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Abstract. Developing robust and universal methods for unsupervised segmen-
tation of moving objects in video sequences has proved to be a hard and chal-
lenging task. State-of-the-art methods show good performance in a wide range 
of situations, but systematically fail when facing more challenging scenarios. 
Lately, a number of image processing modules inspired in biological models of 
the human visual system have been explored in different areas of application. 
This paper proposes a bio-inspired boosting method to address the problem of 
unsupervised segmentation of moving objects in video that shows the ability to 
overcome some of the limitations of widely used state-of-the-art methods. An 
exhaustive set of experiments was conducted and a detailed analysis of the re-
sults, using different metrics, revealed that this boosting is more significant 
when challenging scenarios are faced and state-of-the-art methods tend to fail. 
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1 Introduction 

Segmentation of moving objects in video sequences is a fundamental step in many 
computer vision applications. Therefore, the identification of changing or moving 
areas in a video is a crucial step. Despite the large number of methods proposed in the 
literature to address the unsupervised segmentation of moving objects, none has been 
able to fully deal with complex and challenging scenarios that include poor lighting 
conditions, sudden illumination changes, shadows and parasitic background motion.  

 Comprehensive reviews of background subtraction (BS) approaches have been 
presented in [1,2]. Although they provide an overview of existing methods, the results 
reported by different authors have not been computed on a common dataset, making it 
hard to establish fair comparisons. Also, many datasets do not contain a balanced set 
of videos presenting real application challenges. Moreover, metrics used to evaluate 
the average algorithms’ performance do not reveal how they perform frame by frame. 
Recent research has shown that methods appear to be complementary in nature, with 
the best-performing methods being beaten by combining several of them [3].  

Recently, a considerable number of image processing modules inspired in biologi-
cal models of the human visual system have been explored [4,5,6]. The ultimate goal 



is to copy the recognition capability of the human visual system. The image pro-
cessing occurring at the level of the human retina allows not only noise and illumina-
tion variation removal, but also static and dynamic contours enhancement. Hence, this 
approach can be used for illumination normalization and motion detection.  

This paper proposes a new scheme to address the problem of unsupervised seg-
mentation of moving objects, which exploits the fusion of information obtained from 
two inherently different approaches: a bio-inspired motion detection method, using 
low-level information from the modeling of the human visual system, and a BS algo-
rithm based on pixel color information. The biologically inspired model of the human 
retina presented in [6] has been adopted for the former. Experiments were performed 
with several BS algorithms showing that our method consistently improves the re-
sults, particularly in complex situations, where the BS algorithms critically fail. 

The paper is organized as follows. Section 2 introduces the bio-inspired model of 
the retina that motivated our proposal. Section 3 presents the bio-inspired motion 
segmentation method. The experimental setup and the obtained results are presented 
in sections 4 and 5, respectively. Final conclusions are presented in section 6. 

2 The Retina Model 

Figure 1 presents the global architecture of the adopted retina model [6] as a combina-
tion of low-level processing modules. Basically, it is a layered model with: 1) photo-
receptors, where local contrast is enhanced; 2) outer plexiform layer (OPL), where the 
non-separable spatio-temporal filtering removes spatio-temporal noise and enhances 
spatial high-frequency contours while reducing or removing the mean luminance; 3) 
inner plexiform layer (IPL), with two channels: the parvocellular (Parvo) channel, 
dedicated to spatial analysis enhancing static contours contrast, and the magnocellular 
(Magno) channel that enhances moving contours and removes static ones. 

 
Fig. 1. The retina model proposed in [6]. 

As our goal is to extract the regions with moving contours, we will focus on the 
Magno channel output. A temporal effect is introduced on its output signal. This ef-
fect is modeled by a first order high-pass temporal filter, with transfer function given 
by (1), where τ is the temporal constant of the filter. This filter enhances changed 
areas. Its output is smoothed by a spatial low-pass filter. Finally, local contrast com-
pression enhances the resulting contour information. 
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The Magno channel output signal magnitude is dependent on the velocity of the 
moving areas, with high response for fast moving areas and null response for static 
regions. The response of the filter is also stronger for moving contours perpendicular 
to the motion direction. The tuning of the temporal constant allows the adjustment of 
the response to temporal changes in the scene. A low value allows the enhancement 
of only fast changes whereas a higher value allows the enhancement of slower chang-
es. It affects not only the response to the contours of moving objects, but also to para-
sitic background motion. The response decays with time leading to fuzzy contours. 

3 Bio-Inspired Hybrid Segmentation Method 

The proposed bio-inspired hybrid segmentation, represented in Figure 2, merges in-
formation from two inherently different approaches: 1) the bio-inspired motion seg-
mentation that identifies regions of motion; 2) a BS method, based on pixel color 
information, that extracts the silhouettes of the moving objects. The final foreground 
mask, called HybridMask, is obtained by merging the outputs of the two modules.  

 
Fig. 2. Block diagram of the bio-inspired hybrid segmentation method 

The bio-inspired motion segmentation consists of the segmentation of the Magno 
channel output signal of the retina model, which allows the detection of transient 
events (motion, changes) with reduced noise errors even in difficult lighting condi-
tions. It is a low spatial frequency signal that gives a coarse representation of contours 
enabling motion blobs to be reliably extracted. 

The high-pass temporal filter of the Magno channel introduces a temporal effect on 
the output signal, clearly visible as a trace left by the moving objects. This parameter 
can be set up in the configuration of the model, allowing tuning of the retina model to 
the characteristics of the input video sequence. However, in all the experiments re-
ported, the default value (2.0) was used. The variable delay introduced by the filter 
depends on the value of its temporal constant. Hence, if the range of the apparent 
velocities of the objects is known in advance, a delay can be introduced in the BS 
module to compensate for this delay. However, experimental results have shown that, 
with the temporal constant used, a null delay provides good results. 

The Magno segmentation process leads to the definition of the Magno Moving Ar-
eas Mask, MMAM. The process can be summarized as follows. Let M be the Magno 
channel output signal. In the absence of moving objects, its magnitude is very low, 

Automatic 
Threshold 

Fixed 
Threshold 

Contours 
Extraction 

Convex 
Hull 

Contours 
Filling 

AND 

OR 

Magno 
channel 
output! AND 

delay 

HybridMask!MMAM!MMDM!

Background 
Subtraction 

Video 
Input!

BSmask!

Retina 
Model 

delay 



corresponding to residual noise. In the presence of moving objects, the magnitude of 
M takes higher values in the neighborhood of moving contours. First, a Magno Mo-
tion Detection Mask, MMDM, is created according to: 
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TVar is a dynamically changing global threshold, taking the value of 2.5 standard 
deviations of the magnitude of the Magno channel output signal. To get temporally 
stable regions of motion, the MMDM is connected to the previous MMAM by adding pix-
els with a value above a fixed value TLow (experimentally set to 15.0) that were set in 
the previous MMAM. The Magno segmentation fails to detect still foreground objects as 
it relies on motion information. To avoid loosing stopped foreground objects, pixels 
that were set in the previous HybridMask are also added to the MMDM. 

Finally, to create the MMAM from the MMDM, a connected component analysis is per-
formed to extract the exterior closed contours. To avoid highly non-convex blobs, the 
convex hull of these contours is calculated using the algorithm presented in [8]. The 
final MMAM is obtained by filling the contours. This mask contains the regions of mo-
tion where the objects silhouettes are to be extracted by the BS algorithm. 

 Figure 3 shows an example of the Magno channel output and the resulting MMAM. 

 
a) 

 
b) 

 
c) 

Fig. 3. a) Input frame, b) Magno channel output (M), c) Magno Moving Areas Mask (MMAM) 

As stated before, the Magno channel output signal gives a fuzzy representation of 
contours. This allows the extraction of temporally stable motion blobs, but not the 
precise contours of the objects. Thus, a pixel-level BS algorithm based on pixel color 
information is needed to extract these contours. Experiments were performed with 
several state-of-the-art BS algorithms, reported in [3]. However, other algorithms 
could be used in this module. The fact that GMM is widely used, and that finding the 
best parameter set for a particular application is not a trivial task, often leads to the 
use of the default parameters. For this reason, we decided to include it in our experi-
ments using those settings. For each input frame, the foreground mask resulting from 
the BS algorithm is referred to as BSmask. 

The fusion step combines the complementary information resulting from the two 
approaches to enhance overall detection accuracy. The Magno segmentation produces 
spatially and temporally coherent regions due to the spatio-temporal integration per-
formed by the retina. These results are robust to spatio-temporal noise, global illumi-
nation changes and soft shadows, but the masks tend to be larger than the objects due 
to the fuzziness of the contours. On the other hand, BS algorithms perform well in 
extracting the silhouettes of foreground objects in a large number of situations, but are 



less robust. Their performance is also highly dependent on the correct tuning of the 
parameters. The fusion step uses the regions provided by the Magno channel segmen-
tation to focus the foreground detection. The final foreground mask, HybridMask, is 
created according to:  
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4 Experimental Setup 

An exhaustive set of experiments was conducted to evaluate the performance of the 
proposed method compared with the base BS method. Only one set of parameters was 
used for all the videos. The default parameter set was used for the setup of the retina 
model (available in OpenCV). The bio-inspired motion segmentation module is run-
ning with no configurable parameters. For evaluation purposes, several alternatives 
were used as BS method: MOG2, refers to the masks outputted by MOG2, available 
in OpenCV, using default parameters; GMM [7], KNN [7], AMBER [11], CwisarDH 
[12], Spectral360 [13], SuBSENSE [14] and FTSG [15] refer to the computed masks 
made available in the CDnet site [9]. These masks were generated with the parameters 
adjusted to maximize overall performance. 

The experiments were conducted on the complete set of videos of the CDnet 2014 
Dataset [9]. Evaluation was performed using the ground truth (GT) segmentation 
provided along with the videos. Each mask can have 5 labels: Moving, corresponding 
to foreground pixels; Static, corresponding to background pixels; Shadow correspond-
ing to moving shadows; Non-ROI corresponding to regions outside the ROI; Un-
known corresponding to pixels whose status is unclear. 

The following seven metrics are often used to rank BS methods [3] [10]: Recall 
(Re), Specificity (Sp), False Positive Rate (FPR), False Negative Rate (FNR), Per-
centage of Wrong Classifications (PWC), Precision (Pr) and F-measure. We assessed 
the proposed and base methods over each video by computing these metrics, followed 
by a category-average and an overall-average metric. In our comparisons, the F-
measure was used as an indicator of performance since, as reported in [3] [10], it 
correlates most strongly with the rankings produced by evaluation algorithms. 

Considering the image segmentation as a partition, a metric based on the normal-
ized symmetric distance between partitions, dsym, was proposed in [16]. This metric 
has shown to be consistent with the subjective evaluation that a human observer 
would make and can provide an error value for each of the frames.  

These complementary metrics allowed us to evaluate the improvement achieved by 
the proposed method, and identify failures. When computing the metrics, pixels clas-
sified as Shadow are considered as Static and pixels classified as Non-ROI or Un-
known are discarded. 



5 Analysis of Results and Discussion 

Table 1 shows the average values for the first set of metrics across all categories for 
the overall set of videos. The proposed bio-inspired boosting method consistently 
outperforms the base method. As expected, as the base BS algorithm quality im-
proves, the boosting achieved by the fusion with the bio-inspired motion segmenta-
tion is lower. However, for the eight algorithms tested, the overall measures improve 
using the hybrid method even if, for some categories, there is some marginal decrease 
in performance. There are also some scenarios where we should not expect to achieve 
improvements with the proposed method, like in the intermittent object motion cate-
gory. Table 2 shows the average F-measure for each category. Mind that the best 
methods are complex algorithms that already combine different approaches.  

Table 1. Overall results across all categories. 

Method Re Sp FPR FNR PWC Pr F-measure 
MOG2 0.535 0.979 0.021 0.464 3.836 0.508 0.430 
Hybrid-MOG2 0.542 0.972 0.011 0.457 2.910 0.670 0.515 
GMM 0.660 0.971 0.028 0.339 4.052 0.611 0.568 
Hybrid-GMM 0.669 0.972 0.028 0.331 4.026 0.623 0.579 
KNN 0.662 0.980 0.020 0.338 3.363 0.675 0.596 
Hybrid-KNN 0.670 0.980 0.019 0.329 3.314 0.687 0.607 
AMBER 0.722 0.963 0.020 0.278 2.808 0.712 0.666 
Hybrid-AMBER 0.720 0.965 0.018 0.279 2.647 0.724 0.673 
Spectral360 0.748 0.951 0.015 0.252 2.370 0.718 0.690 
Hybrid- Spectral360 0.741 0.952 0.014 0.258 2.283 0.729 0.694 
CwisarDH 0.681 0.977 0.006 0.319 1.536 0.775 0.706 
Hybrid-CwisarDH 0.687 0.978 0.005 0.312 1.475 0.787 0.742 
SuBSENSE 0.806 0.974 0.009 0.194 1.663 0.752 0.742 
Hybrid-SuBSENSE 0.802 0.975 0.008 0.198 1.615 0.759 0.745 
FTSG 0.786 0.975 0.007 0.214 1.272 0.775 0.746 
Hybrid-FTSG 0.785 0.976 0.007 0.215 1.247 0.781 0.750 

Table 2. Average % of improvement in F-measure for each category and across all categories. 

Category   MOG2 GMM KNN AMBER Spectral360 CwisarDH SuBSENSE FTSG 
badWeather 16.09 1.71 1.67 -0.11 -0.25 0.48 0.06 -0.04 
baseline 11.23 1.10 0.79 0.50 -0.04 0.72 -0.11 -0.11 
cameraJitter 20.87 0.64 0.73 0.04 -0.23 0.63 0.05 0.13 
dynamicBackground 89.64 2.11 1.60 0.18 -0.20 1.20 0.04 -0.09 
intermittentObjectMotion -2.60 0.20 -0.71 0.06 -0.41 0.55 -0.85 0.61 
lowFrameRate 5.69 1.17 1.88 1.46 -0.01 2.81 -0.11 1.46 
nightVideos 18.95 8.30 8.48 11.39 8.12 7.74 6.09 2.55 
PTZ 17.49 2.76 2.98 1.56 3.45 4.04 0.28 1.69 
shadow 9.43 1.70 2.47 0.63 0.27 0.74 -0.09 0.04 
thermal 0.26 1.08 0.82 0.12 -0.32 0.75 0.23 0.32 
turbulence 84.59 0.56 0.59 0.02 0.04 0.00 0.03 0.08 
Overall 19.79 1.76 1.76 0.97 0.64 1.40 0.39 0.45 

The evaluation of the results using the partition distance metric, dsym, computed 
frame by frame, gives us a new insight about the performance of the bio-inspired 
method compared to the base ones. Unlike the F-measure, this is an error measure 
and, therefore, a lower value means higher quality. To illustrate, Table 3 shows the 
average F-measure and average dsym for the video streetCornerAtNight from the Night 
Videos category, one of the most difficult categories [3]. This video consists of traffic 



scenes captured at night and the main challenge is to deal with low-visibility of vehi-
cles and their very strong headlights that cause halos and reflections on the street. The 
learning of the background and foreground detection by the BS methods critically fail 
in these scenes. However, the retina model processing acts on the input frame for 
illumination normalization, strongly attenuating variations of illumination. Figure 4, 
on the left, shows the evolution of the dsym metric from frame 800 to frame 2999 for 
different base algorithms alone and with boosting. As illustrated, all the algorithms 
tend to fail in the same frames, corresponding to the most difficult situations, and in 
these frames the bio-inspired segmentation achieves a significant improvement in the 
quality of the segmentation. Figure 4, on the right, illustrates the evolution of the F-
measure from frame 956 to frame 998, where the dsym shows the first peak (shadowed 
region). It is clear that the dsym results are consistent with the F-measure results.  

Table 3. Average F-measure and average dsym for video streetCornerAtNight. 

Fig. 4. Left: Evolution of dsym from frame 800 to frame 2999. Right: Evolution of F-measure 
from frame 956 to frame 998 (shadowed region) of video streetCornerAtNight. 

Table 4 reports some of the results obtained for the video copyMachine from the 
Shadow category, an indoor scene with very noticeable shadows. The hybrid segmen-
tation shows to be much less sensitive to shadows, failing only on very hard shadows.  

Figure 5 shows the original frame, the GT, the BSmasks and the HybridMasks for 
frame 968 of the video streetCornerAtNight, on the left, and frames 2778 and 2816 of 
the video copyMachine, on the right. 

Frame #  800-2999 MOG2 GMM KNN AMBER Spectral360 CwisarDH SuBSENSE FTSG 

F-measure BS only 0.174 0.336 0.349 0.395 0.445 0.350 0.604 0.568 
Hybrid 0.306 0.453 0.447 0.465 0.550 0.481 0.618 0.606 

dsym BS only 0.034 0.021 0.020 0.018 0.019 0.021 0.013 0.014 
Hybrid 0.021 0.016 0.016 0.015 0.015 0.016 0.012 0.013 



Table 4. Average F-measure and average dsym for video copyMachine. 

 
Fig. 5. Foreground masks. Left: video streetCornerAtNight. Right: video copyMachine. 

6 Conclusions 

This paper proposes a bio-inspired hybrid method for the unsupervised segmentation 
of moving objects in video sequences. The proposed method improves well-known 
and widely used state-of-the-art algorithms in complex situations where these fail. 
The fusion of the BS method with the proposed bio-inspired motion segmentation 
greatly reduces the number of false positives. Hence, the combination of the two ap-
proaches boosts overall detection accuracy. A detailed analysis of the results, using 
complementary types of metrics, has revealed that these improvements are more sig-
nificant when the BS method faces more difficult scenarios, like challenging illumina-
tion conditions or shadows, and fails. It must be highlighted that all the experiments 
in all the testing scenarios were run with the same set of parameters. After the detailed 
analysis of the results and the identification of the scenarios where the proposed 
method significantly boosts the segmentation, future work will concentrate in finding 
the best set of parameters to apply in each situation and automatically adjust them in 
real time.  

Frame # 500-3399 MOG2 Hybrid-
MOG2 KNN Hybrid-

KNN AMBER Hybrid-
AMBER CwisarDH Hybrid-

CwisarDH 
F-measure 0.506 0.522 0.623 0.653 0.658 0.678 0.878 0.895 

dsym 0.062 0.058 0.056 0.051 0.054 0.050 0.032 0.029 
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