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Abstract  

This paper describes our recent work on MATISSE, a framework 

for MATLAB to C compilation. We focus on the new optimiza-

tions and transformations, as well as on OpenCL generation. 

MATISSE is controlled with LARA, an aspect-oriented language, 

able to specify transformations to the input MATLAB code (e.g., 

insertion of code for variable initialization and for monitoring) 

and to express information concerning types and shapes of varia-

bles. We evaluate the compiler with a set of benchmarks when 

targeting both an embedded system and a desktop system. The 

results show that we were able to achieve a speedup up to 1.8× by 

employing information provided by LARA aspects. We also 

compare the execution time of the generated C code with the 

original code running on MATLAB, and we achieve a geometric 

mean speedup of 19×. The geometric mean speedup reduces to 

12×  when optimizing the MATLAB code with LARA aspects. 

Finally, we present a preliminary version of a fully-functioning 

pragma-based OpenCL generator, built over the MATISSE 

framework. 

Categories and Subject Descriptors D.3.4 [Programming Lan-

guages]: Processors – Code generation, Compilers, Optimization, 

Retargetable compilers D.2.2 [Software Engineering]: Design 

Tools and Techniques 

General Terms Performance, Experimentation, Languages 

Keywords  MATLAB-to-C, source-to-source compiler, Aspect-

oriented programming, LARA, embedded systems, OpenCL 

1. Introduction 

MATLAB [1] is a de facto standard high-level programming lan-

guage and interactive numerical computing environment in many 

domains in engineering and science, including embedded compu-

ting as it is ubiquitously used by engineers to quickly develop and 

evaluate their solutions. MATLAB is dynamically typed, and relies 

on interpretation (and/or JIT compilation) as the information 

about the types and shapes (i.e., number and size of matrix dimen-

sions) of variables is only known at runtime. Due to advances in 

JIT compilation and the use of pre-compiled libraries for the most 

intensive functions, the MATLAB runtime environment currently 

exhibits acceptable performance.  

In many embedded system settings, however, the use of a 

MATLAB runtime environment is infeasible, either because it is 

not available, or due to performance and/or resource constraints. 

To address this potential shortcoming, a typical solution relies on 

the development of an implementation in executable code written 

in an imperative language such as C/C++ once the base or original 

MATLAB code has been validated. This implementation must then 

in turn be validated against the output of the MATLAB code result-

ing on a lengthy and error prone process that further complicates 

the overall application development cycle and cost. The existence 

of two code specifications - the original prototypical MATLAB 

code and the reference C/C++ code - also exacerbates mainte-

nance costs. Another solution is to rely on the automatic transla-

tion of MATLAB to the target programming language as provid-

ed, e.g., by the MATLAB Coder [2] and the Embedded Coder [3], 

which translate MATLAB to C code. Besides the inherent ad-

vantages, this, however, has typically the disadvantage of the low 

support to control and guide the code translation. The code gener-

ation is typically based on directives (GUI based in the case of the 

MATLAB Coder) addressing types, shapes, and target. When 

dealing with the myriad of target architectures and toolchains in 

embedded systems, this approach presents a low level of flexibil-

ity, e.g., as the style of the C code generator might need to be 

tuned to the toolchain as is the case when targeting C to hardware 

compilers. Instrumentation and code transformations, as well as 

an approach to express strategies for code transformations and 

instrumentation (e.g., by using a DSL) can be very important 

during the design process and may increase productivity.  Fur-

thermore, the target platform may require code generators to 

specific programming languages as is the case of the generation of 

OpenCL [4] when dealing with GPGPUs and/or GPU-based 

FPGA implementations [5].    

Our approach relies on a compilation tool, named as 

MATISSE [6], which generates C code directly from MATLAB. 

Our approach explores the use of Aspect-Oriented Programming 

(AOP) [7][8] concepts, through the use of the LARA language 

[9][10] as a vehicle to convey information to the compiler (e.g., 

types and array shapes) and to express code specialization and 

code instrumentation strategies. The compiler uses the user-

provided information complementing and checking its consistency 

against the information it can derive from its own analysis. 

MATISSE is being developed as a modular and flexible compiler 

framework, which includes custom Intermediate Representations 

(IRs) for the MATLAB and C code, keeping in mind the genera-

tion of C code from a higher-level programming language. In 

particular, the IR representing the output C code (C-IR) supports 

matrix types natively, and can be easily extended to support addi-

tional types and language constructs (such as the ones needed to 

generate OpenCL). The end result is a synergy between compiler 

analysis and the user that allows the compiler to generate very 

high-quality code from MATLAB specifications. It is also possible 
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to generate different versions of the C code, to better target differ-

ent embedded systems, platforms, and/or toolchains. In this paper 

we focus on our recent MATISSE improvements. 

The remainder of this paper is organized as follows. Section 2 

presents the MATISSE compiler framework. In Section 3 we 

describe the C-IR, the internal representation we use to generate C 

code. Section 4 explains how the MATLAB code is transformed 

into C code and OpenCL with the help of LARA aspects. Section 

5 shows some experiments performed using MATISSE. Section 6 

describes related work and finally, Section 7 concludes this paper 

and describes ongoing work. 

2. MATISSE Overview 

MATISSE consists of a MATLAB-to-C compiler targeting em-

bedded systems, and a LARA-controlled MATLAB weaver which 

allows transformations over MATLAB code. LARA [9] is a 

domain-specific language inspired by AOP concepts [7] and 

JavaScript semantics and constructs. LARA uses a declarative 

semantic to allow programmers to specify strategies for actions 

over application source code and/or compiler IRs (e.g., instrument 

code, extract information, explore transformations, apply compiler 

optimizations). LARA aspects are applied by a target language 

dependent weaver, such as the weaver for the MATLAB language 

integrated in MATISSE. 

Figure 1 presents the overall flow of MATISSE. The input 

MATLAB files are parsed and translated to an abstract syntax tree 

(AST) based MATLAB IR. The IR is the input to MWeaver, 

which uses LARA aspects to modify and add information (e.g., 

variable types and shapes) to the MATLAB IR. MATISSE is 

being developed in a way to make easy the integration of code 

generators. At the moment code generators for MATLAB and C 

are already fully working and an OpenCL code generator is under 

development. 

 

Figure 1. Overview of the MATISSE compiler framework. 

MATISSE generates MATLAB code for validation, testing, 

monitoring, and specialization, and C code to be used by third-

party design-flows targeting software/hardware systems. 

MATISSE is able to generate customized C code for a particular 

target without modifying the original MATLAB code. LARA 

aspects enable MATISSE to have fine-grained control over the 

generation of C code, and also allow the generation of different 

implementations from the same source code. A common example 

includes the restructuring of source code and the use of statically 

declared array variables to be compliant with the requirements of 

most hardware compilers. 

MATISSE can be used as a source-to-source code transfor-

mation and instrumentation tool allowing developers to quickly 

and reliably generate reference C implementations, a key step in 

the deployment of embedded system applications. The transfor-

mation stage of the compiler performs weaving actions such as 

insertion of code, definitions of types and shapes, and code spe-

cialization based on default values. 

3. A High-Level C-IR 

Given the differences between MATLAB and C, we decided to 

use a C specific AST-based IR to represent the C code (C-IR). 

This simplifies the generation of C code and allows us to separate 

concerns related to C generation (e.g., include files, variable 

declarations) that are not considered in the MATLAB IR. This 

option also makes the MATLAB IR clean and independent of the 

specificities of the code generation to be applied. 

3.1 Variable Types 

The C-IR uses the VariableType interface to represent all the 

information needed about a data type (e.g., code needed to declare 

the variable, how to convert to another type, how to perform an 

addition between variables of this type). VariableType allows a 

seamless integration of several types in a modular way. For in-

stance, we were able to add support for OpenCL native types 

through an implementation of VariableType, without changing the 

C-IR library. Figure 2 shows a subset of the hierarchy that starts 

with the VariableType interface. To add a new type, one needs to 

create a class that implements the VariableType interface. Scalar 

represents a single value, and Matrix represents a multi-

dimensional array of elements of type Scalar. These two classes 

add contract methods that provide information specific to these 

types, such as number of bits, maximum and minimum values or 

signed/unsigned, for Scalar, or matrix shape and element type, for 

Matrix. CNative represents the native types of C (e.g., int, float, in 

the case of Numeric, and, e.g., int32_t, uint8_t in the case of 

StdInt). 

 

Figure 2. Subset of the VariableType hierarchy in the C-IR. 

3.2 Matrix Types in C-IR 

Currently, the C-IR has two Matrix implementations, StaticMa-

trix, which uses statically allocated C arrays (e.g., int A[3]), and 

DynamicMatrix, which uses a C structure to represent dynamical-

ly allocated arrays of a given element type. For dynamic arrays, 

MATISSE allows the option to use for each array access a func-
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tion that performs array bounds checking (for debugging), or to 

use inlined code without checks (for performance). 

MATISSE uses linearization of multi-dimensional arrays, 

whereby an element of the multi-dimensional array is accessed 

through a single pointer variable. Linearization has several bene-

fits. Firstly, simple element-wise operations are compactly exe-

cuted in a single loop rather than using a loop nested structure. 

Secondly, the single allocation of storage and corresponding 

boundary values also enables one out-of-bound condition check 

per array access rather than having to perform a verification per 

array dimension. Lastly, it also provides other advantages regard-

ing the size of the code generated. When multi-dimensional arrays 

are generated without linearization, code may need to consider 

various pointers (when dimensions are not known at compilation 

time) in order to allocate the space needed for all dimensions. 

4. Transforming MATLAB to C 

MATLAB is a dynamically typed language. This is in stark con-

trast with C, which is statically typed and needs the types of all 

variables to be declared. When converting MATLAB to efficient C 

code, it is necessary to statically determine the types used. This 

can be a challenge, as the same MATLAB function can have very 

different C implementations, depending on the types of its varia-

bles. Fortunately, defining the types of the arguments/parameters 

of a MATLAB function is often enough to infer the remaining 

types of variables in the function. In the case of static arrays, 

usually it is also possible to determine the shape of the arrays at 

compile time (i.e., how many dimensions the array has, as well as 

the size of each dimension). 

MATISSE uses an interface that represents all possible C im-

plementations for a given named MATLAB function and selects 

one of them based on the received arguments and types. The 

specialization occurs at the level of the function call, instead of 

the function. This mechanism allows MATISSE to generate multi-

ple versions of highly specialized C functions. For instance, if 

there are multiple function calls to a MATLAB function that ac-

cepts a matrix type as input, and it receives different StaticMatrix 

types (a type whose shape is known at compile time), it is possible 

to generate a function specialized to each specific shape. 

4.1 Type and Shape Inference Analysis 

The type inference uses a simple data-flow analysis approach 

[11], where type information is derived by processing each 

MATLAB statement, complemented with information provided by 

LARA aspects. In most cases only the types of function parame-

ters are required for the compiler to achieve an efficient type 

inference. There are two general situations where type-inference 

is applied in MATISSE: 1) during a function call; and 2) during 

assignments. C-IR nodes representing function calls contain 

information about the signature of the functions (i.e., their input 

and output types), and are specialized according to the inputs of 

the call. The output types are usually determined by the object that 

creates the function call, and this means that each function can 

define its own rules regarding the type-inference of its output 

types. For the assignments, the variables on the left hand are 

usually bound to the type inferred in the right hand. Note that 

when in conflict, types of variables defined in a LARA aspect 

always override the inference mechanism. Besides the type, varia-

bles can carry other information, such as values and the shapes of 

matrices. This information is propagated and in many cases up-

dated and extended by information determined in other assign-

ments.  

Consider the code in Figure 3. In the first line, the function size 

returns an array with the shape of the given variable. If the varia-

ble H is of the type StaticMatrix, it always contains information 

about its shape, and the values of h1 and h2 are known at compile 

time. If H is a DynamicMatrix, the values of h1 or h2 might not be 

known. Size is a supported MATLAB function, and MATISSE 

creates a FunctionCall node in C-IR, specialized to the type of H. 

C-IR nodes always carry information about the types they return. 

Thus, MATISSE assigns the types defined by the FunctionIn-

stance of size to h1 and h2 (in this case, both are of type int). 

However, if the types of h1 and h2 are defined in a LARA aspect, 

MATISSE uses those types. If the shape of H is known at compile 

time, the values of h1 and h2 are also known. 

In the second line in Figure 3, for operations such as + there is 

a default rule that chooses the first maximal fit type between the 

operands. The maximal fit is automatically determined using 

information obtained from the Scalar interface (i.e., the minimum 

and maximum possible values of the type). Although MATISSE 

infers types for constants (e.g., 1 is inferred as an integer, 1.0 as a 

double), for this rule the types of constants are not taken into 

account when inferring the type of the output (unless all operands 

are constants). In this case, the result of the addition will have the 

same type as h1. The operator / has special inference rules. By 

default, the output is assigned to a real type, to avoid losing preci-

sion. The flexibility of MATISSE allows, on the one hand, gen-

eral rules available to all functions, and on the other hand, custom 

rules for a particular function. As previously referred, if a LARA 

aspect defines the type of any of the variables (i.e., H, h1, h2 or 

offset1) the inference mechanism for that particular type is aug-

mented with that information. For instance, if the type of the 

variable offset1 is set to float, the operations on the right-hand of 

the assignment will also consider float as output. This way it is 

possible to address the limitations of a static type/shape inference 

analysis, and the usual cases where the user needs to force and 

evaluate data types not derived by type inference. 

[h1,h2] = size(H); 

offset1 = (h1+1)/2; 

Figure 3. Code snippet from conv2. 

4.2 C Code Generation Example 

We now illustrate the application of the proposed approach to a 

MATLAB function implementing an FIR (Finite Impulse Re-

sponse) filter (see Figure 4). This function takes as input two 

arrays, vector_1d and coef, and outputs an array named output. In 

the absence of information about the shape of input arrays, 

MATISSE generates C code that uses the DynamicMatrix type for 

the parameter as well as for the function’s return value, which 

represents a structure with dynamically allocated memory. The 

definition of types and shapes for the function parameters in a 

LARA aspect (see Figure 5) enables the use of the StaticMatrix 

type. 

The MATLAB code in Figure 4 uses the MATLAB built-in 

function sum. Currently, MATISSE supports a general version of 

sum, by using a description in MATLAB translated to C by 

MATISSE. With information about the types of the arguments of 

sum, we can apply transformations over the code. Figure 6 shows 

a possible transformation, which is applied as follows. The func-

tion sum is called with an expression as argument. By analysing 

the MATLAB-IR corresponding to the expression, MATISSE 

determines that it is composed only by element-wise operations 

(i.e., .*). Furthermore, the operands in the expression return one-

dimension arrays (coef is used directly and we know the shape, 

and vector_1d is accessed linearly, returning a one-dimension 

array). The output of sum will be a scalar, and can be replaced 

with an accumulator variable (sum_acc) and a for loop. If there 
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were no ranges, we could iterate the loop over the size of any of 

the input matrices. As there is a range, we use it to control the for 

loop: (i:-1:i-NTAPS+1). If there were any other ranges, 

MATISSE would calculate the indexes outside the for and would 

access them with an induction variable. The matrix coef is used as 

parameter, so the compiler uses an induction variable (matrix_i) to 

access the elements of coef and incremented after each loop itera-

tion. This is an example of a transformation applied with the 

current framework, at the MATLAB-IR level. In this case, the 

output of the transformation is a modified MATLAB-IR, but we 

can perform the same transformation to generate directly C-IR. 

This transformation in particular will slow down the code if exe-

cuted in MATLAB, but can significantly help to generate efficient 

C code (see Figure 7). 

function output=fir_1d(vector_1d, coef)    

  NTAPS = numel(coef); 

  N = numel(vector_1d);  

  output = zeros(1, N); 

  for i = NTAPS:1:N 

    output(i) = sum(vector_1d(i:-1:i-NTAPS+1) 

                .* coef); 

  end   

end 
Figure 4. MATLAB fir code example. 

aspectdef firSingle 

  var typeDef = { // Type definition 

    vector_1d    : "single[1][1024]", 

    coefficients : "single[1][32]", 

    output       : "single" };     

 // Matrix sizes   

 var matrixSizes = {output  : "1, N" }; 

 // Define types 

 call defineTypes("fir_1d", typeDef); 

 // Define matrix sizes 

 call initMatrixes("fir_1d", matrixSizes); 

 // Inline all functions MATISSE supports 

 call matisseInline("true"); 

 // Define the matrix implementation as static 

 call matisseMatrixImpl("static") 

end 

Figure 5. LARA aspect that defines the types for the fir example. 

function output=fir_1d(vector_1d, coef) 

  NTAPS = numel(coef); 

  N = numel(vector_1d); output = zeros(1, N); 

  for i = NTAPS:1:N 

    sum_acc = 0; matrix_i = 1; 

    for sum_i = i:-1:i-NTAPS+1 

      sum_acc = sum_acc + vector_1d(sum_i)  

                .* coef(matrix_i); 

      matrix_i = matrix_i + 1; 

    end 

    output(i) = sum_acc;     

  end    

end 
Figure 6. MATLAB fir after transformation. 

4.3 OpenCL Generation 

We are developing an OpenCL generator which uses OpenACC 

[12] based pragmas in the MATLAB code to decide what/how to 

parallelize. Sections to parallelize begin with the “parallel loop” 

pragma. The “end” pragma indicates the end of the code section 

the pragma applies to. Parallel loop sections can be parameterized 

with copyin, copyout and/or reduce. Two types of reductions are 

supported: sums and products. 

We present the OpenCL engine to illustrate the overall flexi-

bility of the framework, and of the C-IR. In a few months’ work, a 

single Master student was able to develop an OpenCL engine 

capable of generating the OpenCL code for sections in a relevant 

subset of MATLAB annotated with pragmas, plus the necessary 

wrapper classes that perform the communication between the C 

and the OpenCL code (both codes are represented using the C-

IR). The OpenCL engine replaces pragma occurrences with a call 

to a custom function. It then translates that function to OpenCL. 

The OpenCL generation is still in a very early phase and the 

currently generated code is not optimized. 

float* fir(float input[1024], float coef[32], 

float output[1024]) 

{ 

 int NTAPS; int N; int i; float sum_acc; 
 float sum_acc; int matrix_i; int sum_i; 

 NTAPS = 32; N = 1024; 

 zeros_f1x1024(output); 

 for(i = NTAPS; i<=N; i = i+1){ 

   sum_acc = 0.0f; matrix_i = 1; 

   for(sum_i = i; sum_i>=(i-NTAPS)+1; sum_i--){ 

     sum_acc = sum_acc+(vector_1d[sum_i-1] *        

               coef[matrix_i-1]); 

     matrix_i = matrix_i+1; 

   }     

   output[i-1] = sum_acc; 

 }  

 return output; 

} 
Figure 7. C code with static matrices for the fir function generat-

ed by MATISSE with information about shapes. 

5. Experimental Results 

We carried out a series of experiments to evaluate the impact of 

the information introduced by aspects on the performance of the 

generated C code, when executed on an embedded platform. We 

also compared the execution time of the generated code against 

the original MATLAB code, when using a desktop PC. Finally, 

we show some preliminary results obtained by an early version of 

the OpenCL generator. 

5.1 Methodology 

We use MATISSE to automatically derive C code corresponding 

to kernels written in MATLAB. We then compare the execution 

time after compiling the resulting code to two architectures: 1) A 

desktop PC with a 2.93GHz Core 2 Duo processor and Windows 

7 32-bit, 3GB of RAM and an nVidia Quadro NVS-290; 2) A 

BeagleBoard-XM revB running Ubuntu 12.10 32bit, with a 1GHz 

ARM Cortex-A8 and 512MB of RAM. 

We use as benchmarks a set of kernels we consider relevant 

for embedded systems. We include subband and grid_it, two 

critical functions from the 3D Path Planning and the MPEG audio 

encoder applications [10]. In addition, we include an application 

to perform correlation using FFTs and with 3D matrices as input. 

This application named cfd, uses forward and inverse 2D FFTs 

provided by a MATLAB function able to perform N-dimensional 

FFTs (identified as fft2d), and a dot product between 3D matrices 

(identified as cpx). Table 1 contains all the benchmarks used.  

For both architectures, the generated C code was compiled 

with gcc-4.6, using flag –O2 and the OpenCL code was compiled 

with the AMD APP SDK v2.9. Besides the code of the functions, 

MATISSE also generates main functions for testing purposes, 

when specifying a .M or .MAT file with the values of the input 

arguments of the function to test. All benchmarks output correct 
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results when compared with MATLAB original output, up to an 

error of 10E-6.  

Table 1. Benchmark characteristics. 

Benchmark Input Sizes MATLAB LoCs 

cfd 256 × 256 × 3 50 

conv 96 × 11 73 

cpx 512 × 512 × 10 23 

dilate 2048 × 2048 , 2 17 

fft2d 256 × 256 124 

fir1d 1M × 32 14 

grid_it 32 × 64 × 16 38 

latnrm 32K × 8 29 

subband 128 × 64ki 35 

5.2 Results 

We consider two options for generating C code: aspects (mini-

mal/optimized) and function inlining (enabled/disabled). Minimal 

aspect refers to the minimum information we have to provide to 

generate C code that outputs correct results (sometimes we have 

to define the type of the output, or of some intermediate varia-

bles), while optimized is an aspect that has been tailored to pro-

vide specialized code. 

Figure 8 shows the impact on performance by each option. 

Function inlining provides the highest speedups, on average a 

speedup of 1.6× for the tested codes (with speedups up to 2.2× 

and 2.6×, for grid_it and conv, respectively). This was expected as 

inlining removes the overhead of calling a function and enables 

further optimizations. In the case of the inlining of get/set func-

tions, we are trading array-bound checking for performance. 

Specialization achieved a more modest effect, on average a 

speedup of 1.2×, with a maximum of 1.8× for subband. When 

specializing with aspects, we are replacing certain types with 

potentially less expensive types (doubles with floats, floats with 

integers), and reducing the overhead of type casting. In architec-

tures more sensitive to data types a larger impact is expected (e.g., 

when double precision is supported by software). 

 

Figure 8. Speedups on the BeagleBoard of the C code when 

considering three options. 

Figure 9 presents the speedups of the C code generated by 

MATISSE when compared over the execution of the original 

MATLAB code when using MATLAB 2012b, on the Core 2 Duo. 

Significant speedups were achieved for most cases, ranging from 

5× to 9×. We measured a slowdown of 0.6× for fft2d. The slow-

down is related to missing opportunities for optimizing the code 

of the function. We also achieved very high speedups. E.g., for 

cpx, the main reason is the pre-allocation of matrices inserted by 

the LARA aspect. If we compare to the execution time in 

MATLAB after the code is transformed according to LARA 

specifications, the speedup reduces from 105× to 5× (the geomet-

ric mean reduces from 19× to 12×). For latnrm, we consider that 

the MATLAB code does not use appropriate idiomatic constructs, 

and that slowdowns the execution in MATLAB. In the case of 

fir1d and subband, we are already using MATLAB built-in func-

tions (e.g., sum), and the impact of pre-allocation does not com-

pletely explains the speedups (fir1d reduces to 63×; subband 

increases to 33×). The speedups come from the transformation 

presented in Section 4.2. We did an experiment where we imple-

mented our own MATLAB version of sum, and used it to generate 

C code instead of doing the transformation. In this case, the sub-

band speedup was reduced to 2× (MATISSE could not generate C 

code using the custom sum for the other benchmarks where sum is 

used, such as fir1d). 

 

Figure 9. Speedups when comparing the execution of MATLAB 

code with the C code generated by MATISSE. 

Table 2 shows the speedups achieved by the code generated 

with the OpenCL engine, when compared with the execution of 

the original MATLAB code, running on MATLAB, and the C 

version generated by MATISSE without OpenCL directives. From 

the set of benchmarks, we chose those whose loops could be 

parallelized and currently supported by the OpenCL generator. 

The OpenACC based pragmas were manually added to the 

MATLAB code. The generated OpenCL code run in the nVidia 

Quadro NVS-290 of the desktop PC.  

We achieved a speedup of 1.37× on dilate over C-only code, 

after increasing the size of the inputs (from a 512×512 image to 

1024×1024). For cpx and subband, the OpenCL implementation 

could not beat the pure C code currently generated by MATISSE. 

These results were expected as our current OpenCL generator is 

not able to take fully advantage of the target GPUs. 

Table 2. Speedup of C+OpenCL compared with execution in 

MATLAB and execution of C-only MATISSE on Core 2 Duo. 

Benchmark MATLAB C-only MATISSE 

dilate 1024 × 1024 17.5 1.37 

cpx 18.8 0.19 

subband 1.9 0.05 

6. Related Work 

Given the importance of MATLAB there have been research ef-

forts to improve the execution of JIT MATLAB compilers. A 

recent example is the compiler presented in [13] which performs 

function specialization based on the runtime knowledge of the 

types of the arguments of the functions. Given the widespread of 

the use of MATLAB to develop embedded systems and the hard-

ware constraints of such systems that precludes the use of a 

runtime MATLAB environment, an important aspect is the auto-

matic translation of MATLAB programs into equivalent C code.  

DeRose and Padua developed the FALCON environment [14] 

that translates MATLAB to FORTRAN90 code. They leverage an 

aggressive use of static and type inference for base types (doubles 

and complex) as well as shape (or rank) of the matrices. Other 

researchers have explored the reuse of storage for array variables 
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across a MATLAB code thus reducing the memory footprint of the 

corresponding C reference code [15]. Joisha et al [16] focused on 

type and shape inference techniques. Researchers have also relied 

on a mix of type inference approaches and user’s provided infor-

mation. For instance, [17][18] use annotations to specify data 

types and shapes and simple type inference analysis and target 

VHDL code for hardware synthesis onto FPGAs. We specifically 

note that the focus of our approach is mostly on embedded im-

plementations of the MATLAB programs. In this context, an effi-

cient translation to an implementation language (mainly C) is 

needed. One of the possibilities is to consider a subset of 

MATLAB allowing feasible and efficient static compilation. Ex-

amples using such a subset are the Matlab Coder [2] and the 

Embedded Coder [3]. 

The popularity of the MATLAB language is also reflected in 

the similar languages that have been proposed. Examples of those 

languages are Scilab [19] and Octave [20]. A Scilab to C transla-

tor [21], named Sci2C, has been developed. Sci2C focus entirely 

on embedded systems, and is completely dependent on annota-

tions embedded in the Scilab code to specify data sizes and preci-

sions. Our compiler distinguishes from Sci2C as it is able to gen-

erate C code without polluting the original code. Furthermore, 

Sci2C requires that the size of arrays is fixed and statically known 

while our compiler also produces C code when those sizes are 

unknown. The use of user-specified rules and strategies for code 

transformations has been used to optimize Octave programs [22]. 

with loop vectorization and partial evaluation of types and values. 

In this work we describe a mechanism for conveying infor-

mation about types and shape/rank similar in spirit with the notion 

of Aspects [7]. Previous work has proposed aspect-oriented exten-

sions to MATLAB and an aspect-oriented code transformation 

language for MATLAB [23]. Other authors have explored aspect-

oriented approaches for MATLAB [24], but do not use aspects to 

specify complementary information that can be used by compilers 

to produce more efficient implementations. 

7. Conclusion 

This paper presented the current status of MATISSE, a compiler 

infrastructure for MATLAB. MATISSE relies on LARA aspects 

for specifying data types, shapes, and code instrumentation and 

specialization, and on the C-IR for type inference and C code 

generation. We presented the general flow of the tool, and de-

scribed the possible transformations that can be applied and the 

optimizations performed by the compiler. The experiments reveal 

promising performance results, achieving a geometric mean 

speedup of 12× over execution in MATLAB when considering 9 

benchmarks. Additionally, we described our first steps on 

OpenCL generation from MATLAB. Our OpenCL generator takes 

advantage of OpenACC-based directives to decide about the 

parallelization and about the MATLAB code sections to be 

mapped to the accelerator. Ongoing work is focused on further 

optimizing the C generator and on evaluating and optimizing the 

OpenCL generator. 
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