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Abstract

This paper compares a large set of programming languages regarding their

efficiency, including from an energetic point-of-view. Indeed, we seek to estab-

lish and analyze different rankings for programming languages based on their

energy efficiency. The goal of being able to rank programming languages based

on their energy efficiency is both recent, and certainly deserves further studies.

We have taken rigorous and strict solutions to 10 well defined programming

problems, expressed in (up to) 27 programming languages, from the well known

Computer Language Benchmark Game repository. This repository aims to com-

pare programming languages based on a strict set of implementation rules and

configurations for each benchmarking problem. We have also built a framework

to automatically, and systematically, run, measure and compare the energy,

time, and memory efficiency of such solutions. Ultimately, it is based on such

comparisons that we propose a series of efficiency rankings, based on single and

multiple criteria.

Our results show interesting findings, such as how slower/faster languages can

consume less/more energy, and how memory usage influences energy consump-

tion. We also present a simple way to use our results to provide software engi-
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neers and practitioners support in deciding which language to use when energy

efficiency is a concern.

In addition, we further validate our results and rankings against implementa-

tions from a chrestomathy program repository, Rosetta Code., by reproducing

our methodology and benchmarking system. This allows us to understand how

the results and conclusions from our rigorously and well defined benchmarked

programs compare to those based on more representative and real-world im-

plementations. Indeed our results show that the rankings do not change apart

from one programming language.

Keywords: Energy Efficiency, Programming Languages, Language

Benchmarking, Green Software

1. Introduction

Software language engineering provides powerful techniques and tools to

design, implement and evolve software languages. Such techniques aim at im-

proving programmers productivity - by incorporating advanced features in the

language design, like for instance powerful modular and type systems - and at

efficiently executing such software - by developing, for example, aggressive com-

piler optimizations. Indeed, most techniques were developed with the main goal

of helping software developers in producing faster programs.

More recently, this reality is quickly changing and software energy consump-

tion is becoming a key concern for computer manufacturers, software language

engineers, programmers, and even regular computer users. Nowadays, even

mobile phone (which are powerful computers) users tend to avoid using CPU

intensive applications just to save battery/energy. While the concern on the

computers’ energy efficiency started by the hardware manufacturers, it quickly

became a concern for software developers too [1]. In fact, this is a recent and

intensive area of research where several techniques to analyze and optimize the

energy consumption of software systems are being developed. Such techniques

already provide knowledge on the energy efficiency of data structures [2, 3, 4],

2



the energy impact of different programming practices both in mobile [5, 6, 7]

and desktop applications [8, 9], the energy efficiency of applications within the

same scope [10, 11], or even on how to predict energy consumption in several

software systems [12, 13], among several other works.

An interesting question that frequently arises in the software energy effi-

ciency area is whether a faster program is also an energy efficient program, or

not. In other words, does a faster program consume less energy due to per-

forming the task quicker?. If the answer is yes, then optimizing a program

for speed also means optimizing it for energy, and this is exactly what the

compiler construction community has been doing since the very beginning of

software languages. However, energy consumption does not depends only on

execution time, as shown in the equation Energy = Time × Power. In fact,

there are several research works showing different results regarding this sub-

ject [14, 15, 16, 17, 2, 18].

A similar question arises when comparing software languages: is a faster lan-

guage, a more energy efficient one? Comparing software languages, however,

is an extremely complex task, since the performance of a language is influenced

by the quality of its compiler, virtual machine, garbage collector, available li-

braries, etc. Indeed, a software program may become faster by improving its

source code, but also by “just” optimizing its libraries and/or its compiler.

Such questions arise by both researchers and programmers as there is still a

large difficulty of how to analyze, interpret, and optimize the energy consump-

tion in software. In fact, studies [19, 1] have shown that programmers are very

concerned with the energy consumption of their software, and many times seek

help. There are many misconceptions within the programming community as to

what causes high energy consumption and in what ways they can be solved [20].

Recent works [21, 22] argue that there are two main roadblocks in regards to

energy efficiency software development: the lack of tools and lack of knowl-

edge. The research work presented in this paper aims at helping with the lack

of knowledge for energy efficient software development by tackling one of the

initial steps in software development and providing further useful information:
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what programming language should be chosen?

In previous works [23, 24], we have made coherent and consistent efforts

to assess and compare the performance of (a total of) 27 of the most widely

used software languages. We considered (a total of) ten different programming

problems that are expressed in each of the languages, following the exact same

algorithm, as defined in the Computer Language Benchmark Game (CLBG) [25].

We compiled/executed such programs using the state-of-the-art compilers, vir-

tual machines, interpreters, and libraries for each language. Afterwards, we

analyzed the performance of the different implementations considering runtime

performance, i.e., execution time and peak memory consumption, and energy

consumption. Moreover, we analyzed those results according to the languages’

execution type (compiled, virtual machine and interpreted), and programming

paradigm (imperative, functional, object oriented, scripting) used. For each of

the execution types and programming paradigms, we compiled a software lan-

guage ranking according to each objective individually considered (e.g., time or

energy consumption). We have also proposed global rankings for all the possi-

ble combinations of objectives (e.g., time and energy consumption). While the

study was performed on a server based system, there is clear evidence that such

results can be mapped to embedded systems [26].

Additionally, our previous work was openly welcomed by the community

of researchers and industrial practitioners with excitement and interest in our

findings, sparking countless amounts of discussions. This result is expected, as

our previously mentioned studies have shown that the programming community

is very much concerned with the energy consumption of their software and seek

ways to improve it, and insights tackling the lack of knowledge in the field is

very appreciated. In fact, this can be clearly seen by practitioners’ responses

and discussions through online news pages1, social-media2, external teaching

1TheNewStack: https://bit.ly/2yXESG3
2Twitter threads: https://bit.ly/3fYzFyG — https://bit.ly/3dRdZCN
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material3, and Reddit4 discussions. Such information has helped many rethink

(and even publicly change) their programming language of choice as energy

efficiency is a concern of theirs. For language developers, such information is

also important in order to compare language performance (energy and time)

against competitors. In fact, the competition in the computing world, from

both software and hardware developers, drives and motivates further evolution.

Language developers become excited to see that their language is competing

to be a very efficient one, for example as shown through the Rust language

newsletter5.

This paper extends our previous work in two ways.

First, we have considered an alternative dimension within our earlier work.

Indeed, one of the objectives we considered was peak memory usage, which did

not prove to be correlated with memory energy consumption. Now, we are

presenting total memory usage, or the accumulative amount of memory used

through the application’s lifecycle, as another possibility for analyzing memory

behavior. Finally, we also present statistical correlation tests between energy,

runtime, and memory.

Second, we present a second large study in order to provide a validation of our

previous energy ranking that uses a more idiomatic and day-to-day code example

base. Indeed, we consider a chrestomathy repository, Rosetta Code [27], of alter-

native solutions to programming problems that is maintained with the main goal

of assisting programmers in understanding syntactic or semantic aspects of pro-

gramming languages outside their domain of expertise. Thus, the solutions that

are gathered have a clarity and pedagogical concern, which is essentially differ-

ent when compared to CLBG, whose solutions are strictly performance-oriented.

To validate, we considered 9 tasks from Rosetta Code, and their solutions in (up

to) the 27 programming languages that we have previously considered. With

this, we are also able to study the energy efficiency of program solutions from

3Programming course: https://bit.ly/2Z2XcZ7
4Reddit: https://bit.ly/2LpSOeP — https://bit.ly/3dOBexh
5Rust newsletter: this-week-in-rust.org/blog/2017/09/19/this-week-in-rust-200/
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a performance-oriented source (CLBG) and an educational source (Rosetta),

allowing us to analyze how performance vs. comprehensibility affects energy

consumption.

With the proposition of a secondary ranking serving as a validation, we

are interested in finding efficiency trends that confirm or contradict our earlier

findings with respect to the efficiency of programming languages, and the repre-

sentativeness of our benchmarks. This is aligned with our perspective that the

insights provided by one ranking, if considered in isolation, are more subject to

imprecise systematization, and might indeed benefit from complementary per-

spectives provided by different rankings. We believe that this is actually an idea

that generalizes to traditional rankings, e.g., when considering the prestigious

of worldwide Universities, and the multiple rankings that attempt to analyze

it. Comparable rankings between the study and validation can solidify the re-

sults we have presented, while at the same time allowing us to understand how

normal and more representative day-to-day programming styles and tendencies

(Rosetta Code) compare to those focused on pure performance (CLBG).

As we have previously mentioned, the work presented in this paper extends

previous work [23, 24]. While this work has been previously introduced, we go

back to fully describing the methodology and results as to provide readers the

full-picture and complete comprehensive overview of our context. This provides

a fully self contained look at our presented research work. Thus, in this paper

we present and answer the following research questions:

• RQ1: Can we compare the energy efficiency of software languages? This

will allow us to have results in which we can in fact compare the energy

efficiency of popular programming languages. In having these results,

we can also explore the relations between energy consumption, execution

time, and memory usage.

• RQ2: Is the faster language always the most energy efficient? Prop-

erly understanding this will not only address if energy efficiency is purely

a performance problem, but also allow developers to have a greater un-
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derstanding of how energy and time relates in a language, and between

languages.

• RQ3: How does memory usage relate to energy consumption? Insight on

how peak memory (highest amount of used memory in a given instance)

and total memory (the accumulative amount of memory used) affects en-

ergy consumption will allow developers to better understand how to man-

age memory if their concern is energy consumption.

• RQ4: Can we automatically decide what is the best programming language

considering energy, time, and memory usage? Often times developers are

concerned with more than one (possibly limited) resource. For example,

both energy and time, time and memory space, energy and memory space

or all three. Analyzing these trade-offs will allow developers to know which

programming languages are best in specific scenarios.

• RQ5: How do the results of our energy consumption analysis of program-

ming languages gathered from rigorous performance benchmarking solu-

tions compare to results of average day-to-day solutions? As the results

and ranking we gathered are based off a competitive benchmarking struc-

ture for the performance of programming languages, the solutions may be

very specific to the problem at hand and stray away from a typical and

representative idiomatic style of programming for an everyday user. It

is important to understand how such results compare to the day-to-day

programming styles, which follow more flexible solutions and are written

by more everyday users. This will allow us to conclude if our results are

representative and generalizable to a degree, and understand in what cases

and why differences occur.

The remainder of this paper is organized as follows: Section 2 details previous

work which was used as the basis of this paper, which includes the steps of our

rigorous and strict methodology to measure and compare the energy efficiency

in software languages; this section also includes the description of our data set
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from CLBG and the study’s results. Section 3 presents a discussion and ranking

on the energy efficiency of each programming language based on the results. We

describe in Section 4, how we structured a new validating study based on our

previous methodology in order to produce a secondary ranking using the Rosetta

Code chrestomathy repository of representative programs in order to validate

our prior one and understand if our results are generalizable. In Section 5 we

discuss the threats that may affect the validity of the insights we are drawing.

Section 6 presents the related work, and finally, in Section 7 we present the

conclusions of our work.

2. Measuring Energy in Software Languages

The initial motivation and primary focus of this work is to understand the

energy efficiency across various programming languages. This might seem like a

simple task, but it is not as trivial as it sounds. To properly compare the energy

efficiency between programming languages, we must obtain various comparable

implementations with a good representation of different problems/solutions.

The following subsections will detail the methodology used to answer this

question, and the results we obtained. A large part of this section extends previ-

ous work [23, 24]. We feel this detailed description of previous work is necessary

to provide a complete and comprenhensive description for the reader, allowing

a better context of the additional contributions presented in this section, and

our study presented in Section 4. This also allows us to present all the results

from our studies and research questions in a fully contained manner, where we

may focus completely on the topic at hand: ranking programming languages by

energy efficiency.

2.1. The Computer Language Benchmarks Game

In order to obtain a comparable, representative and extensive set of pro-

grams written in many of the most popular and most widely used programming

languages we have explored The Computer Language Benchmarks Game [25].

(CLBG).
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The CLBG initiative includes a framework for running, testing and compar-

ing implemented coherent solutions for a set of well-known, diverse programming

problems. The overall motivation is to be able to compare solutions, within and

between, different programming languages. While the perspectives for compar-

ing solutions have originally essentially analyzed runtime performance, the fact

is that CLBG has recently also been used in order to study the energy efficiency

of software [17, 23, 4].

In its current stage, the CLBG has gathered solutions for 13 benchmark

problems, such that solutions to each such problem must respect a given algo-

rithm and specific implementation guidelines. Solutions to each problem are

expressed in, at most, 28 different programming languages.

The complete list of benchmark problems in the CLBG covers different

computing problems, as described in Table 1. Additionally, the complete list

of programming languages in the CLBG is shown in Table 2, sorted by their

paradigms.

2.2. Design and Execution

Our case study to analyze the energy efficiency of software languages is based

on the CLBG.

From the 28 languages considered in the CLBG, we excluded Smalltalk since

the specific compiler used by the CLBG is proprietary and was not available at

the time of the study. Also, for comparability, we have discarded benchmark

problems whose language coverage is below the threshold of 80%. By language

coverage we mean, for each benchmark problem, the percentage of program-

ming languages (out of 27) in which solutions for it are available. This criteria

excluded chameneos-redux, meteor-contest and thread-ring from our study.

We then gathered the most efficient (i.e. fastest) version of the source code

in each of the remaining 10 benchmark problems, for all the 27 considered

programming languages.

The CLBG documentation also provides information about the specific com-

piler/runner version used for each language, as well as the compilation/execution

9



Table 1: CLBG corpus of programs.

Benchmark Description Input

n-body
Double precision N-body
simulation

50M

fannkuch-

redux

Indexed access to tiny
integer sequence

12

spectral-

norm

Eigenvalue using the power
method

5,500

mandelbrot
Generate Mandelbrot set
portable bitmap file

16,000

pidigits
Streaming arbitrary
precision arithmetic

10,000

regex-redux
Match DNA 8mers and
substitute magic patterns

fasta
output

fasta
Generate and write random
DNA sequences

25M

k-nucleotide
Hashtable update and
k-nucleotide strings

fasta
output

reverse-

complement

Read DNA sequences, write
their reverse-complement

fasta
output

binary-trees

Allocate, traverse and
deallocate many binary
trees

21

chameneos-

redux

Symmetrical thread
rendezvous requests

6M

meteor-

contest

Search for solutions to
shape packing puzzle

2,098

thread-ring
Switch from thread to
thread passing one token

50M

options considered (for example, optimization flags at compile/run time). We

strictly followed those instructions and installed the correct compiler versions,

and also ensured that each solution was compiled/executed with the same op-

tions used in the CLBG. Once we had the correct compiler and benchmark

solutions for each language, we tested each one individually to make sure that

we could execute it with no errors and that the output was the expected one.

The next step was to gather the information about energy consumption,

execution time and peak memory usage for each of the compilable and exe-

cutable solutions in each language. It is to be noted that the CLBG already

contains measured information on both the execution time and peak memory

usage. We measured both not only to check the consistency of our results
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Table 2: Languages sorted by paradigm

Paradigm Languages

Functional
Erlang, F#, Haskell, Lisp, Ocaml,
Perl, Racket, Ruby, Rust;

Imperative
Ada, C, C++, F#, Fortran, Go,
Ocaml, Pascal, Rust;

Object-
Oriented

Ada, C++, C#, Chapel, Dart ,
F#, Java, JavaScript, Ocaml, Perl,
PHP, Python, Racket, Rust,
Smalltalk, Swift, TypeScript;

Scripting
Dart, Hack, JavaScript, JRuby,
Lua, Perl, PHP, Python, Ruby,
TypeScript;

against the CLBG, but also since different hardware specifications would bring

about different results. For measuring the energy consumption, we used Intel’s

Running Average Power Limit (RAPL)6 tool [28], which is capable of providing

accurate energy estimates at a very fine-grained level, as it has already been

proven [29, 30]. Also, the current version of RAPL allows it to be invoked from

any program written in C and Java (through jRAPL [31]).

In order to properly compare the languages, we needed to collect the energy

consumed by a single execution of a specific solution. In order to do this, we

used the system function call in C, which executes the string values which are

given as arguments; in our case, the command necessary to run a benchmark

solution (for example, the binary-trees solution written in Python is executed

by writing the command /usr/bin/python binarytrees.py 21).

The energy consumption of a solution will then be the energy consumed by

the system call, which we measured using RAPL function calls. The overall

process (i.e., the workflow of our energy measuring framework 7) is described in

Listing 1.

...
for (i = 0 ; i < N ; i++){

time_before = getTime (...);
// performs initial energy measurement

6This software requires an Intel processor (Sandybridge or higher) and atleast a Linux 3.13
kernel.

7The measuring framework is publicly available at https://sites.google.com/view/

energy-efficiency-languages
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rapl_before (...);

// executes the program
system(command);

// computes the difference between
//this measurement and the initial one
rapl_after (...);
time_elapsed = getTime (...) - time_before;
...

}
...

Listing 1: Overall process of the energy measuring framework.

In order to ensure that the overhead from our measuring framework, using

the system function, is negligible or non-existing when compared to actually

measuring with RAPL inside a program’s source code, we design a simple ex-

periment. It consisted of measuring the energy consumption inside of both a

C and Java language solution, using RAPL and jRAPL respectively, and com-

paring the results to the measurements from our C language energy measuring

framework. We found the resulting differences to be insignificant, and therefore

negligible, thus we conclude that we could use this framework without having

to worry about imprecisions in the energy measurements.

Also, we chose to measure the energy consumption and the execution time of

a solution together, since the overhead will be the same for every measurement,

and so this should not affect the obtained values.

The peak memory usage of a solution was gathered using the time tool, avail-

able in Unix-based systems. This tool runs a given program, and summarizes

the system resources used by that program, which includes the peak of memory

usage. To measure the total memory, we used the Python memory profiler 8.

library to obtain the values, and afterwards we calculated, for each language,

the average of all solutions.

Each benchmark solution was executed and measured 10 times, in order to

obtain 10 energy consumption and execution time samples. As commonly done,

we did so to reduce the impact of cold starts for VMs (startups for VMs have

a tendency to consume more resources during a few initial starts) and cache

8Python memory profiler page: https://pypi.org/project/memory_profiler/
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effects, and to be able to analyze the measurements’ consistency and avoid

outliers. Additionally, between each measurement, we let the system rest for

2 minutes to allow a cool-down, as to not overheat and in turn affect energy

measurements (which are susceptible to this). We followed the same approach

when gathering results for memory usage. As the benchmarking problems are

not memory heavy, there is no current concern in regards to memory swapping

in large problems.

In order to compare different programming languages considering multiple

characteristics (energy, time, and peak memory), and in order to help answer

RQ4, we used a multi-objective optimization algorithm known as the Pareto

optimization [32, 33]. Using the software available at [34], we calculated various

Pareto fronts to produce rankings of a combination of the analyzed character-

istics. To do so, the algorithm can be repeatedly applied to discover the most

optimal language in various ranking levels. In other words, after identifying

the best language(s), and re-applying the algorithm while removing the iden-

tified languages from consideration, we would then produce the second best

language(s). Repeating this process, we can identify the third, fourth, and n-th

best language(s), thus producing an easy to read Pareto ranking.

For some benchmark problems, we could not obtain any results for certain

programming languages. In some cases, there was no source code available for

the benchmark problem (i.e., no implementation was provided in a concrete

language which reflects a language coverage below 100%).9

In other cases, the code was indeed provided but either the code itself was

already buggy or failing to compile or execute, as documented in CLBG, or, in

spite of our best efforts, we could not execute it, e.g., due to missing libraries 9.

From now on, for each benchmark problem, we will refer as its execution cov-

erage to the percentage of (best) solutions for it that we were actually able to

successfully execute.

All studies were conducted on a desktop with the following specifications:

9In these cases, we will include an n.a. indication when presenting their results.
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Linux Ubuntu Server 16.10 operating system, kernel version 4.8.0-22-generic,

with 16GB of RAM, a Haswell Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

2.3. Results

The results from our study are partially shown in this section, with all the

remaining benchmark results (including means, standard deviation, and box-

plot data) shown in the online appendix for this paper 7. Table 3, and the

left most tables under Results - A. Data Tables in the appendix, contains the

measured data from different benchmark solutions. We only show the results

for binary-trees, fannkuch-redux, and fasta within the paper, which are

the first 3 ordered alphabetically. Each row in a table represents one of the 27

programming languages which were measured.

The 4 rightmost columns, from left to right, represent the average values for

the Energy consumed (Joules), Time of execution (milliseconds), Ratio between

Energy and Time, and the amount of peak memory usage in Mb. The Energy

value is the sum of CPU and DRAM energy consumption. Additionally, the

Ratio can also be seen as the average Power, expressed in Kilowatts (kW). The

rows are ordered according to the programming language’s energy consumption,

from lowest to highest. Finally, the right most tables under Results - A. Data

Tables contain the standard deviation and average values for our measured CPU,

DRAM, and Time, allowing us to understand the variance.

The first column states the name of the programming languages, preceded

by either a (c), (i), or (v) classifying them as either a compiled, interpreted,

or virtual-machine language, respectively. In some cases, the programming lan-

guage name will be followed with a ↑x/↓y and/or ⇑x/⇓y symbol. The first set

of arrows indicates that the language would go up by x positions (↑x) or down

by y positions (↓y) if ordered by execution time. For example in Table 3, for

the fasta benchmark, Fortran is the second most energy efficient language,

but falls off 6 positions down if ordered by execution time. The second set of

arrows states that the language would go up by x positions (⇑x) or down by y

positions (⇓y) if ordered according to their peak memory usage. Looking at the
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Table 3: Results for binary-trees, fannkuch-redux, and fasta

binary-trees fannkuch-redux
Energy
(J)

Time
(ms)

Ratio
(J/ms)

Mb Energy
(J)

Time
(ms)

Ratio
(J/ms)

Mb

(c) C 39.80 1125 0.035 131 (c) C ⇓2 215.92 6076 0.036 2
(c) C++ 41.23 1129 0.037 132 (c) C++ ⇑1 219.89 6123 0.036 1
(c) Rust ⇓2 49.07 1263 0.039 180 (c) Rust ⇓11 238.30 6628 0.036 16
(c) Fortran ⇑1 69.82 2112 0.033 133 (c) Swift ⇓5 243.81 6712 0.036 7
(c) Ada ⇓1 95.02 2822 0.034 197 (c) Ada ⇓2 264.98 7351 0.036 4
(c) Ocaml ↓1 ⇑2 100.74 3525 0.029 148 (c) Ocaml ↓1 277.27 7895 0.035 3
(v) Java ↑1 ⇓16 111.84 3306 0.034 1120 (c) Chapel ↑1 ⇓18 285.39 7853 0.036 53
(v) Lisp ↓3 ⇓3 149.55 10570 0.014 373 (v) Lisp ↓3 ⇓15 309.02 9154 0.034 43
(v) Racket ↓4 ⇓6 155.81 11261 0.014 467 (v) Java ↑1 ⇓13 311.38 8241 0.038 35
(i) Hack ↑2 ⇓9 156.71 4497 0.035 502 (c) Fortran ⇓1 316.50 8665 0.037 12
(v) C# ↓1 ⇓1 189.74 10797 0.018 427 (c) Go ↑2 ⇑7 318.51 8487 0.038 2
(v) F# ↓3 ⇓1 207.13 15637 0.013 432 (c) Pascal ⇑10 343.55 9807 0.035 2
(c) Pascal ↓3 ⇑5 214.64 16079 0.013 256 (v) F# ↓1 ⇓7 395.03 10950 0.036 34
(c) Chapel ↑5 ⇑4 237.29 7265 0.033 335 (v) C# ↑1 ⇓5 399.33 10840 0.037 29
(v) Erlang ↑5 ⇑1 266.14 7327 0.036 433 (i) JavaScript ↓1 ⇓2 413.90 33663 0.012 26
(c) Haskell ↑2 ⇓2 270.15 11582 0.023 494 (c) Haskell ↑1 ⇑8 433.68 14666 0.030 7
(i) Dart ↓1 ⇑1 290.27 17197 0.017 475 (i) Dart ⇓7 487.29 38678 0.013 46
(i) JavaScript ↓2 ⇓4 312.14 21349 0.015 916 (v) Racket ⇑3 1,941.53 43680 0.044 18
(i) TypeScript ↓2 ⇓2 315.10 21686 0.015 915 (v) Erlang ⇑3 4,148.38 101839 0.041 18
(c) Go ↑3 ⇑13 636.71 16292 0.039 228 (i) Hack ⇓6 5,286.77 115490 0.046 119
(i) Jruby ↑2 ⇓3 720.53 19276 0.037 1671 (i) PHP 5,731.88 125975 0.046 34
(i) Ruby ⇑5 855.12 26634 0.032 482 (i) TypeScript ↓4 ⇑4 6,898.48 516541 0.013 26
(i) PHP ⇑3 1,397.51 42316 0.033 786 (i) Jruby ↑1 ⇓4 7,819.03 219148 0.036 669
(i) Python ⇑15 1,793.46 45003 0.040 275 (i) Lua ↓3 ⇑19 8,277.87 635023 0.013 2
(i) Lua ↓1 2,452.04 209217 0.012 1961 (i) Perl ↑2 ⇑12 11,133.49 249418 0.045 12
(i) Perl ↑1 3,542.20 96097 0.037 2148 (i) Python ↑2 ⇑14 12,784.09 279544 0.046 12
(c) Swift n.e. (i) Ruby ↑2 ⇑17 14,064.98 315583 0.045 8

fasta
Energy
(J)

Time
(ms)

Ratio
(J/ms)

Mb

(c) Rust ⇓9 26.15 931 0.028 16
(c) Fortran ↓6 27.62 1661 0.017 1
(c) C ↑1 ⇓1 27.64 973 0.028 3
(c) C++ ↑1 ⇓2 34.88 1164 0.030 4
(v) Java ↑1 ⇓12 35.86 1249 0.029 41
(c) Swift ⇓9 37.06 1405 0.026 31
(c) Go ↓2 40.45 1838 0.022 4
(c) Ada ↓2 ⇑3 40.45 2765 0.015 3
(c) Ocaml ↓2 ⇓15 40.78 3171 0.013 201
(c) Chapel ↑5 ⇓10 40.88 1379 0.030 53
(v) C# ↑4 ⇓5 45.35 1549 0.029 35
(i) Dart ⇓6 63.61 4787 0.013 49
(i) JavaScript ⇓1 64.84 5098 0.013 30
(c) Pascal ↓1 ⇑13 68.63 5478 0.013 0
(i) TypeScript ↓2 ⇓10 82.72 6909 0.012 271
(v) F# ↑2 ⇑3 93.11 5360 0.017 27
(v) Racket ↓1 ⇑5 120.90 8255 0.015 21
(c) Haskell ↑2 ⇓8 205.52 5728 0.036 446
(v) Lisp ⇓2 231.49 15763 0.015 75
(i) Hack ⇓3 237.70 17203 0.014 120
(i) Lua ⇑18 347.37 24617 0.014 3
(i) PHP ↓1 ⇑13 430.73 29508 0.015 14
(v) Erlang ↑1 ⇑12 477.81 27852 0.017 18
(i) Ruby ↓1 ⇑2 852.30 61216 0.014 104
(i) JRuby ↑1 ⇓2 912.93 49509 0.018 705
(i) Python ↓1 ⇑18 1,061.41 74111 0.014 9
(i) Perl ↑1 ⇑8 2,684.33 61463 0.044 53

same example benchmark, Rust, while the most energy efficient, would drop 9

positions if ordered by peak memory usage.
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Table 4: Normalized global results for Energy, Time, and Memory

Total

Energy (J) Time (ms) Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

Table 4 shows the global results (on average) for Energy, Time, and Mb

normalized to the most efficient language in that category. Since the pidigits

benchmark solutions only contained less than half of the languages covered, we

did not consider this one for the global results. The base values are as follows:

Energy for C is 57.86J, Time for C is 2019.26ms, and Mb for Pascal is 65.96Mb.

For instance, Lisp, on average, consumes 2.27x more energy (131.34J) than C,

while taking 2.44x more time to execute (4926.99ms), and 1.92x more memory

(126.64Mb) needed when compared to Pascal.

In order to better assess and interpret the differences among the consid-

ered languages in terms of elapsed time, memory and energy usage considering

statistical evidences, a hierarchical clustering method was used. The graphi-

cal result of such a method is presented in the form of dendrograms, a format

typically used to observe hierarchical relationship between objects, where the

objects are joined together in a hierarchical manner from the closest grouping

to the furthest. In these kinds of diagrams, it is crucial to look at the heights in
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which any two objects are joined together, as they reflect the distance between

the clusters. In order to generate such clusters, we selected the 4 benchmarks

(fannkuch-redux, fasta, n-body, spectral-norm) where all 27 languages were rep-

resented, as to maintain the 100% code coverage requirement needed to run

such an analysis. Next, we used the Python package plotly10 to generate the

distinct clusters of languages for Energy consumption (CPU + DRAM), Time,

and Memory.

Figures 1, 3, 5 show the generated dendogram for energy, time and memory

for all considered languages. The X-axis in each Figure detail the different pro-

gramming languages under analysis. The Y-axis represent the total amount of

energy consumed in Joules (J), the total execution time in milliseconds (ms),

and the peak memory in Megabytes (Mb) for Figures 1, 3, and 5 respectively.

Looking at these diagrams, it is clearly noticeable that there are languages

significantly distant from the group at the center of the graph (the most ef-

ficient languages in the given metric category). Given the distance between

these groups of languages, and in order to obtain a more visually informative

dendrogram, the same method of hierarchical clustering was applied, but now

only considering the innermost languages. The results of this new procedure are

shown in Figures 2, 4, 6. Here again the X-axis represent the different program-

ming languages while the Y-axis represent the total amount of energy (Joules),

time spent (ms), and peak memory (Mb) for the three respective Figures.

To better visualize and interpret the data, we also generated two different

sets of graphical data for each of the benchmarks. The first set, Figures 7-9

and the left most figures under Results - C. Energy and Time Graphs in the

appendix, contains the results of each language for a benchmark, consisting of

three joint parts: a bar chart, a line chart, and a scatter plot. The bars represent

the energy consumed by the languages, with the CPU energy consumption on

the bottom half in blue dotted bars and DRAM energy consumption on the top

half in orange solid bars, and the left y-axis representing the average Joules.

10Plotly package: https://github.com/plotly/plotly.py
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Figure 1: Dendogram representing CPU+DRAM energy consumption

Figure 2: Dendogram representing CPU+DRAM energy consumption of the most efficient
languages
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Figure 3: Dendogram representing runtime of all languages

Figure 4: Dendogram representing runtime of the fastest languages

The execution time is represented by the line chart, with the right y-axis

representing average time in milliseconds. The joining of these two charts allow
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Figure 5: Dendogram representing Memory usage

Figure 6: Dendogram representing Memory usage of the most memory efficient languages
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us to better understand the relationship between energy and time. Finally, a

scatter plot on top of both represents the ratio between energy consumed and

execution time.

The ratio plot allows us to understand if the relationship between energy

and time is consistent across languages. A variation in these values indicates

that energy consumed is not directly proportional to time, but dependent on

the language and/or benchmark solution.

The second set, Figures 10-12 and the right most figures under Results - C.

Energy and Time Graphs in the appendix, consists of two parts: a bar chart,

and a line chart. The blue bars represent the DRAM’s energy consumption for

each of the languages, with the left y-axis representing the average Joules. The

orange line chart represents the peak memory usage for each language, with the

right y-axis representing the average peak Mb. The joining of these two allows

us to look at the relation between DRAM energy consumption and the peak

memory usage for each language in each benchmark.
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Figure 7: Energy and time graphical data for binary-trees
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Figure 8: Energy and time graphical data for fannkuch-redux
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Figure 9: Energy and time graphical data for fasta
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Figure 10: Energy and memory graphical data for binary-trees
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Figure 11: Energy and memory graphical data for fannkuch-redux
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Figure 12: Energy and memory graphical data for fasta
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In order to evaluate the relationship between energy consumption, runtime

and memory usage with statistical support, we first applied both the methods

of Shapiro [? ] and Anderson–Darling [? ], and verified that our data was

non-parametric. As such, we used the Spearman correlation coefficient. The

Spearman’s correlation coefficient is a statistical measure of the strength of a

monotonic relationship between paired data. In this way, we evaluated the level

of correlation between the Energy-Memory, Energy-Time and Memory-Time

pairs, in order to be able to evaluate how these metrics are related between the

different languages and whether high/low values of one of these metrics have

significant consequences in one of the pairs. Since the Spearman method returns

a ρ value between -1 and 1, indicating a negative and positive correlation, we

also applied the of Rea and Parker [? ] method to obtain a nominal classification

of the correlation value module. This value can be interpreted as a measure of

effect size between the paired data. The classification assigned to each range of

values according to Rea and Parker is as follows:

• 0.00 < 0.10 - Negligible

• 0.10 < 0.20 - Weak

• 0.20 < 0.40 - Moderate

• 0.40 < 0.60 - Relatively strong

• 0.60 < 0.80 - Strong

• 0.80 <= 1.00 - Very strong

Table 5 illustrates the values obtained for the complete set of problems of

the 27 languages considered. For each pair of metrics of each language, the

respective Spearman ρ values and respective classification are presented.

Finally, Table 6 summarizes the results of the DRAM energy consumption

(Joules), peak memory usage (Mb), and total memory usage (Mb).
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Table 5: Correlation values for all languages

Language Energy & Time Energy & Memory Memory & Time

Spearman ρ Correlation Spearman ρ Correlation Spearman ρ Correlation
Ada 0.950000 Very strong 0.150000 Weak 0.000000 None
C 0.966667 Very strong -0.583333 Relatively strong -0.616667 Strong

C++ 0.966667 Very strong -0.033333 Negligible -0.166667 Weak
Chapel 0.916667 Very strong 0.250000 Moderate 0.183333 Weak
Fortran 0.952381 Very strong 0.190476 Weak 0.190476 Weak

Go 0.976190 Very strong 0.285714 Moderate 0.166667 Weak
Haskell 0.857143 Very strong 0.214286 Moderate 0.071429 Negligible
Ocaml 0.933333 Very strong 0.516667 Relatively strong 0.433333 Relatively strong
Pascal 0.928571 Very strong 0.000000 None 0.000000 None
Rust 0.783333 Strong -0.309626 Moderate -0.393309 Moderate
Dart 0.916667 Very strong 0.266667 Moderate 0.266667 Moderate
Hack 0.904762 Very strong -0.476190 Relatively strong -0.476190 Relatively strong

JavaScript 0.983333 Very strong -0.066667 Negligible -0.066667 Negligible
Jruby 0.966667 Very strong -0.300000 Moderate -0.366667 Moderate
Lua 0.928571 Very strong -0.333333 Moderate -0.333333 Moderate
Perl 0.983333 Very strong -0.333333 Moderate -0.333333 Moderate
PHP 0.900000 Very strong -0.216667 Moderate -0.333333 Moderate

Python 0.933333 Very strong -0.866667 Very strong -0.866667 Very strong
Ruby 0.933333 Very strong -0.816667 Very strong -0.916667 Very strong

TypeScript 1.000000 Very strong -0.257143 Moderate -0.257143 Moderate
C# 0.966667 Very strong 0.527201 Relatively strong 0.443519 Relatively strong

Erlang 0.904762 Very strong -0.095238 Negligible -0.095238 Negligible
F# 0.866667 Very strong 0.716667 Strong 0.716667 Strong
Java 0.833333 Very strong 0.083333 Negligible -0.233333 Moderate
Lisp 0.857143 Very strong 0.214286 Moderate 0.214286 Moderate

Racket 0.933333 Very strong -0.083333 Negligible -0.083333 Negligible
Swift 1.000000 Very Strong 0.142857 Weak 0.142857 Weak

Table 6: Results for DRAM Energy Consumption and Total Memory

DRAM (J) Peak MB Total MB
(c) C 5.28 77 626
(c) Rust 5.70 102 1087
(c) C++ 8.54 88 2274
(c) Ada 10.00 97 3020
(c) Pascal 15.24 66 3046
(v) Erlang 205.36 475 5457
(c) Go 15.49 69 5797
(v) Lisp 23.84 127 7544
(c) Haskell 22.40 162 8126
(c) Chapel 12.37 264 10513
(c) Fortran 24.16 82 10715
(v) Java 12.89 397 13935
(v) C# 18.62 188 14351
(c) Swift 25.72 179 23102
(v) F# 35.28 280 30218
(i) Dart 36.24 570 33891
(c) OCaml 19.62 186 36839
(v) Racket 63.29 232 38921
(i) TypeScript 272.30 309 52967
(i) JavaScript 42.70 303 88831
(i) Python 358.75 185 116265
(i) PHP 155.13 169 188136
(i) Hack 133.88 221 194589
(i) Ruby 353.00 262 203864
(i) Perl 326.82 437 255738
(i) Lua 487.50 444 690087
(i) JRuby 383.85 1309 890144
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3. Analysis and Discussion

By turning to the CLBG, we were able to use a large set of software pro-

gramming languages which solve various different programming problems with

similar solutions. This allowed us to obtain a comparable, representative, and

extensive set of programs, written in several of the most popular languages,

along with the compilation/execution options, and compiler versions. With

these joined together with our energy measurement framework, which uses the

accurate Intel RAPL tool, we were able to measure, analyze, and compare the

energy consumption, and in turn the energy efficiency, of software languages,

thus answering RQ1 as shown with our results. Additionally, we were also able

to measure the execution time and the peak and total memory usage, allowing

us to analyze how these two relate with energy consumption.

In the following subsections, we will present an analysis and discussion on

the results of our study. While our main focus is on understanding the energy

efficiency in languages, we will also try to understand how energy, time, and

memory relate. Additionally, in this section we will try to answer the following

three research questions, each with their own designated subsection.

3.1. Is Faster, Greener?

A very common misconception when analyzing energy consumption in soft-

ware is that it will behave in the same way execution time does. In other words,

reducing the execution time of a program would bring about the same amount of

energy reduction. In fact, the Energy equation, Energy (J) = Power (W) x Time(s),

indicates that reducing time implies a reduction in the energy consumed. How-

ever, the Power variable of the equation, which cannot be assumed as a constant,

also has an impact on the energy. Therefore, conclusions regarding this issue

diverge sometimes, where some works do support that energy and time are

directly related [14], and the opposite was also observed [17, 15, 16].

The data presented in the aforementioned tables and figures lets us draw

an interesting set of observations regarding the efficiency of software languages

when considering both energy consumption and execution time. Much like [18]
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and [2], we observed different behaviors for energy consumption and execution

time in different languages and tests.

By observing the data in Table 4, we can see that the C language is, overall,

the fastest and most energy efficient. Nevertheless, in some specific benchmarks

there are more efficient solutions (for example, in the fasta benchmark it is the

third most energy efficient and second fastest).

Execution time behaves differently when compared to energy efficiency. The

results for the 3 benchmarks presented in Table 3 (and the remainder shown

in the appendix) show several scenarios where a certain language energy con-

sumption rank differs from the execution time rank (as the arrows in the first

column indicate). In the fasta benchmark, for example, the Fortran language

is second most energy efficient, while dropping 6 positions when it comes to

execution time. Moreover, by observing the Ratio values in Figures 7 to 9 (and

the remainder in the appendix under Results - C. Energy and Time Graphs), we

clearly see a substantial variation between languages. This means that the aver-

age power is not constant, which further strengthens the previous point. With

this variation, we can have languages with very similar energy consumptions

and completely different execution times, as is the case of languages Pascal

and Chapel in the binary trees benchmark, which energy consumption differ

roughly by 10% in favor of Pascal, while Chapel takes about 55% less time to

execute.

Compiled languages tend to be, as expected, the fastest and most energy

efficient ones. On average, compiled languages consumed 120J to execute the

solutions, while for virtual machine and interpreted languages this value was

576J and 2365J, respectively. This tendency can also be observed for execution

time, since compiled languages took 5103ms, virtual machine languages took

20623ms, and interpreted languages took 87614ms (on average). Grouped by

the different paradigms, the imperative languages consumed and took on aver-

age 125J and 5585ms, the object-oriented consumed 879J and spent 32965ms,

the functional consumed 1367J and spent 42740ms and the scripting languages

consumed 2320J and spent 88322ms.
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Moreover, the top 5 languages that need less energy and time to execute

the solutions are: C (57J, 2019ms), Rust (59J, 2103ms), C++ (77J, 3155ms),

Ada (98J, 3740ms), and Java (114J, 3821ms); of these, only Java is not com-

piled. As expected, the bottom 5 languages are all interpreted: Perl (4604J),

Python (4390J), Ruby (4045J), JRuby (2693J), and Lua (2660Js) for energy;

Lua (167416ms), Python (145178ms), Perl (132856ms), Ruby (119832ms), and

TypeScript (93292ms) for time.

Looking at the dendogram clustering results in Figure 1 and Figure 3 (for

energy and execution time respectively), we see that the most efficient and least

efficient group of languages tend to, more or less, follow the same ranking to the

results we present in Table 4. The most energy efficient clusters, more clearly

visible in Figure 2, contain the top energy efficient languages languages present

in Table 4, while the same repeats for the least energy efficient clusters.

The most notable differences can be attributed to the fact that these results

are based off only 4 of the benchmarks, in order to represent all 27 languages

with 100% coverage (as necessary for the hierachichal clustering analysis), while

the results in Table 4 take into consideration the remainder. This also explains

why the Pascal programming language is shown to be the one of the least energy

efficient languages of the innermost cluster, as it was out performed by most

of the languages in the 4 considered benchmarks. Nevertheless, statistically

speaking, our presented ranking can be considered sound. It is also important

to notice that dendograms do not give information regarding how many clusters

should exist unless when the ultrametric tree inequality holds (which is not the

case).

The CPU-based energy consumption always represents the majority of the

energy consumed. On average, for the compiled languages, this value represents

88.94% of the energy consumed, being the remaining portion assigned to DRAM.

This value is very similar for virtual machine (88.94%) and interpreted languages

(87.98%). While, as explained in the last point, the overall average consumption

for these 3 language types is very different, the ratio between CPU and DRAM

based energy consumption seems to generally maintain the same proportion.
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This might indicate that optimizing a program to reduce the CPU-based energy

consumption will also decrease the DRAM-based energy consumption. However,

it is interesting to notice that this value varies more for interpreted languages

(min of 81.57%, max of 92.90%) when compared to compiled (min of 85.27%,

max of 91.75%) or virtual machine languages (min of 86.10%, max of 92.43%).

With these results, we can try to answer the question raised in RQ2: Is

the faster language always the most energy efficient? By looking solely at the

overall results, shown in Table 4, we can see that the top 5 most energy efficient

languages keep their rank when they are sorted by execution time and with

very small differences in both energy and time values. This does not come as a

surprise, since in 9 out of 10 benchmark problems, the fastest and most energy

efficient programming language was one of the top 3. Additionally, it is common

knowledge that these top 3 language (C,C++, and Rust) are known to be heavily

optimized and efficient for execution performance, as our data also shows. Thus,

as time influences energy, we had hypothesized that these languages would also

produce efficient energy consumptions as they have a large advantage in one of

the variables influencing energy, even if they consumed more power on average.

Nevertheless, if we look at the remaining languages in Table 4, we can see

that only 4 languages maintain the same energy and time rank (OCaml, Haskel,

Racket, and Python), while the remainder are completely shuffled. Additionally,

looking at individual benchmarks we see many cases where there is a different

order for energy and time.

By analyzing the data in Table 5, we can observe that there is always a level

of correlation between consumption and execution time. We have statistical

support to conclude that the decrease in the execution time of a program of any

language will translate with large probability in the reduction of the energy con-

sumption. In the cases of the Swift and TypeScript languages, the correlation

values are even equal to 1, which indicates a positive and perfect monotic rela-

tionship, leading to the conclusion that these languages will consume less energy

whenever the execution time is reduced. However, this direct correlation is not

surprising and even expected as we already know that Energy = Time × Power.
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While there is indeed this correlation, the weight and size between a change in

time and energy is not always proportional as we have previously seen.

Furthermore, the tables in Results - A. Data Tables in the appendix also

allows us to understand that this question does not have a concrete and ultimate

answer. Although the most energy efficient language in each benchmark is

almost always the fastest one, the fact is that there is no language which is

consistently better than the others. This allows us to conclude that the situation

on which a language is going to be used is a core aspect to determine if that

language is the most energy efficient option. For example, in the regex-redux

benchmark, which manipulates strings using regular expressions, interpreted

languages seem to be an energy efficient choice (TypeScript, JavaScript and

PHP, all interpreted, are in the top 5), although they tend to be not very energy

efficient in other scenarios. Thus, the answer for RQ2 is: No, a faster language

is not always the most energy efficient.

3.2. Memory Impact on Energy

How does memory usage affect the memory’s energy consumption? There

are two main possible scenarios which may influence this energy consumption:

peak memory usage and total memory usage.

Peak Memory. To answer this question, we calculated for each language the

average peak value, considering the solutions each language had. The top 5

languages, also presented in Table 4, with the lowest value were: Pascal (66

Mb), Go (69 Mb), C (77 Mb), Fortran (82 Mb), and C++ (88 Mb); these are

all compiled languages. The bottom 5 languages were: JRuby (1,309 Mb), Dart

(570 Mb), Erlang (475 Mb), Lua (444 Mb), and Perl (437 Mb); of these, only

Erlang is not an interpreted language.

When comparing to the dendograms of the Figures 5, 6, we see several

relevant changes relatively to the data presented in Table 4. Although Pascal

is in one of the innermost clusters, it is relatively far from the most memory

efficient clusters. However, the most notable changes are probably the presence

of Haskell and Hack in the outermost clusters. As previously mentioned, the
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differences of the dendogram results against those presented in Table 4 come

down to the fact that in this case, only 4 of the benchmarks were able to be

considered. Despite the changes mentioned, the results of the dendograms are

inline with what we have shown in Table 4.

On average, the peak memory usage of compiled languages was 125 Mb, or

the virtual machine languages was 285 Mb, and for the interpreted was 426 Mb.

If sorted by their programming paradigm, the imperative languages had a peak

of 116 Mb, the object-oriented 249Mb, the functional 251Mb, and finally the

scripting had 421 Mb.

Additionally, the top 5 languages with the least amount of DRAM energy

used (on average) were: C (5 J), Rust (6 J), C++ (8 J), Ada (10 J), and Java (11

J); of these, only Java is not a compiled language. The bottom 5 languages were:

Lua (430 J), JRuby (383 J), Python (356 J), Perl (327 J), and Ruby (295 J); all

are interpreted languages. On average, the compiled languages consumed 14J,

the virtual machine languages consumed 52 J, and the interpreted languages

consumed 236 J.

Looking at the visual data from Figures 10-12, and the right most figures

under Results - C. Energy and Time Graphs in the appendix, one can quickly

see that there does not seem to be a consistent correlation between the DRAM

energy consumption and the peak memory usage. By looking at the results

presented in Table 5 (Energy and Memory), we can see that most of the lan-

guages obtained non-significant values of Spearman’s ρ, meaning it is close to

no monotonic relationship. The only exceptions are Python and Ruby, with

classification of ”Very Strong” but showing values of negative monotonic corre-

lation, pointing to the possibility of high energy consumption being associated

with reduced memory usage for these languages.

To further verify this correlation on a global point of view and specifically

only on DRAM consumption, we tested both the DRAM energy consumption

and peak memory usage for normality using the Shapiro-Wilk [? ] test. As the

data is not normally distributed, we calculated the Spearman [? ] rank-order

correlation coefficient. The result was a Spearman ρ value equal to 0.2091,
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meaning it is between no monotonic relationship (ρ = 0) and a weak uphill

positive relationship (ρ = 0.3).

While we did expect the possibility of little correlation between the DRAM’s

energy consumption and peak memory usage, we were surprised that the rela-

tionship is almost non-existent. Thus, answering the first part of RQ3, this

indicates that the DRAM’s energy consumption has very little to do with how

much memory is saved at a given point, but possibly more of how it is used.

Total Memory. Since there was no apparent relation between DRAM’s energy

consumption and peak memory usage, let us turn our attentions towards the

other way of analyzing memory behavior, which is total memory usage.

The average values presented in the Table 6, and most importantly the

order in which the languages appear, gives as a clear first impression that the

DRAM’s energy consumption relates differently with peak memory usage and

total memory usage. In the previous section, we saw that the top 5 languages

with lowest peak memory usage were Pascal, Go, C, Fortran, and C++. For

total memory usage, the top 5 less consuming languages are C (626 Mb), Rust

(1,087 Mb), C++ (2,274 Mb), Ada (3,020 Mb), and Pascal (3,046 Mb). In fact,

almost every other language switches places from one ranking to another.

In order to test if there is a correlation between DRAM energy consumption

and total memory usage, we repeated the statistical test performed for peak

memory usage. Once again, the Shapiro-Wilk test revealed the values were not

normally distributed, thus we calculated the Spearman correlation coefficient,

which resulted in a ρ value of 0.744, indicating a strong positive relationship.

Answering the second part of RQ3, we now know that there is a strong up-

hill relationship between total memory usage and DRAM energy consumption.

The more memory is used over a program’s lifecyle, the more DRAM energy

consumption is spent.

There seems to be in fact a clear relation between the DRAM energy and

total memory used, where a lower memory usage value leads to less energy con-

sumed. Since the opposite was observed for peak memory usage (i.e., almost
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no relation with DRAM energy), these results may indicate that, it might be

more energy efficient to store high amounts of memory at once and releasing it

right afterwards than total memory usage throughout the execution. Neverthe-

less, this should be further explored in order to properly understand if this is

possible.

3.3. Energy vs. Time vs. Memory

Table 7: Pareto optimal sets for different combination of objectives.

Time & Memory Energy & Time

C • Pascal • Go C
Rust • C++ • Fortran Rust

Ada C++
Java • Chapel • Lisp • Ocaml Ada

Haskell • C# Java
Swift • PHP Pascal • Chapel

F# • Racket • Hack • Python Lisp • Ocaml • Go
JavaScript • Ruby Fortran • Haskell • C#

Dart • TypeScript • Erlang Swift
JRuby • Perl Dart • F#

Lua JavaScript
Racket

TypeScript • Hack
PHP

Erlang
Lua • JRuby

Ruby

Energy & Memory Energy & Time & Memory

C • Pascal C • Pascal • Go
Rust • C++ • Fortran • Go Rust • C++ • Fortran

Ada Ada
Java • Chapel • Lisp Java • Chapel • Lisp • Ocaml

OCaml • Swift • Haskell Swift • Haskell • C#
C# • PHP Dart • F# • Racket • Hack • PHP

Dart • F# • Racket • Hack • Python JavaScript • Ruby • Python
JavaScript • Ruby TypeScript • Erlang

TypeScript Lua • JRuby • Perl
Erlang • Lua • Perl

JRuby
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There are many situations where a software engineer has to choose a par-

ticular software language to implement his algorithm according to functional or

non functional requirements. For instance, if he is developing software for wear-

ables, it is important to choose a language and apply energy-aware techniques

to help save battery. Another example is the implementation of tasks that run

in background. In this case, execution time may not be a main concern, and

they may take longer than the ones related to the user interaction.

With the fourth research question RQ4, we try to understand if it is possible

to automatically decide what is the best programming language when consider-

ing energy consumption, execution time, and peak memory usage11 needed by

their programs, globally and individually. In other words, if there is a “best”

programming languages for all three characteristics, or if not, which are the best

in each given scenario.

To this end, we present in Table 7 a comparison of three language character-

istics: energy consumption, execution time, and peak memory usage. In order

to compare the languages using more than one characteristic at a time we use a

multi-objective optimization algorithm to sort these languages, known as Pareto

optimization [32, 33]. It is necessary to use such an algorithm because in some

cases it may happen that no solution simultaneously optimizes all objectives.

For our example, energy, time, and memory are the optimization objectives. In

these cases, a dominant solution does not exist, but each solution is a set, in

our case, of software languages. Here, the solution is called the Pareto optimal.

In Table 7 we present four multi-objective rankings: time & memory, energy

& time, energy & memory, and energy & time, & memory. For each ranking,

each line represents a Pareto optimal set, or in other words the Pareto front,

that is, a set containing the languages that are equivalent to each other for the

underlying objectives. Simply put, each line is a single rank or position.

A single software language in a position signifies that the language was

11We only considered peak memory and not total memory, as we wish to focus on optimizing
the limited resources a programmer may have: battery, time, and memory space.
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clearly the best for the analyzed characteristics. Multiple languages in a line

imply that a tie occured, as they are essentially similar; yet ultimately, the

languages lean slightly towards one of the objectives over the other as a slight

trade-off.

The most common performance characteristics of software languages used to

evaluate and choose them are execution time and memory usage. If we consider

these two characteristics in our evaluation, C, Pascal, and Go are equivalent.

However, if we consider energy and time, C is the best solution since it is domi-

nant in both single objectives. If we prefer energy and memory, C and Pascal

constitute the Pareto optimal set. Finally, analyzing all three characteristics,

this scenario is very similar as for time and memory.

It is interesting to see that, when considering energy and time, the sets are

usually reduced to one element. This means, that it is possible to actually

decide which is the best language. This happens possibly because there is a

mathematical relation between energy and time and thus they are usually tight

together, thus being common that a language is dominant in both objectives at

the same time. However, there are cases where this is not true. For instance,

for Pascal and Chapel it is not possible to decide which one is the best as

Pascal is better in energy and memory use, but worse in execution time. In

these situations the developer needs to intervene and decide which is the most

important aspect to be able to decide for one language.

It is also interesting to note that, when considering memory use, languages

such as Pascal tend to go up in the ranking. Although this is natural, it is a

difficult analysis to perform without information such as the one we present.

Given the information presented in Table 7 we can try to answer RQ4: Can

we automatically decide what is the best software language consider-

ing energy, time, and memory usage? If the developer is only concerned

with execution time and energy consumption, then yes, it is almost always possi-

ble to choose the best language. Unfortunately, if memory is also a concern, it is

no longer possible to automatically decide for a single language. In all the other

rankings most positions are composed by a set of Pareto optimal languages, that
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is, languages which are equivalent given the underlying characteristics. In these

cases, the developer will need to make a decision and take into consideration

which are the most important characteristics in each particular scenario, while

also considering any fuctional/non-functional requirements necessary for the de-

velopment of the application. Still, the information we provide in this paper is

quite important to help group languages by equivalence when considering the

different objectives. For the best of our knowledge, this is the first time such

work is presented. Note that we provide the information of each individual char-

acteristic in Table 4 so the developer can actually understand each particular

set (we do not show such information in Table 7 to avoid cluttering the paper

with to many tables with numbers).

4. Validation on a Chrestomathy Program Repository

The computer language benchmark game was created with the main goal of

comparing the execution time of different software languages. Thus, in CLBG,

software developers submit solutions that use all advanced mechanisms of the

language with the single purpose of implementing a very fast solution (provided

that solutions follow a predefined and strict algorithm).

The fastest solution to a problem, however, may not represent the usual

programming practices followed by the programmers within the respective lan-

guages. For example, the algorithms required by CLBG do not consider lazy

evaluation since this evaluation mechanism is only supported by a limited num-

ber of languages (which in turn can execute non-lazy code). As a consequence,

languages like Haskell and OCaml cannot use lazy evaluation to save work, thus

(potentially) providing faster solutions.

In this section, we present a new empirical study to validate our previ-

ous ranking that considered only perfomance-oriented programs, which were

included in CLBG. Thus, we consider the programming chrestomathy reposi-

tory Rosetta Code [27]. This repository12 was created to gather solutions to the

12http://www.rosettacode.org/wiki/Rosetta_Code
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same (programming) task in as many different languages as possible. It has a

large choice of programming problems across many languages: considering al-

most 900 tasks throughout of 700 languages! These submissions are completely

public and allow a high level of freedom for the solutions.

In a clear distinction when compared to CLBG, the purpose of Rosetta Code

is to demonstrate similarities and differences among languages, and by doing

so to support a programmer with a background in one approach to a problem

in learning another. Indeed, if a programmer is trained or has instruction in

one programming language or programming approach, by reading comparable

solutions to a problem in a different language or using a different programming

approach can aid him in understanding such new language or approach.

When compared to CLGB, Rosetta Code also does not force any particular

algorithm, rule or implementation style for a solution. Actually, the reposi-

tory makes available multiple solutions to the same problem within the same

programming language. Such solutions may use, e.g., different constructions

provided by the language: in C++ there are implementations based on Tem-

plates, and also others using standard C-like solutions. This also happens in

object-oriented languages, where in sorting algorithms some solutions use static-

arrays and others use collections. This leniency in implementation rules allows

for a much better day-to-day programming representation, with more varied

algorithmic approaches and solutions to such common problems.

Additionally, while CLBG provides unit tests and their expected output

for each of the tasks, Rosetta Code does not, often times even only containing

programming snippets which are not executable.

In the next section, we describe in detail the study that we have designed and

conducted in order to compare and validate the energy efficiency of programming

languages, using programs from Rosetta Code as our code base.

4.1. Design and Execution

The commendable effort put into the creation and maintenance of Rosetta

Code has resulted in the compilation of programs written in circa 700 different
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programming languages, to solve nearly 900 programming tasks.13

For comparability, we have restricted our study to the same 27 languages

that were represented in the CLBG repository.

In order to decide which tasks to consider in our analysis, we started by

sorting all the available tasks by their (decreasing) number of languages for

which Rosetta Code provides at least one solution. We found 51 tasks with at

least 20 implementations in different languages, having preliminarily excluded

the remaining ones. We decided not to consider tasks with less than 20 languages

as this would hinder the representativeness of the task among languages.

Since we need to be able to compare implementations (regarding, e.g., the

energy they use) we then analyzed each of the 51 tasks by hand to choose the

ones that implement some kind of algorithm. We ended up choosing tasks such

as the computation of the Fibonacci number or the merge sort algorithm and

discarded generic tasks such the ones showing how to implement loops or “hello

world” like programs. From this manual inspection, we marked 7 tasks as in-

teresting to further analyze and 20 other as possibly interesting. The 7 tasks

included in the first category implement algorithms that are time and thus (po-

tentially) energy consuming. The 20 tasks in the second category, although

implementing some kind of well-known algorithm, tend to be too fast to get

interesting energy and time readings. Nevertheless, to have a more representa-

tive set of tasks we explored two of these programs, too. The remaining tasks

were excluded either because they did not implemented something comparable

among languages or because the computations were too trivial. The final set of

nine tasks is shown in Table 8.

Although the programming tasks we ended up selecting all had solutions in

(at least) 20 different programming languages, still we were not able to consider

all such solutions. In some cases, solutions required deprecated libraries, or

libraries of which we are unaware of despite our best effort. In other cases, the

13Even if, of course, there does not necessarily exist a solution for every of the 700 languages
in each of the 900 tasks.
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Table 8: Rosetta Code chosen set of programs.

Benchmark Description Input

MergeSort
To sort a collection of
integers using merge sort

10k random integers

QuickSort
To sort a collection of
integers using quick sort

10k random integers

Hailstone

Generate the hailstone
sequence for specific
numbers

*Rosetta

Fibonacci Compute Fibonacci number fib(47)

Ackermann
Compute the Ackermann
Function

*Rosetta

N-Queens

Problem
Solve the n-queens puzzle 12-queens

100-doors Solve the 100 doors problem *Rosetta

Remove

duplicates

Remove duplicated
elements in a sequence

217 random elements

Sieve of

Eratosthenes

Compute algorithm that
finds the prime numbers up
to a given integer

10k

implementations were incomplete, did not compile, or had incorrect solutions.

The final set of languages to be evaluated for each programming task that we

considered is shown in Table 9, along with the running totals for each language

and for each task.

When presented with a choice of different implementations for a given lan-

guage, we chose the algorithm or implementation most similar to all the other

remaining implementations for that given task. Additionally, as we also wanted

to be as less intrusive as possible, we tried to avoid as much as possible chang-

ing any original code. Thus some implementations were discarded because they

required a complete rewrite of the code.

For every solution utilizable in each programming language, we then needed

to define unit tests, normalize the I/O, and make the implementations exe-

cutable e.g., by adding a main function.

The units tests needed to be sufficiently complex to significantly exercise

the corresponding implementations, but not too much so that they would not

terminate, or cause run-time overflows. As shown by our ranking in Section 3,
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Table 9: Rosetta Code chosen set of languages for each task.
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(c) Ada X X X X X 5
(c) C X X X X X X X X 8
(c) C++ X X X X X X 6
(c) Chapel X X X 3
(i) Dart X X X X X X 6
(v) Erlang X X X X X X X X 8
(c) Fortran X X X X 4
(c) Go X X X X X X X 7
(c) Haskell X X X X X X X 7
(v) Java X X X X X X X X 8
(i) JavaScript X X X X X X X 7
(v) Lisp X X X X 4
(i) Lua X X X X X X X X 8
(c) OCaml X X X X X X X 7
(c) Pascal X X X X X X X 7
(i) Perl X X X X X X X X X 9
(i) PHP X X X X X X X 7
(i) Python X X X X X X X 7
(v) Racket X X X X X X X 7
(i) Ruby X X X X X X X X 8
(c) Rust X X X X X X X X 8
Total 16 17 18 21 13 11 15 13 17 142

we need to be very careful when selecting the inputs as some languages can

finish 79.58x slower and eventually requiring limited computing resources. As

some solutions had hard-coded executions, and others read from files, we needed

to normalize this aspect of execution for all programming languages. The inputs

are shown in the top-right column in Table 8. In some cases, the input is stated

as *Rosetta, meaning that the input is based on the specific task defined on the

Rosetta Code site.

We have also confirmed that all solutions for the same task produced the
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correct output, and those which did not were discarded (this was, for example,

the case of the C implementation for the Sieve of Eratosthenes).

The result of our process of selecting and normalizing all implementations is

a curated repository. This curated repository, together with scripts to execute

each program, are publicly available for others to use14.

As our focus is currently on the energy efficiency of languages only, we do

not measure the memory consumption (peak nor total). Since our measurement

infrastructure collects energy measurements at the same time as execution time,

both are presented alongside each other in the results. In order to execute this

study, we used the same compilers, energy measurement benchmark, and same

desktop machine as detailed in Section 2.2.

In the next section, we present and analyze the results we obtained when

executing our study.

4.2. Analysis and Discussion

This section presents the results of energy consumption and runtime execu-

tion for each of the nine Rosetta Code tasks that we selected.

For each task, we include a table ordering the languages by the energy con-

sumption from lowest (more energy efficient) to highest (less energy efficient).

We recall that both the energy, presented in Joules, and the execution time,

presented in milliseconds, for each task, is the average of ten measurements.

Tables 10, 11 and 12 contain such results.

In the remainder of this section, we analyze, one by one and in detail, the

results we believe have the most profound impact when compared to our ear-

lier ranking based on the CLBG, and try to understand why such differences

occured.

Looking at the results for the sorting algorithms (merge and quicksort, pre-

sented in Table 10) we can see that Java is not performing as well as before.

In fact, while most imperative implementations use the same array as the data

14https://github.com/greensoftwarelab/RosettaExamples
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structure to store the original and the sorted list of integer numbers (which is ob-

tained by changing elements among positions), the Java implementations in this

repository use a more OO-based approach: they use (List) collections, and build

new structures which are dynamically populated with sorted elements using add

methods. This overhead does influence the performance of Java. We can also

see surprising differences between different sorting algorithm implementations:

both Pascal and PHP solutions are very efficient performing quicksort, which is

not replicated by the merge sort implementations. For these two languages, the

merge sort implementations use additional temporary arrays for merging.

For the (exponential) Fibonacci problem, whose results are presented in

Table 10, and although we were careful defining test cases so that all implemen-

tations would execute in a timely manner, there is one language - Python - that

could not terminate (within a 24 hour timeout!) for the defined input. While

there are small differences between this specific ranking and the overall CLBG

one, the four most efficient solutions - Ada, Rust, C, C++ - are the same and

do conclude the task very quickly and efficiently.

The results of the four tasks shown in Table 11 also generally follow the

CLBG-based ranking. The most energy inefficient languages in our earlier rank-

ing - Ruby, Python, Perl - also appear in the bottom of the individual rankings.

This also occurs in the other individual rankings in Tables 10 and 12. C wins in

three of these four tasks, and ranks third in the Remove-duplicates task. The

Remove-duplicates task, however, does not require the sorting of the resulting

elements. Thus, most languages do not sort the result, while the implementa-

tions in C, C++, Erlang and Java produce a sorted result. Obviously, this extra

work influences both energy and time consumption. In this task, Java is once

again penalized by the usage of multiple collections (List and Set!).

For the Sieve of Eratosthenes, the results presented in Table 12 are also

aligned with the results obtained with CLBG. A remarkable outlier, however, is

observed for the Chapel implementation: although it is very well ranked based

on CLBG, it is the most inefficient language for this task! In spite of our best

effort in trying to understand this corner case, we believe it deserves a more
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detailed study of its own, that we leave for future reference, and ideally with

the involvement of an expert of Chapel. Naturally, we have confirmed that

the algorithm implemented in Chapel is the correct one, and so, the result it

produces is also correct.

When globally considering all tasks, we can see that the C programming

language is yet again generally the most energy efficient language and also the

fastest. As shown in the CLBG-based ranking, the compiled languages are also

the best performing ones, whilst the interpreted ones are handicapted by their

execution mechanisms. In fact, for most of the tasks, the languages follow the

CLBG ranking.

The differences, which are most often seen through a language being placed

further down in the ranking, are also very much explainable. These cases are due

to specific implementations/languages which are penalized by the usage of poor

implemented solutions (used in Rosetta Code) and also by chosen algorithm (for

example the overhead of sorting the final results) and extra or inefficient data

structure (for example the overuse of auxiliary structures).
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Table 10: Results for: MergeSort, QuickSort, Hailstone and Fibonacci

MergeSort
Energy
(J)

Time
(ms)

(c) C 0.03 6
(c) Rust 0.03 7
(c) Go 0.04 6
(c) OCaml 0.08 9
(v) Lisp 0.26 16
(c) Haskell 0.29 18
(c) Pascal 0.52 46
(i) Ruby 0.63 53
(i) Lua 0.68 54
(i) JavaScript 0.72 61
(i) Perl 0.72 60
(i) Python 1.14 86
(v) Java 1.43 83
(i) PHP 3.03 254
(v) Racket 5.86 392

QuickSort
Energy
(J)

Time
(ms)

(c) Pascal 0.02 3
(c) C 0.02 4
(c) Rust 0.03 6
(c) Go 0.05 9
(c) OCaml 0.09 9
(i) PHP 0.23 20
(v) Lisp 0.25 18
(i) Lua 0.26 23
(c) Haskell 0.29 20
(i) Perl 0.32 28
(i) Ruby 0.61 45
(i) Python 0.73 61
(i) JavaScript 0.78 60
(v) Java 1.49 87
(v) Erlang 1.50 101
(i) Dart 1.70 114
(v) Racket 2.24 169

Hailstone
Energy
(J)

Time
(ms)

(c) C 0.27 29
(c) Pascal 0.34 16
(c) Ada 0.46 22
(c) Fortran 0.65 34
(c) Go 0.68 31
(c) OCaml 0.68 32
(c) Rust 0.91 39
(c) C++ 1.78 78
(i) JavaScript 2.76 119
(v) Java 4.12 160
(v) Racket 6.28 284
(i) Dart 7.08 293
(c) Haskell 7.99 309
(v) Erlang 16.50 696
(i) Ruby 18.35 776
(i) Lua 22.47 987
(i) Python 46.42 1896
(i) Perl 67.27 2771

Fibonacci
Energy
(J)

Time
(ms)

(c) Ada 32.12 2477
(c) Rust 61.94 4704
(c) C 70.91 5241
(c) C++ 82.78 6136
(c) Chapel 84.34 6126
(c) OCaml 105.22 8555
(v) Java 108.36 8325
(c) Go 150.51 11172
(c) Pascal 152.08 11822
(c) Fortran 185.45 14742
(i) Dart 251.70 18531
(v) Racket 275.15 21627
(i) JavaScript 311.22 22352
(v) Lisp 497.41 40442
(v) Erlang 799.22 62462
(c) Haskell 2068.83 143187
(i) PHP 2360.63 171315
(i) Lua 3816.43 290291
(i) Ruby 9657.99 663070
(i) Perl 14380.33 1010606
(i) Python ∞ ∞
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Table 11: Results for: Ackermann, N-queens, 100-doors and Remove-duplicates

Ackermann
Energy
(J)

Time
(ms)

(c) C 0.00 1
(c) Chapel 0.01 2
(c) Ada 17.79 1349
(c) OCaml 26.37 1922
(c) Rust 41.69 1726
(c) C++ 58.18 1345
(c) Haskell 178.49 9036
(v) Racket 237.24 15421
(c) Go 275.78 21421
(v) Erlang 290.60 21110
(i) PHP 3215.77 207815
(i) Lua 5316.18 180432
(i) Perl 14475.82 1008595

N-queens
Energy
(J)

Time
(ms)

(c) C 0.05 4
(c) Fortran 0.10 10
(c) Pascal 0.56 53
(v) Java 2.15 167
(i) Dart 2.90 224
(c) Haskell 2.90 204
(c) Rust 4.53 384
(i) JavaScript 8.22 574
(i) Ruby 19.18 1412
(i) Perl 41.23 2881
(i) Python 111.37 7401

100-doors
Energy (J) Time (ms)

(c) C 0.01 1
(c) C++ 0.09 10
(c) Fortran 0.35 34
(c) OCaml 0.85 69
(v) Java 1.14 67
(i) Dart 1.20 83
(i) JavaScript 1.59 107
(i) PHP 6.95 422
(c) Pascal 7.39 530
(c) Ada 13.88 1193
(i) Perl 17.54 1217
(i) Ruby 33.02 2513
(v) Erlang 35.42 2267
(i) Python 63.58 4445
(i) Lua 108.23 9188

Remove-duplicates
Energy (J) Time (ms)

(c) Rust 0.01 1
(c) C++ 0.12 5
(c) C 0.14 10
(c) Go 0.32 13
(i) Lua 0.51 21
(i) Perl 1.31 53
(i) JavaScript 1.73 73
(v) Erlang 2.36 96
(v) Java 2.96 214
(i) PHP 2.99 121
(i) Python 4.93 206
(i) Ruby 6.13 259
(v) Racket 7.54 318

Table 12: Results for: Sieve of Eratosthenes

Sieve of Eratosthenes
Energy (J) Time (ms)

(c) Pascal 0.02 3
(c) C++ 0.03 3
(c) Rust 0.03 4
(c) OCaml 0.05 7
(c) Ada 0.06 8
(c) Haskell 0.10 13
(c) Go 0.11 10
(v) Lisp 0.15 11
(i) PHP 0.30 22
(i) Ruby 0.51 42
(i) Perl 0.64 49
(i) Lua 0.69 37
(v) Java 1.64 89
(v) Racket 1.97 148
(i) Dart 1.98 133
(v) Erlang 2.36 162
(c) Chapel 2280.27 174549

Having produced individual energy-sorted rankings for each of the 9 tasks we

considered, we now wish to produce an overall language ranking so that we can

compare the ranks of languages in a performance-tailored program corpus (the
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CLBG) to one more oriented to program comprehension (the Rosetta Code).

To produce such overall ranking we use the Schulze method [39] to agregate

the results of the individual rankings in Tables 10, 11 and 12 into a combined

one. We needed to use a different method to produce this ranking, compared

to the CLBG one, because the range of values is very large and the number of

implementation differ much more between tasks. Table 13 shows the Rosetta

Code overall ranking that we obtained.

Table 13: Rosetta Code global ranking based on Energy

Rosetta Code Global Ranking
Position Language
1 C
2 Pascal
3 Ada
4 Rust
5 C++, Fortran
6 Chapel
7 OCaml, Go
8 Lisp
9 Haskell, JavaScript
10 Java
11 PHP
12 Lua, Ruby
13 Perl
14 Dart, Racket, Erlang
15 Python

This Rosetta Code based ranking is similar to the our earlier CLBG ranking.

The top six languages in CLBG continue to be in the top five this new ranking,

with the exception of Java. As we discussed before the Rosetta Code imple-

mentations in Java rely on the widely used Java Collection Framework, which

require more work when compared to imperative-based solutions that use static

arrays. We can also see that the Chapel language also dropped in our Rosetta

Code based ranking.

These results also show that interpreted languages like PHP, Lua, Ruby,

Perl, Python continue at the bottom being the least energy efficient software

languages.

4.3. Conclusions

As expected, the fact that one specific solution uses a different, more efficient

approach to solve a task did influence the results of the Rosetta Code study and

the ranking of the different languages. This occurs in two situations: i) the
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requirements for a task on Rosetta Code are not completely defined; thus, there

are solutions that perform work that is not specified (for example, sorting the list

after removing duplicates); and ii) some solutions that use additional temporary

data structure which also force additional computational work to be performed.

In this new study to validate our previous work, we use the most natural

and understandable solutions available in Rosetta Code, and we did not change

the program’s repository: as discussed in previous sections only strictly neces-

sary editions (such as adding test cases or main functions) were performed on

programs. If we were forcing the different implementations for a task to per-

form exactly the same algorithm, we were essentially re-doing the CLBG-based

study. This could easily be done, for example in the sorting tasks, by adding a

solution in C that sort dynamically linked lists, instead of sorting the original

array, but diverges from our intentions here.

In regards to RQ5: How do the results of our energy consumption

analysis of programming languages gathered from rigorous perfor-

mance benchmarking solutions compare to results of average day-to-

day solutions?, we have seen that the results of our validation study (Rosetta

Code) against our original study (CLBG) are very much comparable. As ex-

pected, the results show many similarities, even though one repository source

is to help learn and comprehend programs in various languages and the other

is tailored to analyze the performance of languages and the other. Carefully

analyzing the cases where the rankings would differ, we were able to quickly

localize and explain such occurrences down to improper or inefficient use of the

programming language.

If wanting to understand how programming languages compare in terms of

energy efficiency, and are written by general everyday programmers (through

very simple and direct solutions), Table 13 shows such results. On the other

hand, Table 4 details the results of the potential each language has on reduc-

ing their energy consumption if programmed by more experienced programmers

or those taking into consideration basic algorithmic optimizations. With this

validation study, we have shown that our results based off the rigorous bench-
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marking of highly optimized programs from CLBG (presented in Section 3) are

representative and detail a good overall look at the energy efficiency of program-

ming languages written by either expert or non-expert programmers.

5. Threats to Validity

The goal of our study was to both measure and understand the energetic

behavior of several programming languages, allowing us to bring about a greater

insight on how certain languages compare to each other mainly in terms of

energy consumption, but also performance and memory. We present in this

section some possible threats to the validity of our study and in what ways we

have tried to minimize their effects, divided into four categories [40, 41], namely:

conclusion validity, internal validity, construct validity, and external validity.

Conclusion Validity. This first category describes threats which may influence

our capacity to draw correct conclusions [41].

Fishing is a possible threat as one may be searching for particular results,

thus making the analysis not independent [41]. In the case of our study, we are

not evaluating a programming language(PL) that we may have proposed and

hence have no particular interest in the outcome. Thus, we are not searching

for a particular result, and as such, this threat does not apply to our study.

A common threat is the reliability of measures. In our case, when measuring

the energy consumption of the various different programming languages, other

factors alongside the different implementations and actual languages themselves

may contribute to variations, i.e. specific versions of an interpreter or virtual

machine. To avoid this, we executed every language and benchmark solution

equally. In each, we measured the energy consumption (CPU and DRAM),

execution time, and peak and total memory 10 times, removed the lowest and

highest 20% outliers, and calculated the median, mean, standard deviation, min,

and max values. This allowed us to minimize the particular states of the tested

machine, including uncontrollable system processes and software. However, the

52



measured results are quite consistent, and thus reliable. In addition, the used

energy measurement tool has also been proven to be very accurate.

Another common threat is the reliability of treatment implementation. The

implementations used to evaluate the PLs were produced by external developers.

We simply reused the settings from CLBG which were also applied to Rosetta

tasks. Thus, these implementations are independent from this study and are

the best available as the CLBG is a running contest of the performance of.

Regarding random heterogeneity of subjects, we used all the available lan-

guages in the CLBG, that is, 27 different PLs. Although there are hundreds

of languages, this set includes many popular languages and also more academic

ones, thus covering a vast set of PLs. In fact, several communities from news

pages, to social-media, to Reddit have found our work broad enough to be

interesting.

Internal Validity. This category concerns itself with what factors may interfere

with the results of our study, that is, that may influence the relationship between

the treatment and the outcome [41].

Instrumentation is one of the possible causes of internal validity [41]. This

refers to the artifacts used during the experiment. In our case, we used scripts to

collect the energy, time and memory used during the execution of the programs.

However, these are simple scripts used to call RAPL for measurement during

the execution of programs. They were previously validated and tested [23, 24]

and are also publicly available in the paper’s online appendix.

Construct Validity. This category concerns the generalization of the results to

the concept or theory behind the experiment [41].

Inadequate preoperational explication of constructs is a possible issue related

to the constructs not being well defined prior to being measured [41]. In our

case we evaluated the energy, time and memory used by programs, and thus
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the measurements were obvious, making this issue minor or nonexistent in our

study.

Another possible issue is the mono-operation bias concerned with the under-

representation of a construct. We have used about 10 programs to evaluate each

PL. These programs were proposed by others to evaluate the performance of PLs

and thus were designed to stress the languages within the context of a contest.

Thus, they seem to represent an interesting way of evaluating the PLs.

Regarding the mono-method bias, we have indeed used just a single tool to

measure energy and time (RAPL), and another tool for memory (the Unix-based

time tool). However, both known to be very precise for measuring energy, time,

and memory, thus their results are reliable.

The interaction of different treatments is also a possible issue. However,

we have used different and independent programs to evaluate the languages.

Between each measuring execution (as common practice in measuring energy

consumption), there was a two minute idle time rest to allow the system to

cool-down, as to reduce over heating (which may affect energy measurements),

and to allow the system to treat garbage collecting.

External Validity. This type of threat is concerned with the generalization of

the results to an industrial setting [41].

A common threat is termed interaction of selection and treatment meaning

the population chosen is not representative, in our case the PLs [41]. In the

first study we analyzed 27 different programming languages. These PLs include

popular languages among industry such as C/C++, Java, C#, JavaScript, Ruby,

PHP or Python15. Thus, our study applies also to an industrial setting, at least

regarding the PLs used.

Another external threat is the interaction of setting and treatment, that is,

the experimental setting might not represent the industrial setting. Each PL

15See http://pypl.github.io/PYPL.html for a list of popular languages based on Google
searches.
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was evaluated with roughly 10 solutions to the proposed problems, totaling

out to almost 270 different cases. The implementation solutions we measured

were developed by external experts in each of the programming languages, with

the main goal of “winning” by producing the best solution for performance

time. While the different languages contain different implementations, they

were written under the same rules, all produced the same exact output, and

were implemented to be the fastest and most efficient as possible. Having these

different yet efficient solutions for the same scenarios allows us to compare the

different programming languages in a quite just manner as they were all placed

against the same problems. Moreover, the compilers and computers used are

recent and thus in line with nowadays industry. For the Rosetta the solutions

are not so curated. In any case, the authors have reviewed and used solutions

that were correct thus solving the underlying problem.

While our benchmarking system is server based, studies have shown that

there is no statistical difference between server platforms and embedded systems

in regards to energy based readings [26], thus the results can be generalized di-

rectly to embedded systems. In regards to the generalization to mobile systems,

this can not be completely assured as results differ slightly between server/em-

bedded based systems and mobile, and sometimes even between independent

studies in mobile, if analyzing on a small scale. Overall however, the results

seem to maintain their tendencies [17, 4]

In general, in this category of threats it is paramount to report the char-

acteristics of the experiment in order to understand its applicability to other

contexts [41].The actual approach and methodology we used also favors easy

replications. This can be attributed to the CLBG containing most of the im-

portant information needed to run the experiments, these being: the source

code, compiler version, and compilation/execution options. Moreover, all the

material used and produced is publicly available at https://sites.google.

com/view/energy-efficiency-languages. Thus we believe these results can

be further generalized, and other researchers and industry can replicate our

methodology for future work.

55

https://sites.google.com/view/energy-efficiency-languages
https://sites.google.com/view/energy-efficiency-languages


6. Related Work

The work presented in this paper extends previous work in [23] and [24].

In this extended version, an analysis on total memory usage was performed

to better understand the relationship between continuous memory usage and

DRAM energy consumption. Additionally, we replicated our study on a different

repository, the Rosetta Code chrestomathy repository. This not only allowed

us to validate our previous programming language energy ranking using the

CLBG, but also to understand how different are the results of programs on a

repository for performance based benchmarking and a repository for learning

and comprehensibility.

The CLBG benchmark solutions have already been used for validation pur-

pose by several research works. Among other examples, CLGB was used to

study dynamic behavior of non-Java JVM languages [42], to analyze dynamic

scripting languages [43] and compiler optimizations [44], or even to benchmark a

JIT compiler for PHP [45]. At the best of our knowledge, CLGB was only used

once for energy consumption analysis. In [17], the authors used the provided

Haskell implementations, among other benchmarks, to analyze the energy effi-

ciency of Haskell programs from strictness and concurrency perspectives, while

also analyzing the energy influence of small implementation changes.

A similar study using the Rosetta Code repository was performed [26], where

the authors looked at the energy-delay implications on 14 programming lan-

guages, on three different computing platforms (embedded, laptop, and server.

They too produced very similar results to ours across the three platforms, and

found that there is no statistical differences between server platforms and em-

bedded systems. Thus, our server based benchmarking system can easily be

generalized for embedded devices. They further explored [46] the energy-delay

implications within inter-process communication systems and observed how en-

ergy consumption and run-time performance can very significantly across dif-

ferent programming language implementations.

While several works have shown indications that a more time efficient ap-
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proach does not always lead to the most energy efficient solution [17, 15, 16, 18,

2, 4], these results were not the intended focus nor main contribution, but more

of a side observation per se. We focused on trying to understand and directly

answer this question of how energy efficiency and time relate.

Nevertheless, the energy efficiency in software problem has been growing in

interest in the past few years. In fact, studies have emerged with different goals

and in different areas, with the common vision of understanding how devel-

opment aspects affect the energy consumption in diversified software systems.

For instance, for mobile applications, there are works focused on analyzing the

energy efficiency of code blocks [47, 48, 49, 50], or just monitoring how energy

consumption evolves over time [51]. Other studies aimed at a more extensive

energy consumption analysis, by comparing the energy efficiency of similar pro-

grams in specific usage scenarios [13, 11], or by providing conclusions on the en-

ergy impact of different implementation decisions [52]. Several other works have

shown that several factors, such as different design patterns [6, 7], Android key-

boards [53] and energy footprints [54], coding practices [15, 55, 17, 56, 8, 9, 49],

technical energy debt [? ], and data structures [2, 31, 3, 19, 57, 58], actually

have a significant influence in the software’s energy efficiency.

In the context of Android, a particular line of work relates to ours. The

authors of [59, 4] also used CLBG and the Rosetta Code repository to compare

JavaScript, Java, and C/C++ in a setting specifically targeted for Android sys-

tems. Using programs from these sources they concluded that most of the times

JavaScript consumes less energy, but there is no overall winner. Moreover,

they also advocate that faster programs are not always the ones that consume

less energy.

7. Conclusions

In this paper, we present an extended work of a series of systematic com-

parisons and rankings over the energy efficiency of 27 well-known software lan-

guages. These comparisons take as their original code base programs from a
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popular programming language benchmarking competition, The Computer Lan-

guage Benchmarks Game (CLBG), where experts in different languages compete

to produce the most performance efficient solution.

We were able to show which were the most energy efficient software lan-

guages, execution types, and paradigms across 10 different benchmark prob-

lems. We were also able to relate execution time and memory consumption to

energy consumption to understand not only how memory usage affects energy

consumption, but also how time and energy relate. This allowed us to under-

stand if a faster language is always the most energy efficient. As we saw, this is

not always the case. Additionally, we have created rankings, group clusterings,

and correlation tables of programming languages based on their energy con-

sumption, execution time, and memory usage. In addition, we further analyzed

the correlation between energy consumption and memory usage.

As often times developers have limited resources and may be concerned with

more than one objective, or efficiency characteristic, we established rankings of

the best/worst languages according to a combination of different objectives:

limited battery, limited time, and limited memory capacity.

In order to properly assess our original findings, we revisited this study and

presented a new empirical study based on a chrestomathy repository, Rosetta

Code [27] in order to validate our original study. This allows us to also un-

derstand if the analyzed performance-oriented solutions, of which we based our

results on, are representative of day-to-day programming and by non-expert

programmers.

This new validation considered 9 tasks from Rosetta Code, and their solu-

tions in the programming languages that we have previously considered. These

results showed many similarities when compared to the strict and rigorous

performance-oriented benchmarks used to produce our programming language

rankings. Additionally, albeit very few (and highly explainable) differences, we

have concluded the originally presented rankings and results are representative

of both expert and non-expert programmers.

Our work helps contribute another stepping stone in bringing more informa-
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tion to developers to allow them to become more energy-aware when program-

ming.
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