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Abstract—The brisk and dynamic environment that factories
are facing, both as an internal and an external level, requires a
collection of handy tools to solve emerging issues in the industry
4.0 context. Part of the common challenges that appear are
related to the increasing demand for high adaptability in the
organizations’ production lines. Mechanical processes are becom-
ing faster and more adjustable to the production diversity in the
Fast Moving Consumer Goods (FMCG). Concerning the previous
characteristics, future factories can only remain competitive and
profitable if they have the ability to quickly adapt all their
production resources in response to inconstant market demands.
Having previous concerns in focus, this paper presents a fast and
adaptative framework for automated cells modeling, simulation
and offline robot programming, focused on palletizing operations.
Established as an add-on for the Visual Components (VC) 3D
manufacturing simulation software, the proposed application
allows performing fast layout modeling and automatic offline
generation of robot programs. Furthermore, A* based algorithms
are used for generating collision-free trajectories, discretized both
in the robot joints space and in the Cartesian space. The software
evaluation was tested inside the VC simulation world and in
the real-world scenario. Results have shown to be concise and
accurate, with minor displacement inaccuracies due to differences
between the virtual model and the real world.

Index Terms—Industry 4.0, Offline programming, Factory
layout modeling, Product palletizing.

I. INTRODUCTION

There is a current technological revolution changing the
production and consumption of goods and services. The al-
leged Fourth Industrial Revolution has become marked by
rising innovation advancements in various fields, including
robotics and artificial intelligence. The technological processes
are becoming increasingly connected and intelligent. As a
result, production systems that tend to emerge in the future
should have abilities to operate in real time, with instantaneous
data acquisition and processing, allowing real-time decision
making. These systems are becoming more virtualized, with
copies of the original factories, allowing remote traceability
and monitoring of all processes through the various sensors
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spread throughout the plant. Moreover, decentralization and
modularity will act with decision making, made by service-
oriented software architectures, according to the needs of
the production in real time. Products will be manufactured
according to demand, using adaptative manufacturing cells,
which offers flexibility to modify machine tasks quickly.

Regarding palletizing cells, products life-cycle are becom-
ing shorter, and some production lines are being converted
to modular production cells [1]. On top of that, industries
can only remain competitive and profitable in case they
conduct flexible responses to the inconstant market, producing
a wide assortment of items, as indicated by the client’s
determinations [2]. Long programming time of industrial
robots significantly lowers production flexibility and volume.
In consequence, it is crucial to have tools that allow the rapid
programming of those robots. To accomplish the previous
requirements, using offline programming is the usual approach.
This type of programming relies on a graphical simulation
of the environment, and the primary idea is to use computer
graphics to create a virtual representation of the working cell.
Inside this abstraction it is possible to manipulate all tasks and
variables, conforming to the real situation.

Robot-based palletizing cells have captured attention in the
last decade in the scientific sphere. Yu et al. [3] developed
an offline tool for stacking objects using a MOTOMAN-HP20
robot and the brand’s simulator [4]. On its turn, Kito et al. [5]
produced an offline teaching tool for robots to pick bolts from
a pallet. However, there is no automation in the previous
solutions: the user still programs the robot manually, and high
efficiency is still not achieved. Following a different approach,
the work presented in [6] presents an autonomous smart robot
with advanced sensing and decision-making capabilities to
teach “child” robots in the production line. This last work,
however, does not deal with the palletizing problem. For the
specific problem addressed in this paper, Moura et al. [7]
achieved automatic palletizing solutions for ABB robots. De-
spite the focus of previous solutions on a specific robot brand
and its native simulation software, there are several manu-
facturers of generic offline programming software [8]–[10],
which can perform programming of global robotic platforms.
There are also alternative simulation software packages in the
market [11]–[13], but they do not perform detailed simulation
of robot motions and offline robot programming. The work978-1-7281-3558-8/19/$31.00 ©2019 IEEE



proposed by Silva et al. [14] generated a solution for the
automatic offline generation of collision-free robot programs.
In their work, a framework which aids the programming and
path generation of palletizing routines has been developed.
This platform has its base on the Visual Components (VC)
simulation software [8], due to its capacity to perform detailed
simulations and offline programming for several distinct robot
brands over other candidates.

Considering the past ideas in mind, the present paper
focuses on the development of a software framework re-
sponsible for facilitating the design, development, simulation,
and effective installation of robotic palletizing cells. The
AdaptPack Studio is a modular system designed as an add-
on to the VC simulation software. This add-on engages the
presented issue through three modules: palletizing cell design,
modeling, and simulation; automatic offline palletizing routine
generation; translation and exporting of generated programs to
real systems. For this reason, it was constructed three specific
systems inside the main platform to handle each module
individually. Those modules are connected and exchange data
among themselves, as illustrated in Figure 1.

The AdaptPack project main objective is to develop a
framework, based on concepts of modularity, to accelerate the
programming of robots devoted to palletizing tasks. To address
this problem, the following project objectives were specified:

• Develop a solution for the design, and simulation of
robotic cells, based on a library of existing components,
allowing the assembly of palletizing systems in a short
time.

• Develop a solution to generate automatic offline routines
for palletizing products with different configurations,
formats, and dimensions.

• Develop a robot path planning solution with collision
avoidance.

This paper is organized as follows. Section II indicates
the general concepts behind this project. After, Section III
introduces the central architecture of the proposed system.
Section IV presents the performed tests and results. Finally,
in Section V, the main conclusions of this work are exposed,
followed by a few ideas concerning possible future improve-
ments.

II. PROPOSED SOLUTION

One of the first steps when creating a new palletizing
solution, is the design and modeling of the cell, either on
paper or through virtual systems. Using computer graphics
to model this solution from scratch regularly requires some
effort to identify, choose and model the desired components.
To expedite the modeling process, along the project were
developed the models of general components used in palletiz-
ing operations. Those components were added to a library
inside VC (named ”AdaptPack Building Blocks”), to form the
”Design and Modeling Module”. This module allows users to
drag and drop components inside the cell model layout, and
connect them as blocks.
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Fig. 1. The general block diagram of the system architecture, including the
AdaptPack Studio and its main modules.

After modeling the cell, users can interact with a Graphical
User Interface (GUI) to perform the offline programming of
the robots. This GUI was developed using the C# Application
Programming Interface (API) provided by VC, granting the
possibility to program the robot without using the teach
pendant or writing a single line of code. In order to configure
the settings for pick and place points, for the palletizing
mosaic layout, for grippers and robots, were created, inside
this GUI, buttons and text input fields responsible for storing
these configurations. The code for the robot is generated
automatically after setting all configurations. The processes
mentioned above form the ”Palletizing Routine Generation
Module”, which, on its turn, will exchange information with
the “Robot Trajectory Generation System”, as illustrated in
Figure 1. The trajectory generation system aims to program
the robot movements between the pick and place points,
considering operations within the modeled cell, in a way that
results in collision-free trajectories.

Subsequently, 3D simulation acts towards system validation.
By simulating the robot’s virtual models and the palletizing
systems in which they operate, there may be a significant
improvement in the design efficiency of a robotic cell. Also,
considering the accuracy and level of detail offered by the
VC, it is possible to achieve models having a behavior very
similar to the real equipment; this permits studying and testing
a solution, with reliability, before its implementation. After
simulation validation, the code, written in the VC’s software



proprietary language (Robot Simulation Language - RSL), is
translated into the ones used by the different robot’s controllers
(ABB, KUKA, FANUC, and Yaskawa). For the translation
process, the ”Translation Module” presented in [15] was used.

III. SYSTEM ARCHITECTURE

As presented, the AdaptPack Studio is divided into three
modules, each responsible for handling a corresponding sub-
problem. This paper focuses on the ”Palletizing Routine Gen-
eration Module”. Within this module is included the ”Robot
Trajectory Generation System”. In the sequel, there is an
explanation of the developed module in more details.

The VC interface is divided into tabs, each one responsible
for a specific task, such as layout construction, components
modeling/edition, programming, and others. A new tab, named
“ADAPTPACK”, has been inserted between the existing ones
(see Figure 2) to represent the ”Palletizing Routine Generation
Module”. This new tab is divided into subgroups, that allow
configuring the simulation intuitively. The subgroups, as well
as their functionalities, are the following:

• Palletize Settings: This subgroup contains a collection
of buttons and text fields that define the settings for
the product palletizing. The Pick, Pallet, and Interlayer
points are selected by clicking on the correspondent 3D
component where the products, pallets, and interlayers
are stored, respectively. The place point is selected by
clicking on the component defined as the drop location.
Since a gripper may have multiple Tool Center Points
(TCP), it is also present a menu with all the robot tools
for this characteristic. Furthermore, there is an option
that determines the methodology for the definition of the
pick and place approach points, in agreement with the
sort of gripper used. The ones that have a side approach
(involving toothed grippers), or the ones that have a top
approach (for example, suction grippers), are covered in
this scope. Finally, it is a good practice for palletizing
tasks to determine an approach point just before the
grasping/dropping point - this point is automatically
generated by entering the distance in a provided text box.

• Mosaic Settings: This subgroup allows the operator to
select an input file containing settings for the palletizing
tile. Written in the JSON scripting language, this file is
generated automatically by external software, given set-
tings such as pallet and product dimensions, the number
of layers, usage of interlayers, and others. The imported
file consists of structures that determine the order and
positions of the objects, in the space of the pallet. It
also contains information about the number of layers and
dimensions of the products and pallets. The overall file
structure has divisions by layers, each layer containing
one or more groups, and each group including one or
more products. Consequently, the robot can simultane-
ously handle one or multiple products, depending on the
mosaic layout defined by each customer.

• Simulation Settings: Within this area, there is the possibil-
ity to perform adjustments to the simulation environment,

such as robot’s and conveyor’s speeds, stop times, product
production rate time.

• Path Planning: This area has buttons that permit the
activation of the “Robot Trajectory Generation System”,
based on the A* search algorithm developed in [16].
Besides the discretization in joint space [14], a Carte-
sian space one was introduced in this work. This new
approach allowed decreasing the computation time and
the smoothing of the trajectory.

After performing all the configurations, the system is ready
to calculate the automatic generation of the palletizing routine.
When the “Init Routine” button is activated, the ”Palletize.cs”
class receives the configurations from the GUI and the selected
JSON file, as pictured in Figure 3. The pseudocode presented
below shows, step by step, the computation steps that occur
inside the class.

void Init():

get simulation settings from GUI
run simulation for x seconds
WhenSimulationStops()

void WhenSimulationStops():

## Settings
get info from selected components in GUI
get picking and placing distance values
get info about products and pallets
get components dimensions
get transformation matrices/pick points

define tools to be used
define robot base frames

## Robot program
if(handlePallet enabled):

define pallet picking and placing routine

if(handleInterlayers enabled):
define interlayers picking and placing routine

define subroutines for controlling signals

## Path Planner routine
if(A* enabled):

call PathPlanning.cs class
for(each point in returned trajectory):

generate path routine

## Picking and placing routine
for(each layer in json file):

for(each group):
get tool
define pick and place points

Script 1. Pseudocode for the class Palletize.cs

After initializing, the module simulates the mobile com-
ponents (boxes and pallets) running on conveyors, until they
arrive at the specific pick points on the conveyors. After this
procedure, are extracted the variables about the 3D center
of those mobile components and calculated the precise pick
location. Are also extracted information about height, length,
width, and the position/rotation matrices of all components.
For generating the placing positions, according to the mosaic,
the system interprets the content of the JSON file and calcu-
lates the point where to drop products on the provided drop



Fig. 2. The GUI subdivided in Palletize, Mosaic, Simulation and Path planning. Here contain all the options required for automatic routine generation.

      Init          Palletize.cs           Instructions 

          Mosaic.jsonGUI Settings

Fig. 3. Palletize class details. The init button initializes the Class, which has
external inputs and generates the robotic routine.

location. This interpretation is made recursively until each
group has its placing location in the simulation.

The ”Robot Trajectory Generation System” was imple-
mented as a feature inside the ”Palletizing Routine Generation
Module” and, if activated, checks possible collisions in the
trajectory, between the pick and place points. This system was
build inside a class called ”PathPlanning.cs” as illustrated in
Figure 4. Two Path Planners are included: (i) using the previ-
ous A* discretized in the joint space [14], or (ii) using the A*
in the cartesian space. Using the collision detector, provided
by the API inside the VC, were produced validations about
collision-free paths. Following the A* logic, the simulated cell
is decomposed in units. If a unit features a collision between
components, it is automatically discarded, and the next one is
checked.

Furthermore, within the simulation scope, a custom com-
ponent was modeled with the purpose to simulate factory
Programmable Logic Controllers (PLC). This PLC has connec-
tions with robots and other components in the cell. To further
detail the simulation, the ”Palletizing Routine Generation
Module” generates robot operations and also creates I/O sig-
nals from all components to this PLC. This custom component
should be programmed manually to have the logic to deal with
the I/O signals. Different clients may use different types of
cell controllers for different demands; thus the programming
of those should be made accordingly to different needs.

If A* Enabled         PathPlanning.cs          Path Points

         CollisionDetector.cs

         Palletize.cs

         RobotKinematics.cs

GUI Settings

         AStarData.cs

Fig. 4. The ”PathPlanning.cs” class details. If activated in the GUI it generates
the path to the Palletize class.

IV. TESTS AND RESULTS

In this section, the performed tests regarding the “Palletizing
Routine Generation Module” and the “Robot Trajectory Gen-
eration System” are introduced, alongside with the observed
outcomes. It was modeled a typical palletizing cell to verify
the system feasibility (Figure 5). This cell has a robotic arm
equipped with a custom gripper capable of handling single or
multiple objects. Extra equipment, such as fences, conveyors,
and feeders were included to allow the simulation to act
realistically and present the full capacity of the software to
simulate real factories operations.

Fig. 5. Representation of the working Cell.

1) Palletizing Routine Generation Module: As explained in
Section III, the user must configure the cell, using the GUI,
and then press the “Init Routine” button. For this test, was
enabled manipulation of products and interlayers. Figure 6
depicts the conveyor from where are picked the products
(on the left), the interlayer table (on the top left), and the
conveyor where the products are placed (on the right). It is
noticed the multiple picking points beside each other on the
left conveyor; they were generated according to group handling
ability. Sometimes the robot must pick a group containing one
product and sometimes a group containing numerous products.
In that manner, were calculated the different picking points
according to the center of the current product group.

Following the algorithm described in Script 1, tools and base
frames are defined, followed by pallet and interlayer routines
declarations. The Pick and Place functions were subdivided in
subroutines to keep track of the actions the robot is executing,
so it always moves in steps. The signals were defined to work
along the simulated PLC. This component works as a manager
to the complete cell. For example, before the Pick function,
the robot interacts with the PLC in order to get permission
to continue the operation. The PLC allows the robot to pick
products only if the picking conveyor has products ready to
be picked. In Figure 7 is shown a snippet of the generated
routine. This Figure depicts the Program Editor window, where



the Main routine and subroutines are declared. Inside the
Main routine, the tool and the base frames for the robot are
defined, followed by the interlayer handling subroutine, and
the palletizing script.

2) Robot Trajectory Generation System: Trajectory calcula-
tion is an optional resource implemented within the AdaptPack
Studio. Without its activation, the robot performs a straight
motion from the pick to the place point. Therefore, the “Robot
Trajectory Generation System” is suitably used when the cell
has tight limits, with the possibility of collisions, or trajectory
computation and analysis are necessary. Considering both wide
and compact operational spaces, representations of these two
scenarios have been modeled to test the Path Planners. There
are no collisions in the first scenario (ample space), different
from the second (compact space). It was tested and compared
both planners considering these two scenarios.

For the first scenario, the trajectory results are presented
in Figures 8a and 8b. These images show the correlations
between the trajectories generated in an open space without
obstacles, and it is clearly represented the distinct paths
generated by both Path Planners. The Cartesian discretized
trajectory resembles linearity, contrarily to the joint based
Path Planner. For this test, was used an interval of 300 mm
in the Cartesian discretization as a parameter. For the joint
discretization intervals of 20º were tested, for each robot joint.

The second scenario represents a tight space with enclosed
barriers. Opposite from the previous, this scenario features
collisions when Path Planning is not enabled. As illustrated
in Figure 9, the robot gripper collides with the safety fences.
To solve this problem, both Path Planners were enabled and
tested. The results are illustrated in Figures 10a and 10b. In
this case, were considered the obstacles, and the gripper no
longer collides with objects.

The Cartesian discretization allows a faster calculation time
for small discretization steps, along with fewer computational
resources. Table I depicts the average time gathered for 1000
path calculations, using each method and distinct discretization
intervals. In the first experiment, the trajectory generation in
the Joint space was tested, considering discretization intervals
from 15º to 40º. In the second experiment, the path planner
considering the Cartesian space was tested, for discretization
intervals between 100 mm to 400 mm.

Aside from the previous tests, was conducted a real-world
test scenario. For this purpose, a cell consisting of a conveyor,
a table and a Fanuc 200ic robot was modeled. Within this
test case, the robot task was to pick six metal cans at the top
of the conveyor and palletize them on the table (Figure 11).
Despite the simplicity of the layout, these results validated the
work developed after exporting the generated routine to a real
system.

V. CONCLUSIONS AND FUTURE WORK

The use of automatic palletizing solutions has been expand-
ing in the FMCG business. Due to the diversity of production,
palletizing processes are changing from low assortment with
high volume to high assortment with low volume. Often,

Fig. 6. Generated Pick and Place points without Path Planner and Collision
Detector.

Fig. 7. Generated routine.

(a) Cartesian Trajectory. (b) Joint Trajectory.

Fig. 8. Trajectories generated in an open space.

TABLE I
DISCRETIZED SAMPLES OF JOINT AND CARTESIAN SPACE AND THE TIME

CONSUMED AT EACH STEP.

Method Scale Time Method Scale Time
15º 8.0038 ms 0.10 m 4.0050 ms
20º 3.0050 ms 0.20 m 2.0057 ms
30º 1.0046 ms 0.30 m 2.0019 msJoint Space

40º 1.0001 ms

Cart. space

0.40 m 1.0060 ms



Fig. 9. Representation of a tight space cell. Without Path Planner and
Collision Detector the robot collides with the fences.

these changes require modifying machine tasks for different
incoming supplies. It implies updating all the programmed
routines of robots, as well as changing the palletizing mosaic.
Accordingly, this work proposed an answer related to the
construction of a qualified framework to enhance automatic
palletizing processes and solve preceding issues.

The improvement of a software framework for the automatic
offline programming of palletizing applications was presented.
This improvement speeds up the task of designing palletizing
cells since it allows to model cells from scratch using the
functionalities presented in the VC software. Besides, it also
enables the integrated and modular development of new com-
ponent models, reducing the time to design, develop, build, and
install new equipment. The automatic generation of robot pro-
grams, based on inputs inside a GUI, has been detailed. These
inputs consist of clicking at picking and placing positions
inside a 3D modeled cell, selecting the mosaic which defines
products stacking aspect and writing general configurations in
text fields. Also, are included inside this new framework two
collision-free trajectory generators, based on the A* informed
search algorithm. The first searches a path in the robot’s joints
space, different from the second, which searches a path in
the Cartesian space of a cell. Finally, it was tested the Robot
Trajectory Generation System in simulation and in the real
world. Based on these preliminary tests, the system works
as predicted, being able to generate collision-free automatic
palletizing routines.

Notwithstanding, future enhancements must be performed in
the A* Trajectory Generator based on Cartesian Discretization.
This generator resulted in straight line trajectories, so it is
appropriated to smooth this path to something that resembles
more the robot’s joints natural movements. Furthermore, to
conclude the solution validation, there are going to be con-
ducted larger-scale real-world tests.
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