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Abstract—Heart sounds are difficult to interpret because a)
they are composed by several different sounds, all contained in
very tight time windows; b) they vary from physiognomy even if
the show similar characteristics; c) human ears are not naturally
trained to recognize heart sounds. Computer assisted decision
systems may help but they require robust signal processing
algorithms. In this paper, we use a real life dataset in order to
compare the performance of a hidden Markov model and several
hidden semi Markov models that used the Poisson, Gaussian,
Gamma distributions, as well as a non-parametric probability
mass function to model the sojourn time.

Using a subject dependent approach, a model that uses the
Poisson distribution as an approximation for the sojourn time is
shown to outperform all other models. This model was able to
recreate the “true” state sequence with a positive predictability
per state of 96%. Finally, we used a conditional distribution in
order to compute the confidence of our classifications. By using
the proposed confidence metric, we were able to identify wrong
classifications and boost our system (in average) from an ≈ 83%
up to ≈ 90% of positive predictability per sample.

I. INTRODUCTION

The phonocardiogram (PCG) signal is recorded during an
auscultation using an electronic stethoscope. The PCG con-
tains important information concerning the mechanical activity
of the heart valves [1]. Signal processing of a PCG has two
main goals: the first one is to split the PCG into heart cycles.
Each heart cycle is mainly composed by the first heart sound
(S1), the systolic period (siSys), the second heart sound
(S2), and the diastolic period (siDia). The second goal is the
detection of other sounds such as the third and fourth heart
sounds (S3 and S4 respectively), heart murmurs, snaps, etc.

The methods used for heart sound segmentation can be
divided depending on which domain they are applied: the
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time domain (Shannon energy [2]), the frequency domain
(homomorphic filter [3]), etc. Moreover, different approaches
have been proposed to assign features extracted from the
PCG to the different segments/states, e.g., Artificial Neural
Networks (ANN) [4], Support Vector Machines (SVM) [5]
and hidden Markov models (HMM).

Among these, HMMs and their variations have the advan-
tage of naturally modeling the sequential nature of heart sound
signals. Recently, HMMs have shown to be very effective
in modeling the heart sound signals: in Gill et al. [6], the
signal is pre-processed and a subset of candidates (peaks)
are extracted from the homomorphic envelogram, and these
candidates are classified using a discrete-time HMM, where
the state-distribution is modeled using the time-duration from
the preceding candidate to the current one. Chung [7], detected
and classified heart sounds using first a left-right HMM model
(the first state is assumed to be known) and later a fully-
connected HMM. The variability in each state is modeled by
using multiple mixtures of a Gaussian multivariate distribution.

Schmidt et al. [8] implemented a hidden semi Markov model
(HSMM) [9] using the homomorphic filtering envelogram
as an observation to the system. This has the advantage
(compared to the traditional HMM) that every state duration
is explicitly modeled in the state transition matrix. The state
duration distribution function is modeled by a Gaussian distri-
bution, where the systolic (siSys) and diastolic (siDia) dura-
tion parameters are estimated through autocorrelation analysis
of the homomorphic filtering envelogram. Springer et al. [10]
expanded Schmidt’s algorithm mainly on the study of the
emission probability distribution. He explored a wider range
of features and machine learning approaches to model the
emission probabilities.

When using HMMs, the sojourn time (waiting time) is
geometrically distributed over all states. This is an unrealistic
assumption in heart sound signals, due to physiological time
constraints that exist in the cardiac cycle. For example, the
cardiac muscle, like any excitable tissue, exhibits a refractory
period to re-stimulation. During this time interval, normal



cardiac impulse cannot re-excite an already excited area of
the cardiac muscle [1]. On the other hand, the geometric
distribution decreases monotonically, as a result the most
probable sojourn time duration a priori is equal to one sample.
In the current state-of-the-art for heart sound classification
using HSMMs [8], [10], only the Gaussian distribution is
examined as an approximation for the sojourn time distri-
bution. But the standard Gaussian distribution is not strictly
positively defined and therefore it is not the most advisable
distribution, since the sojourn times are by nature strictly
positive. Imposing the positivity constraint, would cause the
variance to approach zero for very fast events. Motivated by
the above observations, this work proposes to enhance the
performance of PCG segmentation for pediatric subjects via
the following contributions:

1) the study of different distributions for approximating the
sojourn time in HSMMs;

2) the experimental validation of the performance of each
presented model over a real-life pediatric dataset;

3) finally, we propose a novel confidence metric based on
conditional probability.

The paper is organized as follows: in section 2 we present
HMMs and HSMMs. In section 3, we explain our methodol-
ogy. In section 4, we present our experimental results. Finally,
we draw conclusions.

II. MODELING HEART SOUNDS

A. Hidden Markov Models
HMMs are probabilistic models, where the observation se-

quence X = x1, x2, · · · , xn depends on the underlying hidden
state sequence S = s1, s2, · · · , sn and the unobserved Markov
process [11]. A homogeneus hidden Markov model assumes
that the state transition probability matrix Γ is constant over
time. In this case, the ith row and jth column entry of Γ, i.e.,

γij = Pr(st = j|st−1 = i), (1)

is the probability of being in state j knowing that the previous
state was i, and such probability is independent of current
evaluation time t [7]. It is assumed that each state of a HMM
corresponds to an element of the heart sound signal because
the signal characteristics in each element are thought to be
homogeneous. For simplicity, our model ignores S3, S4 and
murmur sounds. The likelihood [11] of a state sequence S of
a HMM with an observation sequence X is:

P (X,S,Θ) = π1

{
n∏
t=2

γst−1st

}
n∏
l=1

Psl(xl), (2)

where Θ = {π1,Γ, B} denotes the model parameters such
as the initial state distribution π1, state transition probability
matrix Γ and state depended distribution matrix1 B. In this
work, B is assumed to be a continuous Gaussian function:

p(xt|µsk , νsk) =
1

νsk
√

2π
e−(xt−µsk )

2/(2ν2
sk

), (3)

1Note that in case the emissions are modeled by continuous random
variables B contains the parameters of the pdf for each state.

with νsk being the standard deviation and µsk the mean value
in state sk.

B. Hidden Semi Markov Models

In HMMs, the sojourn time (expressed in number of time
samples) is geometrically distributed over all states [10]. This
is an unrealistic assumption in heart sound signals, since the
state transition probabilities are constantly changing over time.
The solution we consider is to model explicitly the sojourn
time by using a HSMM [9].

We first define, D as the sojourn time distribution ma-
trix. The entries of D are dsk(uk) which is the probability
of spending uk units of time in the state sk ∈ S =
{S1, siSys, S2, siDia}. We use five different approaches to
model the sojourn time. Four of them are represented by para-
metric distributions, whereas the last one is a non-parametric
probability mass function:
• Parametric sojourn time distributions:

- Poisson:

dsk(uk|λsk) =
e−λskλuksk

uk!
, (4)

where λsk is the expected sojourn time in the state sk.
- Gaussian:

dsk(uk|λsk , σsk) =
1

σsk
√

2π
· e
−

(uk−λsk )2

2σ2
sk , (5)

where λsk is the expected sojourn time in the state sk
and σ2

sk
is the variance of the sojourn time in the state

sk.2

- Gamma:

dsk(uk|αsk , βsk) =
1

Γ(αsk)β
αsk
sk

·u(αsk−1)k · e−
uk
βsk , (6)

where uk, αsk , βsk > 0; αsk , βsk are the shape and scale
for the state sk, respectively.

• The non-parametric probability mass function is repre-
sented as a matrix N ×M , where N is the number of
states and M the number of discretized values.

Then, we define, d∗sk(uk) as the survivor function of the
sojourn time.

d∗sk(uk) =
∑
v≥uk

dsk(v). (7)

We also define r as the total number of state transitions that
occurred until time n; and finally, we define N(t) as the
current state at time t.

The likelihood of a state sequence S of a HSMM is then
given by:

P (X,S,Θ) =π1

{
r−1∏
k=2

γsk−1skdsk(uk)

}
γsr−1srd

∗
sr (ur)

·
n∏
l=1

PsN(l)
(xl),

(8)

2Note that λsk and σ2
sk

are chosen so that the probability that the
corresponding sojourn time is negative is negligible.



where sk is the kth visited state and uk is the sojourn time of
the kth state. Therefore, a HSMM is specified by the quadruple
Θ = {π1,Γ, B,D} [12].

C. Initializing the parameters of HMM and HSMM

We use a subject dependent approach, meaning that we
train and test with mutually exclusive heart beats of each
subject. Parameters are initialized in the training phase, using
annotated samples from a given subject. During the testing
phase we further optimize our parameters by using different
non-annotated samples from the subject. We used exhaustive
cross-validation from 1 to 7 training heart beats but we
constrained our training sets to those that produce continuous
test set. For example, if we train with heart beats 1, 2, 8 we
test with heart beats 3, 4, 5, 6, 7.

For both HMMs and HSMMs, the initial states distribu-
tion (π1) are initialized with equal starting probabilities. The
Γ parameters are fixed to:

Γ =

S1 siSys S2 siDia
S1 0 1 0 0

siSys 0 0 1 0
S2 0 0 0 1

siDia 1 0 0 0

, (9)

because in a normal cardiac system the state sequence {S1→
siSys → S2 → siDia → S1} is fixed. For the purposes of
this paper we will ignore any skipped beats, extra sounds or
murmurs.

To initialize B we use the annotated samples and compute
the parameters µs, σs∀s ∈ S by using the corresponding
maximum likelihood estimators.

To compute the initial parameters D for the:
• Parametric sojourn time distributions

- Poisson: λ0sk∀sk ∈ S, we use the average annotated
time lapse between the beginning and the end of the
corresponding state sk.

- Gaussian: λ0sk , σ
0
sk
∀sk ∈ S, we use the average

and standard deviation annotated time lapse between the
beginning and the end of the corresponding state sk,
respectively.

- Gamma: α0
sk
, β0
sk
∀sk ∈ S, we use the maximum

likelihood estimator (MLE) by Choi over the annotated
events [13].

• Non-parametric probability mass function is initialized as
uniformly distributed U(a0sk , b

0
sk

) where: a0sk∀sk ∈ S is
the minimum sojourn time annotated for state sk; and
b0sk∀sk ∈ S is the maximum sojourn time annotated for
state sk.

D. Optimizing the HSMM parameters

The parameters Θ are tuned using the expectation maxi-
mization (EM) method [11]. This maximizes the likelihood (8)
by iterating over the following steps:
• Expectation (E-step): The conditional expectations of

the missing data given the observations and given the
current estimate of Θ are computed. Namely, the forward
vector αt [14] defined as:

αskt = P (St+1 6= sk, St = sk|Xt
0 = xt0), (10)

and the backward vector βt [14] defined as:

βskt =
P (St+1 6= sk, St = sk|XT

0 = xT0 )

P (St+1 6= sk, St = sk|Xt
0 = xt0)

, (11)

where we have used the compact notation Xt
0 to denote

the observations sub-sequence X0, . . . , Xt.
Using these fundamental quantities, it is possible to
compute expected number of times ηiuk that the model
remains in state i for uk time steps. The ηiuk is defined
as:
ηiuk =P (suk 6= i, suk−v = i, v = 1, ...., uk|X,Θ)+

n∑
t=1

P (st+uk+1 6= i, st+uk−v = i,

v = 0, ...., uk − 1, st 6= i|X,Θ).
(12)

• Maximization (M-step): Maximize, with respect to Θ,
the likelihood (8). The D parameters are re-estimated,
according to the distribution used:

- Poisson:

λ̂i,β =
n∑
v=1

ηiv
ηi

(v − β), (13)

where β is all possible shifts parameters, β =
1, . . . ,min(uk : ηiuk > 0).

- Gaussian:

σ̂2
i,β =

n∑
v=1

ηiv
ηi

(λi,β − v)2, (14)

The maximization step chooses the β, equation (14)
and (13), that maximizes likelihood in equation (8).

- Gamma: The α̂i, β̂i are obtained as in [12].
- Non-parametric probability mass function: In the

maximization step for the non-parametric probability
mass function we re-estimate the matrix D as:

d̂i(uk) =
ηiuk∑n
v=1 ηiv

. (15)

The emission parameters B (λ̂sk , σ̂sk∀sk ∈ Sk) are re-
estimated as:

λ̂sk =

∑n
t=1 α

sk
t xt∑n

t=1 α
sk
t

, (16)

and

σ̂2
sk

=

∑n
t=1 α

sk
t (xt − λ̂sk)2∑n
t=1 α

sk
t

. (17)

Finally, the initial transition probabilities are re-estimated as:
π̂sk = αsk0 .

E. Decoding algorithm

In this paper, we use the Viterbi algorithm [15] to determine
the hidden state sequences corresponding to heart beat com-
ponents. We recall that the Viterbi algorithm does not attempt
to classify every observation sample separately, but instead, it
returns the hidden state sequence that maximizes the likelihood
function reported in (2) for HMM and in (8) for HSMM.



F. Computing a confidence metric point-by-point

Not all sample classifications have the same degree of
confidence. For example, samples between states are harder
to classify, since it is a hard task to identify the exact location
where one state ends and another begins. Similarly, high level
noise could be easily misinterpreted as heart sounds (S1 or S2)
because of its high amplitude in the homomorphic envelogram.
These samples should have inherently low confidence in their
classifications. On the other side, samples in the middle of
states have very high amplitude and are easier to classify,
providing to their classifications a higher confidence. We pro-
pose a measure of sample confidence based on the conditional
probability distribution Pr3.

The distribution of Xt conditioned on all observations
X\t = (X1, . . . , Xt−1, Xt+1, · · · , XT ) is given by:

Pr = P (Xt = xt|X\t = x\t) =
∑
i∈Sk

ln
(
εit
)
· eζ

i
t , (18)

where εit = e−(αit×Γ+βit)∑
j∈Sk

e−(α
j
t×Γ+β

j
t )

, ζit = −ln(pi(xt))∑T
k=1 ln(p

i(xk))
and

pi(xt) is the associated probability of observing xt in the
state i. The exponentiation of the α, β and the logarithms
of pi(xt) are used in order to reduce the chance of underflow
and overflow respectively.

III. METHOLOGY

A. Materials

The DigiScope dataset is composed of samples from 29
different healthy individuals, ranging in age from six months
to 17 years old. The recordings have a minimum, maximum
and average duration of ≈ 2, 20 and 8 seconds, respectively.
This is a very challenging dataset given the highly varying
heart rates of individuals in this age range. A dataset with
healthy adults is potentially easier to process, given its heart
rate stability and the full maturity of the heart, which motivated
us to focus on this pediatric dataset. Heart sounds have been
collected in Real Hospital Português (Recife, Brasil) using
a Littmann 3200 stethoscope embedded with the DigiScope
Collector [16] technology, recorded at 4000 Hz. The heart
sounds have all been collected from the mitral spot. These
sounds were then manually annotated by cardiopulmonologists
using the audacity software4. In the annotations we have the
beginning and ending stages of S1 and S2 during a variable
number of heart cycles.

B. Pre-processing

Following previous literature [3], [6], [17], the system first
normalizes and scales the signal to the [0, 1] range. The scaled
signal is filtered using a Butterworth lowpass filter of order 10
with a cutoff frequency of 100 Hz, since the majority of the
frequency content of the S1 and S2 (for the DigiScope dataset)
is contained in the range 30− 80 Hz, as it shown in Figure 1.
Similar pre-processing methods are also used in [18].

3For the rest of the paper we shorthand P (Xt = xt|X\t = x\t) as Pr .
4www.audacityteam.org
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Fig. 1. Average power spectral density (PSD) for each state over the frequency
range [0, 150] Hz. The S1 peak is ≈ 50 Hz and the S2 peak is ≈ 60 Hz.

From the filtered signal, the homomorphic envelogram is
computed as in [6]. In our previous work [17], we experi-
mented several different envelograms and confirmed that the
homomorphic envelogram is suitable for pediatric heart sound
signals.

C. Performance metrics

The performance of the HSMM and HMM was measured as
the model’s capacity to recreate the state sequence annotated
by the cardiacpulmonologists. We first compute the positive
predictability per sample (P+

sample) as:

P+
sample =

TPsamples
TPsamples + FPsamples

, (19)

where TPsamples, FPsamples is the count of true and false
positive samples respectively. A sample at time t is a true
positive when the predicted state sample and the annotated
state sample are the same (smodelt = sexpertt ), otherwise it is
a false positive5.

Another metric adopted is the positive predictability per
state (P+

state) which is computed as in (19) where TPstates,
FPstates is the count of true and false positive states respec-
tively. A classification is a true positive when the model’s
state is equal to the closest expert’s annotated state. Oth-
erwise it is considered a false positive. In particular, we
define B(i) = argmin

k≤i
(Sk = Si) as the beginning time of

state si. We also define the ending time of a state si as
E(i) = argmax

k≥i
(Sk = Si). The middle time of a state si

is M(i) = B(i)+E(i)
2 . Finally, we count true positives as:

TPstates =
∑

j∈Mexpert

argmin
i∈Mmodel

(|i− j|) ∧ smodeli = sexpertj .

(20)
For the sake of completeness and in order to allow a fair

comparison with other results from the literature about PCG

5Note that, when computing positive predictability true/false negatives are
not defined.
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Fig. 2. Subject dependent results. Average positive predictability (a) per
sample P+

sample and (b) per state P+
state for the tested HMM, HSMM models

over the DigiScope dataset.

segmentation, we also report performance metrics related to
the capacity of the systems of detecting the precise position of
the principal heart sounds S1 and S2. In this case true, false
positives (TPS , FPS) and true, false negatives (TNS , FNS)
will be determined according to a definition akin to that used
to define positive predictability per state. The performance
metrics considered for principal heart sounds detections are:

Precision =
TPS

TPS + FPS
(21)

Recall =
TPS

TPS + FNS
(22)

F-measure = 2
Precision · Recall

Precision + Recall
(23)

Accuracy =
TPS + TNS

TPS + TNS + FPS + FNS
. (24)

IV. RESULTS

We conducted experiments both with HMM and HSMM.
The HMM is not as capable as the HSMM in detecting the
right sequence and duration of states, as it can be seen in
Figure 2, where the HMM average positive predictability per
sample P+

sample and per state P+
state is considerably lower than

the P+
sample and P+

state of any HSMM that we tested.
As it is shown in Figure 2, the HSMM using the Pois-

son distribution outperformed significantly the ones based
on Gaussian, Gamma distributions and the non-parametric
probability mass function for P+

sample and P+
state. Furthermore,

we can see that the non-parametric probability mass function,
while it starts with weak performance, it improves significantly

TABLE I
PERFORMANCE OF HSMM WITH POISSON SOJOURN TIME DISTRIBUTION

IN DETECTING S1 AND S2.

Training Size in Heart Beats
1 2 3 4 5 6 7

Precision 80% 91% 95% 96% 97% 97% 97%
Recall 96% 98% 99% 99% 99% 99% 99%

F-measure 87% 94% 97% 98% 98% 98% 98%
Accuracy 88% 95% 97% 98% 98% 98% 98%
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as the size of the training set increases.6 For the reminder
of the paper, we chose to use the Poisson distribution as an
approximation of the sojourn time distribution, since it was
shown to outperform the others.

Table I reports the performance obtained by the proposed
HSMM approach in detecting the principal heart sounds
when using the Poisson distribution to approximate sojourn
times. Such results are expressed via the metrics described
in Section III-C, for each cross-fold iteration. These results
suggest that 4 heart beats are enough to capture the relevant
information associated to a given recording.

Finally, we report results about the confidence metric func-
tion described in Section II-F. Figure 3 shows an example of
the proposed confidence metric function as an overlay over the
homomorphic envelogram. One can notice that the conditional
distribution exhibits sudden low peaks around the transitions
between different states. Furthermore, we notice that noise has
lower probabilities compared to waveforms corresponding to
heart sound segments.

Motivated by the above observations, we used the samples
from all Poisson cross-fold iterations in order to compute the
P+
sample as a discrete function of Pr, the results are presented

in Figure 4. Furthermore, one can notice from the plot that
the majority of the samples follow a linear trend. In Figure 4,
the circles are centered around P+

sample and the color intensity
(from low to high) indicates the number of samples (from few
to many, respectively). Furthermore, using the nonlinear least-
squares (NLLS) Marquardt-Levenberg algorithm with a first
degree polynomial, we get the following regression function:

RP+(xt) = 0.98 · Pr − 0.10, (25)

with a weighted Pearson product-moment correlation coeffi-
cient (WPCC) of 0.93. The regression line is presented in

6We also tested the logarithmic distribution which performed worse than all
the other distributions tested for HSMMs; for the sake of brevity, we excluded
the corresponding results from this paper.
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Fig. 4. Relationship of the conditional distribution Pr with positive pre-
dictability P+
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Fig. 5. Relationship of the conditional distribution Pr and the subset positive
predictability which is obtained using a high threshold in our dataset.

Figure 4. For a Pr . 0.50, we do not have enough data to
withdraw any conclusions, although we can safely argue, that
in our dataset, the conditional distribution Pr & 0.50 gives a
good estimate of our P+

sample.
Furthermore, we define P+

high as:

P+
high =

TPhighsamples

TPhighsamples + FPhighsamples

, (26)

where TPhighsamples, FP
high
samples are the correctly and wrongly

classified samples respectively, where their conditional proba-
bility Pr is above a threshold. By setting such high thresholds
and computing the P+

high we plot Figure 5. For a high
threshold of Pr ≥ 0 we consider all data to our computation
and we computed a P+

high ' 0.83. By setting thresholds we
observe that we increase our positive predictability to almost
90%. From Figure 5 we conclude, that by setting a high
threshold in Pr, we can still select the majority of the sampling
points, and at the same time, be more selective and confident
with respect to set classification.

V. CONCLUSION

In this paper, we used HSMMs to decode the "true" state
sequence of events in a PCG signal. We observed, that the
HSMM always outperforms the HMM. We use an ensemble of
distributions to approximate the sojourn time distribution. Our
experiments using a subject dependent approach, showed that
the Poisson clearly outperformed the Gaussian and Gamma
distribution and the non-parametric probability mass function.
We concluded that using information concerning the sojourn
time distribution in each state is a compulsory step when
modeling heart sound signals. Furthermore, we presented a
novel way (based on conditional probability) to compute a
confidence metric for sample classifications.
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