages.
Jannach et Batch Pos- E-commerce Precision / Recall Re-ordering of recommen-
al. 2013 [43] only website data’ dations according to latest
context.
Liu and Batch Ratings Review web- NDCG / MAP Combination of long-term
Aberer 2014 site data$ and short-term models.
[59]
) Zimdars et Batch Pos- Two web ac- Non-standard ac- Data transformations to
Data processing al. 2001 only cess logs® curacy measure encode temporal dynam-
[103] ics.
Cao et al. Batch Pos- Movielens- 1M Hit Ratio Data filtering according to
2009 [13] only user profile type.
Euclidean embedding Yin et al. Batch Ratings Movielens-1M! RMSE and Preci- Extension of user-item
2012 [101] / Netflix! sion / Recall embedding with time.

f No longer available

§ Proprietary or subject to request
I'http://grouplens.org/datasets/movielens (accessed Jan 2015)
“http://www.trustlet.org/wiki/Extended Epinions_dataset (accessed Jan 2015)

#http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html (accessed Jan 2015)

" http://www.citeulike.org (accessed Apr 2015)

Thttp://www.dai-labor.de (accessed Apr 2015)

A total of 24 time-dependent algorithms are overviewed. This is a much
larger amount of contributions than time-aware algorithms. Besides six
neighborhood-based contributions and eight factorization-based contributions
— of which two use tensors —, we also study two data stream mining algorithms
adapted for recommendation, five contributions that model the duality of
short- and long-term user preferences, two data pre-processing approaches
and one algorithm based on Euclidean embedding.

Although the ability to build models incrementally is not exclusive to
time-dependent algorithms, its application is more natural in this approach.
In the field of data stream mining, for instance, algorithms are typically
designed to work incrementally. This facilitates the adaptation to temporal
effects such as concept drifts [98]. Recommender systems deal with data that
is generated in a similar fashion to a data stream — potentially unbounded,
unpredictable rates and ordering — and that are subject to changes over time.
The main purpose of time-dependent algorithms is to deal with these changes.
This appears to be consistent with the fact that ten of the time-dependent
contributions use incremental learning.

Regarding the type of data, thirteen contributions on time-dependent use
positive-only data, while twelve use ratings data?, in a total of 21 different
datasets®. Of these, six are available to the public. The distribution of
the metrics naturally follows the type of data: precision, recall, F1, DCG
and MAP for positive-only data, and RMSE and MAE for ratings. Two
exceptions to this are [101] and [61] that use Precision / Recall to evaluate
recommmendations obtained with ratings data. One contribution uses an
ad-hoc, non-standard accuracy metric.

5.3 Findings and general discussion

Analyzing all overviewed contributions, time information is definitely useful
to improve recommender systems. This can happen in two dimensions. First
all time-aware and time-dependent studies report accuracy improvements
over time-agnostic baselines, and many times over state-of-the-art alterna-
tives that do not use time. Second, many contributions, even if not improv-
ing accuracy dramatically, present other advantageous features, such as the
ability to adjust very fast and without external intervention — e.g. human
triggered updates — to different contexts, trends or drifting user preferences.
One downside of most of the reported results is the absence of statistical sig-
nificance tests in comparative assessments. This is especially noticed when

2[61] uses both ratings and positive-only data
3We consider Movielens-1M and Movielens-100k to be distinct datasets

28

relative differences are low.

One aspect of most of the aforementioned work — and perhaps a relevant
research issue — is that run time performance and scalability are somewhat
overlooked in the majority of the presented work. While the accuracy of CF
algorithms is undoubtedly important, scalability and run time complexity are
also major issues in this field of research, and can be decisive factors in choice
of a recommender system from the practitioner’s point of view. For instance,
tensors are highly expressive and conceptually are quite simple to handle,
however tensor factorization is also known to be particularly demanding in
terms of computational resources.

Regarding reproducibility, from the 26 datasets used in the evaluation of
both time-aware and time-dependent methods, only six are publicly available,
although some others may possibly be obtained by request. This, associated
to slight differences in the evaluation methodology and metrics eventually
leads to reproducibility problems. Additionally, direct comparison between
results reported by different authors is meaningless [80].

One more general remark about accuracy, and one that has been debated
in the community is the scope of accuracy results obtained in offline experi-
ments, and how it impacts on the overall quality from the users’ perspective
[14].

6 Future challenges

Although temporal CF is still a recent topic, many contributions have ap-
peared in the past years. One big advantage of temporal algorithms is that
it has the potential to simultaneously improve recommendations and reduce
maintenance. The accuracy improvement is obtained by better reflecting
the current reality, given recent and/or periodic usage patterns. However,
many open issues persist. In real-world systems, usage data keeps adding
up as new users and items enter the system and new ratings are provided.
With time-agnostic algorithms, frequent retraining of models is required to
keep up with the evolving data. It is therefore a fundamental requirement
that CF algorithms are scalable enough to cope with increasing amounts
of data. Regarding this, the research in recommender systems algorithms
seems to be pointing at the ability of the algorithms to update their models
incrementally and online. The ideal CF algorithm should be able to update
the recommendation model at a rate faster than the arrival of new data.
Thus, a data stream approach to recommender systems seems a viable way
to pursue future work in the field of recommender systems, since it is capable
of simultaneously capturing time dynamics and require less computational

29

resources.

As computational resources become cheaper, distributed models become
more mature, flexible and widespread. Algorithms for recommendation have
been successfully used with parallel processing. Distributed models enable
the use of algorithms and techniques that otherwise would not be applica-
ble. Research on distributed algorithms for recommendation may allow, for
instance, the use of very large data structures — such as tensors — that may
have more expressive and accurate temporal models.

One important aspect of the research in recommender systems is evalua-
tion. The majority of the literature focuses on off-line accuracy and scalabil-
ity evaluation using well studied evaluation protocols and metrics. However,
production systems are usually sensitive to a large number of environmental
variables that cannot be reproduced in the laboratory. Users of online sys-
tems are humans with naturally biased perspectives on the quality and the
utility of a recommender [63]. Moreover, the main task of a recommender
system may vary considerable with the application [34]. For instance, users
might be willing to sacrifice accuracy to obtain serendipitous, less obvious
recommendations. In other applications, such as news recommendation, the
recency of recommended items is a key factor and may be preferred to high
accuracy. On the other hand, scalability issues typically have considerable
investment implications. This type of factors cause algorithms with good off-
line performance to not translate directly into good online performance. For
this reason, online evaluation and user feedback may be determinant to the
choice of algorithms and their parameters. One practical way of evaluating
online recommenders is by conducting controlled experiments [45] involving
real users in a live environment.

7 Conclusions

In this overview, we review the literature on recommender systems able to
capture temporal dynamics, and separate these algorithms in two categories:
time-aware algorithms and time-dependent algorithms. We refer to five time-
aware algorithms, able to capture temporal patterns such as seasonal effects,
daily and hourly effects and similar periodic activity patterns that tend to
repeat. We also study twenty-four contributions regarding time-dependent
algorithms, that capture temporal dynamics by using the natural sequence
of the datasets. Additionally, a single contribution using both time-aware
and time-dependent techniques is presented.

Our main conclusion is that capturing temporal dynamics, both in time-
aware and time-dependent algorithms, is clearly beneficial. This conclusion

30

is drawn from evidence provided in all contributions that time-enabled al-
gorithms systematically outperform their time-disabled baselines. This how-
ever, does not guarantee that time-aware algorithms are able to outperform
other state-of-the-art alternatives in production systems, since evaluation is
predominantly performed offline. This suggests that some important future
work in the research of temporal recommender systems needs to be under-
taken. We identify three lines of work for the future: a) the ability to learn
models online at fast rates, b) taking full advantage of distributed computing
model and c¢) narrowing the gap between offline and online evaluation.

8 Acknowledgements

This work is partially supported by the European Commission through project
MAESTRA (Grant no. ICT-2013-612944) and is partially funded by FCT /MEC
through PIDDAC and ERDF/ON2 within project NORTE-07-0124-FEDER-
000059. The first author is also supported by FCT - Fundagao para a Ciéncia

e Tecnologia (Portuguese Foundation for Science and Technology) with grant
SFRH / BD / 77573 / 2011.

References

[1] Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, and Morten Mgrup.
Scalable tensor factorizations with missing data. In Proceedings of the
SIAM International Conference on Data Mining, SDM 2010, April 29
- May 1, 2010, Columbus, Ohio, USA, pages 701-712. STAM, 2010.

[2] Gediminas Adomavicius, Bamshad Mobasher, Francesco Ricci, and
Alexander Tuzhilin. Context-aware recommender systems. Al Mag-
azine, 32(3):67-80, 2011.

[3] Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen,
and Alexander Tuzhilin. Incorporating contextual information in rec-
ommender systems using a multidimensional approach. ACM Trans.
Inf. Syst., 23(1):103-145, 2005.

[4] Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, and Philip S. Yu.
Horting hatches an egg: A new graph-theoretic approach to collabora-
tive filtering. In Proceedings of the Fifth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, August 15-18, 1999, pages 201-212. ACM, 1999.

31

[5]

[11]

[12]

[13]

Linas Baltrunas and Xavier Amatriain. Towards Time-Dependant Rec-
ommendation based on Implicit Feedback. In Workshop on Context-
aware Recommender Systems (CARS 2009) at RecSys, New York, 2009.

Robert M. Bell and Yehuda Koren. Scalable collaborative filtering with
jointly derived neighborhood interpolation weights. In Proceedings of
the 7th IEEE International Conference on Data Mining (ICDM 2007),
October 28-81, 2007, Omaha, Nebraska, USA, pages 43-52. IEEE Com-
puter Society, 2007.

James Bennett, Stan Lanning, and Netflix Netflix. The netflix prize.
In In KDD Cup and Workshop in conjunction with KDD, 2007.

Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Cross-domain
mediation in collaborative filtering. In User Modeling 2007, 11th In-
ternational Conference, UM 2007, Corfu, Greece, June 25-29, 2007,
Proceedings, volume 4511 of Lecture Notes in Computer Science, pages
355-359. Springer, 2007.

Daniel Billsus and Michael J. Pazzani. Learning collaborative informa-
tion filters. In Proceedings of the Fifteenth International Conference
on Machine Learning (ICML 1998), Madison, Wisconson, USA, July
24-27, 1998, pages 46-54. Morgan Kaufmann, 1998.

John S. Breese, David Heckerman, and Carl Myers Kadie. Empiri-
cal analysis of predictive algorithms for collaborative filtering. In UAI
"98: Proceedings of the Fourteenth Conference on Uncertainty in Arti-
ficial Intelligence, July 24-26, 1998, University of Wisconsin Business
School, Madison, Wisconsin, USA, pages 43-52. Morgan Kaufmann,
1998.

Pedro G. Campos, Alejandro Bellogin, Fernando Diez, and J. Enrique
Chavarriaga. Simple time-biased knn-based recommendations. In Pro-
ceedings of the Workshop on Context-Aware Movie Recommendation,

CAMRa 10, pages 20-23, New York, NY, USA, 2010. ACM.

Pedro G. Campos, Fernando Diez, and Ivan Cantador. Time-aware
recommender systems: a comprehensive survey and analysis of existing
evaluation protocols. User Model. User-Adapt. Interact., 24(1-2):67—
119, 2014.

Huanhuan Cao, Enhong Chen, Jie Yang, and Hui Xiong. Enhancing
recommender systems under volatile userinterest drifts. In Proceedings

32

[14]

[15]

[18]

[19]

[20]

of the 18th ACM Conference on Information and Knowledge Manage-
ment, CIKM 2009, Hong Kong, China, November 2-6, 2009, pages
1257-1266. ACM, 2009.

Paolo Cremonesi, Franca Garzotto, Sara Negro, Alessandro Vittorio
Papadopoulos, and Roberto Turrin. Looking for ”"good” recommenda-
tions: A comparative evaluation of recommender systems. In Human-
Computer Interaction - INTERACT 2011 - 13th IFIP TC 13 Interna-
tional Conference, Lisbon, Portugal, September 5-9, 2011, Proceedings,
Part III, volume 6948 of Lecture Notes in Computer Science, pages
152-168. Springer, 2011.

Paolo Cremonesi, Antonio Tripodi, and Roberto Turrin. Cross-domain
recommender systems. In Data Mining Workshops (ICDMW), 2011
IEEE 11th International Conference on, Vancouver, BC, Canada, De-
cember 11, 2011, pages 496-503. IEEE Computer Society, 2011.

Abhinandan Das, Mayur Datar, Ashutosh Garg, and ShyamSundar
Rajaram. Google news personalization: scalable online collaborative
filtering. In Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007,
pages 271-280. ACM, 2007.

P.A.D. de Castro, F.O. de Franca, H.M. Ferreira, and F.J. Von Zuben.
Applying biclustering to perform collaborative filtering. In Intelligent
Systems Design and Applications, 2007. ISDA 2007. Seventh Interna-
tional Conference on, pages 421-426, Oct. 2007.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California,
USA, December 6-8, 2004, pages 137-150. USENIX Association, 2004.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by latent
semantic analysis. JASIS, 41(6):391-407, 1990.

Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings
of the 2005 ACM CIKM International Conference on Information and
Knowledge Management, Bremen, Germany, October 31 - November
5, 2005, pages 485-492. ACM, 2005.

33

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Yi Ding, Xue Li, and Maria E. Orlowska. Recency-based collaborative
filtering. In Database Technologies 2006, Proceedings of the 17th Aus-
tralasian Database Conference, ADC 2006, Hobart, Tasmania, Aus-
tralia, January 16-19 2006, volume 49 of CRPIT, pages 99-107. Aus-
tralian Computer Society, 2006.

Marcos Aurélio Domingues, Alipio Mario Jorge, and Carlos Soares.
The impact of contextual information on the accuracy of existing rec-
ommender systems for web personalization. In Web Intelligence, pages
789-792. IEEE Computer Society, 2008.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer.
The yahoo! music dataset and kdd-cup "11. Journal of Machine Learn-
ing Research - Proceedings Track, 18:8-18, 2012.

Ignacio Fernandez-Tobias, Ivan Cantador, Marius Kaminskas, and
Francesco Ricci. Cross-domain recommender systems: A survey of
the state of the art. In CERI ’12: Proceedings of the 2nd Spanish Con-
ference on Information Retrieval, Valencia, Spain, June 2012, 2012.

Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco
Saerens. Random-walk computation of similarities between nodes of a
graph with application to collaborative recommendation. IEEE Trans.
Knowl. Data Eng., 19(3):355-369, 2007.

Simon Funk, 2006. http://sifter.org/ simon/journal/20061211.html
[Accessed Jan 2013].

Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. On eval-
uating stream learning algorithms. Machine Learning, 90(3):317-346,
2013.

Zeno Gantner, Steffen Rendle, and Lars Schmidt-Thieme. Factoriza-
tion models for context-/time-aware movie recommendations. In Pro-
ceedings of the Workshop on Context-Aware Movie Recommendation,
CAMRa 10, pages 14-19, New York, NY, USA, 2010. ACM.

Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Exploring temporal
effects for location recommendation on location-based social networks.
In Seventh ACM Conference on Recommender Systems, RecSys 13,
Hong Kong, China, October 12-16, 2013, pages 93—-100. ACM, 2013.

Thomas George and Srujana Merugu. A scalable collaborative filtering
framework based on co-clustering. In ICDM 2005: Proceedings of the

34

[33]

[36]

[37]

[38]

[39]

5th IEEE International Conference on Data Mining, 27-30 November
2005, Houston, Texas, USA, pages 625-628. IEEE Computer Society,
2005.

Kenneth Y. Goldberg, Theresa Roeder, Dhruv Gupta, and Chris
Perkins. Eigentaste: A constant time collaborative filtering algorithm.
Inf. Retr., 4(2):133-151, 2001.

Michele Gorgoglione and Umberto Panniello. Including context in a
transactional recommender system using a pre-filtering approach: Two
real e-commerce applications. In AINA Workshops, pages 667-672.
IEEE Computer Society, 2009.

Marco Gori and Augusto Pucci. Itemrank: A random-walk based scor-
ing algorithm for recommender engines. In Manuela M. Veloso, editor,
IJCAI 2007, Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages
27662771, 2007.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and
John Riedl. Evaluating collaborative filtering recommender systems.
ACM Trans. Inf. Syst., 22(1):5-53, 2004.

William C. Hill, Larry Stead, Mark Rosenstein, and George W. Fur-
nas. Recommending and evaluating choices in a virtual community of
use. In Human Factors in Computing Systems, CHI 95 Conference
Proceedings, Denver, Colorado, USA, May 7-11, 1995., pages 194-201.
ACM/Addison-Wesley, 1995.

Thomas Hofmann. Latent semantic models for collaborative filtering.
ACM Trans. Inf. Syst., 22(1):89-115, 2004.

Wenxing Hong, Lei Li, and Tao Li. Product recommendation with
temporal dynamics. Ezpert Syst. Appl., 39(16):12398-12406, 2012.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering
for implicit feedback datasets. In Proceedings of the 8th IEEE Inter-
national Conference on Data Mining (ICDM 2008), December 15-19,
2008, Pisa, Italy, pages 263-272. IEEE Computer Society, 2008.

Zan Huang, Wingyan Chung, and Hsinchun Chen. A graph model for
e-commerce recommender systems. JASIST, 55(3):259-274, 2004.

35

[40]

[41]

[42]

[43]

[44]

[48]

Zan Huang, Wingyan Chung, Thian-Huat Ong, and Hsinchun Chen. A
graph-based recommender system for digital library. In JCDL, pages
65-73. ACM, 2002.

Geoff Hulten, Laurie Spencer, and Pedro M. Domingos. Mining time-
changing data streams. In Doheon Lee, Mario Schkolnick, Foster J.
Provost, and Ramakrishnan Srikant, editors, Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and
data mining, San Francisco, CA, USA, August 26-29, 2001, pages 97—
106. ACM, 2001.

Piotr Indyk. A small approximately min-wise independent family of
hash functions. In Proceedings of the Tenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 17-19 January 1999, Baltimore, Mary-
land., pages 454-456. ACM /SIAM, 1999.

Dietmar Jannach, Lukas Lerche, and MatthAus Gdaniec. Re-ranking
recommendations based on predicted short-term interests - a protocol
and first experiment. In ITWP 2013: Proceedings of the workshop Intel-

ligent Techniques for Web Personalization and Recommender Systems
at AAAI 2013, Bellevue, Washington, 2013, 2013.

Mohammad Khoshneshin and W. Nick Street. Collaborative filtering
via euclidean embedding. In Proceedings of the 2010 ACM Conference

on Recommender Systems, RecSys 2010, Barcelona, Spain, September
26-30, 2010, pages 87-94. ACM, 2010.

Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M.
Henne. Controlled experiments on the web: survey and practical guide.
Data Min. Knowl. Discov., 18(1):140-181, 2009.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and
applications. SIAM Review, 51(3):455-500, 2009.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Las Vegas, Nevada, USA, August 24-27, 2008, pages 426-434. ACM,
2008.

Yehuda Koren. Collaborative filtering with temporal dynamics. In
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, June 28 - July
1, 2009, pages 447-456. ACM, 2009.

36

[49]

[50]

[52]

[57]

N. Lathia. FEwvaluating collaborative filtering over time. PhD thesis,
University College London, 2010.

Neal Lathia, Stephen Hailes, and Licia Capra. Temporal collabora-
tive filtering with adaptive neighbourhoods. In Proceedings of the 32nd
Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR 2009, Boston, MA, USA,
July 19-23, 2009, pages 796-797. ACM, 2009.

Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. Tem-
poral diversity in recommender systems. In Proceeding of the 33rd In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2010, Geneva, Switzerland, July 19-23,
2010, pages 210-217. ACM, 2010.

Dongjoo Lee, Sung Eun Park, Minsuk Kahng, Sangkeun Lee, and Sang
goo Lee. Exploiting contextual information from event logs for person-
alized recommendation. In Roger Y. Lee, editor, Computer and Infor-
mation Science, volume 317 of Studies in Computational Intelligence,
pages 121-139. Springer, 2010.

Xue Li, Jorge M. Barajas, and Yi Ding. Collaborative filtering on
streaming data with interest-drifting. Intell. Data Anal., 11(1):75-87,
2007.

Weiyang Lin, Sergio A. Alvarez, and Carolina Ruiz. Efficient adaptive-
support association rule mining for recommender systems. Data Min.
Knowl. Discov., 6(1):83-105, 2002.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet Comput-
ing, 7(1):76-80, 2003.

Nathan N. Liu, Bin Cao, Min Zhao, and Qiang Yang. Adapting neigh-
borhood and matrix factorization models for context aware recommen-
dation. In Proceedings of the Workshop on Context-Aware Movie Rec-
ommendation, CAMRa 10, pages 7-13, New York, NY, USA, 2010.
ACM.

Nathan Nan Liu, Luheng He, and Min Zhao. Social temporal collabo-
rative ranking for context aware movie recommendation. ACM TIST,
4(1):15, 2013.

37

[58]

[59]

[60]

[61]

[62]

[63]

Nathan Nan Liu, Min Zhao, Evan Wei Xiang, and Qiang Yang. Online
evolutionary collaborative filtering. In Proceedings of the 2010 ACM

Conference on Recommender Systems, RecSys 2010, Barcelona, Spain,
September 26-30, 2010, pages 95-102. ACM, 2010.

Xin Liu and Karl Aberer. Towards a dynamic top-n recommendation
framework. In Eighth ACM Conference on Recommender Systems, Rec-
Sys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 201/,
pages 217-224. ACM, 2014.

Pawel Matuszyk and Myra Spiliopoulou. Selective forgetting for incre-
mental matrix factorization in recommender systems. In Saso Dzeroski,
Pance Panov, Dragi Kocev, and Ljupco Todorovski, editors, Discovery
Science - 17th International Conference, DS 2014, Bled, Slovenia, Oc-
tober 8-10, 2014. Proceedings, volume 8777 of Lecture Notes in Com-
puter Science, pages 204-215. Springer, 2014.

Pawel Matuszyk, Joao Vinagre, Myra Spiliopoulou, Alipio Mario Jorge,
and Joao Gama. Forgetting methods for incremental matrix factor-
izatin in recommender systems. In SAC 2015: Proceedings of the 30th
ACM SIGAPP Symposium on Applied Computing, April 15-17, 2015,
Salamanca, Spain, pages 947-953. ACM, 2015.

Brian McFee, Thierry Bertin-Mahieux, Daniel P. W. Ellis, and Gert
R. G. Lanckriet. The million song dataset challenge. In Proceedings
of the 21st World Wide Web Conference, WWW 2012, Lyon, France,
April 16-20, 2012 (Companion Volume), pages 909-916. ACM, 2012.

Sean M. McNee, John Riedl, and Joseph A. Konstan. Being accurate
is not enough: how accuracy metrics have hurt recommender systems.
In Extended Abstracts Proceedings of the 2006 Conference on Human
Factors in Computing Systems, CHI 2006, Montréal, Québec, Canada,
April 22-27, 2006, pages 1097-1101. ACM, 2006.

Sung-Hwan Min and Ingoo Han. Detection of the customer time-variant
pattern for improving recommender systems. Ezpert Systems with Ap-
plications, 28(2):189 — 199, 2005.

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. Ef-
fective personalization based on association rule discovery from web
usage data. In 3rd International Workshop on Web Information and
Data Management (WIDM 2001), Friday, 9 November 2001, In Con-
gunction with ACM CIKM 2001, Doubletree Hotel Atlanta-Buckhead,
Atlanta, Georgia, USA. ACM, 2001, pages 9-15. ACM, 2001.

38

[66] Olfa Nasraoui, Jeff Cerwinske, Carlos Rojas, and Fabio A. Gonzélez.
Performance of recommendation systems in dynamic streaming en-
vironments. In Proceedings of the Seventh SIAM International Con-

ference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota,
USA. SIAM, 2007.

[67] Olfa Nasraoui, Cesar Cardona Uribe, Carlos Rojas Coronel, and
Fabio A. Gonzélez. Tecno-streams: Tracking evolving clusters in noisy
data streams with a scalable immune system learning model. In Pro-
ceedings of the 3rd IEEE International Conference on Data Mining
(ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA, pages
235-242. TEEE Computer Society, 2003.

[68] Rébert Pélovics, Andras A. Benczir, Levente Kocsis, Tamés Kiss, and
Erzsébet Frigd. Exploiting temporal influence in online recommenda-
tion. In Fighth ACM Conference on Recommender Systems, RecSys
’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014,
pages 273-280. ACM, 2014.

[69] Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan M.
Lukose, Martin Scholz, and Qiang Yang. One-class collaborative fil-
tering. In Proceedings of the 8th IEEE International Conference on
Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy, pages
502-511. IEEE Computer Society, 2008.

[70] Umberto Panniello, Alexander Tuzhilin, and Michele Gorgoglione.
Comparing context-aware recommender systems in terms of accuracy
and diversity. User Model. User-Adapt. Interact., 24(1-2):35-65, 2014.

[71] Umberto Panniello, Alexander Tuzhilin, Michele Gorgoglione, Cosimo
Palmisano, and Anto Pedone. Experimental comparison of pre- vs.
post-filtering approaches in context-aware recommender systems. In
Proceedings of the 2009 ACM Conference on Recommender Systems,
RecSys 2009, New York, NY, USA, October 23-25, 2009, pages 265—
268. ACM, 20009.

[72] A. Paterek. Improving regularized singular value decomposition for
collaborative filtering. In Proceedings of KDD Cup and Workshop,
volume 2007, pages 58, 2007.

[73] Pearl Pu, Li Chen, and Rong Hu. Evaluating recommender systems
from the user’s perspective: survey of the state of the art. User Model.
User-Adapt. Interact., 22(4-5):317-355, 2012.

39

[74]

[79]

[80]

Dimitrios Rafailidis and Alexandros Nanopoulos. Modeling the dynam-
ics of user preferences in coupled tensor factorization. In Eighth ACM
Conference on Recommender Systems, RecSys '14, Foster City, Silicon

Valley, CA, USA - October 06 - 10, 2014, pages 321-324. ACM, 2014.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. BPR: bayesian personalized ranking from implicit
feedback. In UAI 2009, Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June
18-21, 2009, pages 452—-461. AUAIT Press, 2009.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
Factorizing personalized markov chains for next-basket recommenda-
tion. In Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30,
2010, pages 811-820. ACM, 2010.

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction ten-
sor factorization for personalized tag recommendation. In Proceedings
of the Third International Conference on Web Search and Web Data
Mining, WSDM 2010, New York, NY, USA, February 4-6, 2010, pages
81-90. ACM, 2010.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom,
and John Riedl. Grouplens: An open architecture for collaborative
filtering of netnews. In CSCW 94, Proceedings of the Conference on
Computer Supported Cooperative Work, October 22-26, 1994, Chapel
Hill, NC, USA, pages 175-186, 1994.

Francesco Ricci, Adriano Venturini, Dario Cavada, Nader Mirzadeh,
Dennis Blaas, and Marisa Nones. Product recommendation with in-
teractive query management and twofold similarity. In Case-Based
Reasoning Research and Development, 5th International Conference
on Case-Based Reasoning, ICCBR 2003, Trondheim, Norway, June
23-26, 2003, Proceedings, volume 2689 of Lecture Notes in Computer
Science, pages 479-493. Springer, 2003.

Alan Said and Alejandro Bellogin. Comparative recommender sys-
tem evaluation: benchmarking recommendation frameworks. In Eighth
ACM Conference on Recommender Systems, RecSys ’14, Foster City,
Silicon Valley, CA, USA - October 06 - 10, 201/, pages 129-136. ACM,
2014.

40

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[39]

Alan Said, Shlomo Berkovsky, and Ernesto W. De Luca. Putting things
in context: Challenge on context-aware movie recommendation. In Pro-
ceedings of the Workshop on Context-Aware Movie Recommendation,

CAMRa 10, pages 2-6, New York, NY, USA, 2010. ACM.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factoriza-
tion. In Advances in Neural Information Processing Systems 20, Pro-
ceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007, pages 1257-1264. Curran Associates, Inc., 2007.

Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic ma-
trix factorization using markov chain monte carlo. In William W. Co-
hen, Andrew McCallum, and Sam T. Roweis, editors, Machine Learn-
ing, Proceedings of the Twenty-Fifth International Conference (ICML
2008), Helsinki, Finland, June 5-9, 2008, volume 307 of ACM Inter-
national Conference Proceeding Series, pages 880-887. ACM, 2008.

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John
Riedl. Analysis of recommendation algorithms for e-commerce. In
ACM Conference on Electronic Commerce, pages 158-167, 2000.

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John
Riedl. Item-based collaborative filtering recommendation algorithms.
In Proceedings of the Tenth International World Wide Web Confer-
ence, WWW 10, Hong Kong, China, May 1-5, 2001, pages 285—295.
ACM, 2001.

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T.
Riedl. Application of dimensionality reduction in recommender system
- a case study. In WEBKDD’2000: Web Mining for E-Commerce —
Challenges and Opportunities August 20, 2000, Boston, MA, 2000.

Guy Shani and Asela Gunawardana. Evaluating recommendation sys-
tems. In Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B.
Kantor, editors, Recommender Systems Handbook, pages 257-297.
Springer, 2011.

Guy Shani, David Heckerman, and Ronen I. Brafman. An mdp-based
recommender system. Journal of Machine Learning Research, 6:1265—
1295, 2005.

Upendra Shardanand and Pattie Maes. Social information filtering:
Algorithms for automating ”word of mouth”. In Human Factors in

41

[95]

[96]

Computing Systems, CHI 95 Conference Proceedings, Denver, Col-
orado, USA, May 7-11, 1995., pages 210-217. ACM/Addison-Wesley,
1995.

Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering
beyond the user-item matrix: A survey of the state of the art and
future challenges. ACM Comput. Surv., 47(1):3, 2014.

Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Pa-
padopoulos, and Yannis Manolopoulos. Nearest-biclusters collabora-
tive filtering with constant values. In Advances in Web Mining and
Web Usage Analysis, 8th International Workshop on Knowledge Dis-
covery on the Web, WebKDD 2006, Philadelphia, PA, USA, August
20, 2006, Revised Papers, volume 4811 of Lecture Notes in Computer
Science, pages 36-55. Springer, 2006.

G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. On the gravity recom-
mendation system. In Proceedings of KDD Cup and Workshop, volume
2007, 2007.

Gébor Takacs, Istvan Pilaszy, Bottyan Németh, and Domonkos Tikk.
Scalable collaborative filtering approaches for large recommender sys-
tems. Journal of Machine Learning Research, 10:623-656, 2009.

Amit Tiroshi, Shlomo Berkovsky, Mohamed Ali Kaafar, David Val-
let, and Tsvi Kuflik. Graph-based recommendations: Make the most
out of social data. In Vania Dimitrova, Tsvi Kuflik, David Chin,
Francesco Ricci, Peter Dolog, and Geert-Jan Houben, editors, User
Modeling, Adaptation, and Personalization - 22nd International Con-
ference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014. Proceedings,
volume 8538 of Lecture Notes in Computer Science, pages 447—458.
Springer, 2014.

Joao Vinagre and Alipio Mario Jorge. Forgetting mechanisms for scal-
able collaborative filtering. J. Braz. Comp. Soc., 18(4):271-282, 2012.

Joao Vinagre, Alipio Mario Jorge, and Joao Gama. Evaluation of rec-
ommender systems in streaming environments. In Proceedings of the
Workshop on Recommender Systems Fuvaluation: Dimensions and De-
sign in conjunction with the 8th ACM Conference on Recommender
Systems (RecSys 2014), Foster City, CA, USA, October 10, 2014.,
pages 1-6, 2014.

42

[97]

[100]

[101]

[102]

[103]

Joao Vinagre, Alipio Mario Jorge, and Joao Gama. Collaborative filter-
ing with recency-based negative feedback. In SAC 2015: Proceedings
of the 30th ACM SIGAPP Symposium on Applied Computing, April
15-17, 2015, Salamanca, Spain, pages 963-965. ACM, 2015.

Gerhard Widmer and Miroslav Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning, 23(1):69-101,
1996.

Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing
Yang, and Jimeng Sun. Temporal recommendation on graphs via long-
and short-term preference fusion. In Bharat Rao, Balaji Krishnapuram,
Andrew Tomkins, and Qiang Yang, editors, Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Washington, DC, USA, July 25-28, 2010, pages 723-732.
ACM, 2010.

Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G. Schneider, and
Jaime G. Carbonell. Temporal collaborative filtering with bayesian
probabilistic tensor factorization. In Proceedings of the SIAM Inter-
national Conference on Data Mining, SDM 2010, April 29 - May 1,
2010, Columbus, Ohio, USA, pages 211-222. STAM, 2010.

Li’ang Yin, Yonggiang Wang, and Yong Yu. Collaborative filtering
via temporal euclidean embedding. In Web Technologies and Appli-
cations - 14th Asia-Pacific Web Conference, APWeb 2012, Kunming,
China, April 11-13, 2012. Proceedings, volume 7235 of Lecture Notes
in Computer Science, pages 513-520. Springer, 2012.

Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia
Magnenat-Thalmann. Time-aware point-of-interest recommendation.
In The 36th International ACM SIGIR conference on research and de-
velopment in Information Retrieval, SIGIR ’13, Dublin, Ireland - July
28 - August 01, 2013, pages 363-372. ACM, 2013.

Andrew Zimdars, David Maxwell Chickering, and Christopher Meek.
Using temporal data for making recommendations. In UAI ’01: Pro-
ceedings of the 17th Conference in Uncertainty in Artificial Intelli-
gence, University of Washington, Seattle, Washington, USA, August
2-5, 2001, pages 580-5H88. Morgan Kaufmann, 2001.

43

