

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ARRAY'14, June 11 2014, Edinburgh, United Kingdom

Copyright 2014 ACM 978-1-4503-2937-8/14/06 $15.00.

http://dx.doi.org/10.1145/2627373.2627389

Multi-Target C Code Generation from MATLAB


João Bispo, Luís Reis

Faculty of Engineering (FEUP)

University of Porto, Porto, Portugal

{jbispo, ei09030}@fe.up.pt

João M. P. Cardoso

Faculty of Engineering (FEUP)

University of Porto & INESC-TEC, Porto, Portugal

jmpc@fe.up.pt

Abstract

This paper describes our recent work on MATISSE, a framework

for MATLAB to C compilation. We focus on the new optimiza-

tions and transformations, as well as on OpenCL generation.

MATISSE is controlled with LARA, an aspect-oriented language,

able to specify transformations to the input MATLAB code (e.g.,

insertion of code for variable initialization and for monitoring)

and to express information concerning types and shapes of varia-

bles. We evaluate the compiler with a set of benchmarks when

targeting both an embedded system and a desktop system. The

results show that we were able to achieve a speedup up to 1.8× by

employing information provided by LARA aspects. We also

compare the execution time of the generated C code with the

original code running on MATLAB, and we achieve a geometric

mean speedup of 19×. The geometric mean speedup reduces to

12× when optimizing the MATLAB code with LARA aspects.

Finally, we present a preliminary version of a fully-functioning

pragma-based OpenCL generator, built over the MATISSE

framework.

Categories and Subject Descriptors D.3.4 [Programming Lan-

guages]: Processors – Code generation, Compilers, Optimization,

Retargetable compilers D.2.2 [Software Engineering]: Design

Tools and Techniques

General Terms Performance, Experimentation, Languages

Keywords MATLAB-to-C, source-to-source compiler, Aspect-

oriented programming, LARA, embedded systems, OpenCL

1. Introduction

MATLAB [1] is a de facto standard high-level programming lan-

guage and interactive numerical computing environment in many

domains in engineering and science, including embedded compu-

ting as it is ubiquitously used by engineers to quickly develop and

evaluate their solutions. MATLAB is dynamically typed, and relies

on interpretation (and/or JIT compilation) as the information

about the types and shapes (i.e., number and size of matrix dimen-

sions) of variables is only known at runtime. Due to advances in

JIT compilation and the use of pre-compiled libraries for the most

intensive functions, the MATLAB runtime environment currently

exhibits acceptable performance.

In many embedded system settings, however, the use of a

MATLAB runtime environment is infeasible, either because it is

not available, or due to performance and/or resource constraints.

To address this potential shortcoming, a typical solution relies on

the development of an implementation in executable code written

in an imperative language such as C/C++ once the base or original

MATLAB code has been validated. This implementation must then

in turn be validated against the output of the MATLAB code result-

ing on a lengthy and error prone process that further complicates

the overall application development cycle and cost. The existence

of two code specifications - the original prototypical MATLAB

code and the reference C/C++ code - also exacerbates mainte-

nance costs. Another solution is to rely on the automatic transla-

tion of MATLAB to the target programming language as provid-

ed, e.g., by the MATLAB Coder [2] and the Embedded Coder [3],

which translate MATLAB to C code. Besides the inherent ad-

vantages, this, however, has typically the disadvantage of the low

support to control and guide the code translation. The code gener-

ation is typically based on directives (GUI based in the case of the

MATLAB Coder) addressing types, shapes, and target. When

dealing with the myriad of target architectures and toolchains in

embedded systems, this approach presents a low level of flexibil-

ity, e.g., as the style of the C code generator might need to be

tuned to the toolchain as is the case when targeting C to hardware

compilers. Instrumentation and code transformations, as well as

an approach to express strategies for code transformations and

instrumentation (e.g., by using a DSL) can be very important

during the design process and may increase productivity. Fur-

thermore, the target platform may require code generators to

specific programming languages as is the case of the generation of

OpenCL [4] when dealing with GPGPUs and/or GPU-based

FPGA implementations [5].

Our approach relies on a compilation tool, named as

MATISSE [6], which generates C code directly from MATLAB.

Our approach explores the use of Aspect-Oriented Programming

(AOP) [7][8] concepts, through the use of the LARA language

[9][10] as a vehicle to convey information to the compiler (e.g.,

types and array shapes) and to express code specialization and

code instrumentation strategies. The compiler uses the user-

provided information complementing and checking its consistency

against the information it can derive from its own analysis.

MATISSE is being developed as a modular and flexible compiler

framework, which includes custom Intermediate Representations

(IRs) for the MATLAB and C code, keeping in mind the genera-

tion of C code from a higher-level programming language. In

particular, the IR representing the output C code (C-IR) supports

matrix types natively, and can be easily extended to support addi-

tional types and language constructs (such as the ones needed to

generate OpenCL). The end result is a synergy between compiler

analysis and the user that allows the compiler to generate very

high-quality code from MATLAB specifications. It is also possible

95

to generate different versions of the C code, to better target differ-

ent embedded systems, platforms, and/or toolchains. In this paper

we focus on our recent MATISSE improvements.

The remainder of this paper is organized as follows. Section 2

presents the MATISSE compiler framework. In Section 3 we

describe the C-IR, the internal representation we use to generate C

code. Section 4 explains how the MATLAB code is transformed

into C code and OpenCL with the help of LARA aspects. Section

5 shows some experiments performed using MATISSE. Section 6

describes related work and finally, Section 7 concludes this paper

and describes ongoing work.

2. MATISSE Overview

MATISSE consists of a MATLAB-to-C compiler targeting em-

bedded systems, and a LARA-controlled MATLAB weaver which

allows transformations over MATLAB code. LARA [9] is a

domain-specific language inspired by AOP concepts [7] and

JavaScript semantics and constructs. LARA uses a declarative

semantic to allow programmers to specify strategies for actions

over application source code and/or compiler IRs (e.g., instrument

code, extract information, explore transformations, apply compiler

optimizations). LARA aspects are applied by a target language

dependent weaver, such as the weaver for the MATLAB language

integrated in MATISSE.

Figure 1 presents the overall flow of MATISSE. The input

MATLAB files are parsed and translated to an abstract syntax tree

(AST) based MATLAB IR. The IR is the input to MWeaver,

which uses LARA aspects to modify and add information (e.g.,

variable types and shapes) to the MATLAB IR. MATISSE is

being developed in a way to make easy the integration of code

generators. At the moment code generators for MATLAB and C

are already fully working and an OpenCL code generator is under

development.

Figure 1. Overview of the MATISSE compiler framework.

MATISSE generates MATLAB code for validation, testing,

monitoring, and specialization, and C code to be used by third-

party design-flows targeting software/hardware systems.

MATISSE is able to generate customized C code for a particular

target without modifying the original MATLAB code. LARA

aspects enable MATISSE to have fine-grained control over the

generation of C code, and also allow the generation of different

implementations from the same source code. A common example

includes the restructuring of source code and the use of statically

declared array variables to be compliant with the requirements of

most hardware compilers.

MATISSE can be used as a source-to-source code transfor-

mation and instrumentation tool allowing developers to quickly

and reliably generate reference C implementations, a key step in

the deployment of embedded system applications. The transfor-

mation stage of the compiler performs weaving actions such as

insertion of code, definitions of types and shapes, and code spe-

cialization based on default values.

3. A High-Level C-IR

Given the differences between MATLAB and C, we decided to

use a C specific AST-based IR to represent the C code (C-IR).

This simplifies the generation of C code and allows us to separate

concerns related to C generation (e.g., include files, variable

declarations) that are not considered in the MATLAB IR. This

option also makes the MATLAB IR clean and independent of the

specificities of the code generation to be applied.

3.1 Variable Types

The C-IR uses the VariableType interface to represent all the

information needed about a data type (e.g., code needed to declare

the variable, how to convert to another type, how to perform an

addition between variables of this type). VariableType allows a

seamless integration of several types in a modular way. For in-

stance, we were able to add support for OpenCL native types

through an implementation of VariableType, without changing the

C-IR library. Figure 2 shows a subset of the hierarchy that starts

with the VariableType interface. To add a new type, one needs to

create a class that implements the VariableType interface. Scalar

represents a single value, and Matrix represents a multi-

dimensional array of elements of type Scalar. These two classes

add contract methods that provide information specific to these

types, such as number of bits, maximum and minimum values or

signed/unsigned, for Scalar, or matrix shape and element type, for

Matrix. CNative represents the native types of C (e.g., int, float, in

the case of Numeric, and, e.g., int32_t, uint8_t in the case of

StdInt).

Figure 2. Subset of the VariableType hierarchy in the C-IR.

3.2 Matrix Types in C-IR

Currently, the C-IR has two Matrix implementations, StaticMa-

trix, which uses statically allocated C arrays (e.g., int A[3]), and

DynamicMatrix, which uses a C structure to represent dynamical-

ly allocated arrays of a given element type. For dynamic arrays,

MATISSE allows the option to use for each array access a func-

96

tion that performs array bounds checking (for debugging), or to

use inlined code without checks (for performance).

MATISSE uses linearization of multi-dimensional arrays,

whereby an element of the multi-dimensional array is accessed

through a single pointer variable. Linearization has several bene-

fits. Firstly, simple element-wise operations are compactly exe-

cuted in a single loop rather than using a loop nested structure.

Secondly, the single allocation of storage and corresponding

boundary values also enables one out-of-bound condition check

per array access rather than having to perform a verification per

array dimension. Lastly, it also provides other advantages regard-

ing the size of the code generated. When multi-dimensional arrays

are generated without linearization, code may need to consider

various pointers (when dimensions are not known at compilation

time) in order to allocate the space needed for all dimensions.

4. Transforming MATLAB to C

MATLAB is a dynamically typed language. This is in stark con-

trast with C, which is statically typed and needs the types of all

variables to be declared. When converting MATLAB to efficient C

code, it is necessary to statically determine the types used. This

can be a challenge, as the same MATLAB function can have very

different C implementations, depending on the types of its varia-

bles. Fortunately, defining the types of the arguments/parameters

of a MATLAB function is often enough to infer the remaining

types of variables in the function. In the case of static arrays,

usually it is also possible to determine the shape of the arrays at

compile time (i.e., how many dimensions the array has, as well as

the size of each dimension).

MATISSE uses an interface that represents all possible C im-

plementations for a given named MATLAB function and selects

one of them based on the received arguments and types. The

specialization occurs at the level of the function call, instead of

the function. This mechanism allows MATISSE to generate multi-

ple versions of highly specialized C functions. For instance, if

there are multiple function calls to a MATLAB function that ac-

cepts a matrix type as input, and it receives different StaticMatrix

types (a type whose shape is known at compile time), it is possible

to generate a function specialized to each specific shape.

4.1 Type and Shape Inference Analysis

The type inference uses a simple data-flow analysis approach

[11], where type information is derived by processing each

MATLAB statement, complemented with information provided by

LARA aspects. In most cases only the types of function parame-

ters are required for the compiler to achieve an efficient type

inference. There are two general situations where type-inference

is applied in MATISSE: 1) during a function call; and 2) during

assignments. C-IR nodes representing function calls contain

information about the signature of the functions (i.e., their input

and output types), and are specialized according to the inputs of

the call. The output types are usually determined by the object that

creates the function call, and this means that each function can

define its own rules regarding the type-inference of its output

types. For the assignments, the variables on the left hand are

usually bound to the type inferred in the right hand. Note that

when in conflict, types of variables defined in a LARA aspect

always override the inference mechanism. Besides the type, varia-

bles can carry other information, such as values and the shapes of

matrices. This information is propagated and in many cases up-

dated and extended by information determined in other assign-

ments.

Consider the code in Figure 3. In the first line, the function size

returns an array with the shape of the given variable. If the varia-

ble H is of the type StaticMatrix, it always contains information

about its shape, and the values of h1 and h2 are known at compile

time. If H is a DynamicMatrix, the values of h1 or h2 might not be

known. Size is a supported MATLAB function, and MATISSE

creates a FunctionCall node in C-IR, specialized to the type of H.

C-IR nodes always carry information about the types they return.

Thus, MATISSE assigns the types defined by the FunctionIn-

stance of size to h1 and h2 (in this case, both are of type int).

However, if the types of h1 and h2 are defined in a LARA aspect,

MATISSE uses those types. If the shape of H is known at compile

time, the values of h1 and h2 are also known.

In the second line in Figure 3, for operations such as + there is

a default rule that chooses the first maximal fit type between the

operands. The maximal fit is automatically determined using

information obtained from the Scalar interface (i.e., the minimum

and maximum possible values of the type). Although MATISSE

infers types for constants (e.g., 1 is inferred as an integer, 1.0 as a

double), for this rule the types of constants are not taken into

account when inferring the type of the output (unless all operands

are constants). In this case, the result of the addition will have the

same type as h1. The operator / has special inference rules. By

default, the output is assigned to a real type, to avoid losing preci-

sion. The flexibility of MATISSE allows, on the one hand, gen-

eral rules available to all functions, and on the other hand, custom

rules for a particular function. As previously referred, if a LARA

aspect defines the type of any of the variables (i.e., H, h1, h2 or

offset1) the inference mechanism for that particular type is aug-

mented with that information. For instance, if the type of the

variable offset1 is set to float, the operations on the right-hand of

the assignment will also consider float as output. This way it is

possible to address the limitations of a static type/shape inference

analysis, and the usual cases where the user needs to force and

evaluate data types not derived by type inference.

[h1,h2] = size(H);

offset1 = (h1+1)/2;

Figure 3. Code snippet from conv2.

4.2 C Code Generation Example

We now illustrate the application of the proposed approach to a

MATLAB function implementing an FIR (Finite Impulse Re-

sponse) filter (see Figure 4). This function takes as input two

arrays, vector_1d and coef, and outputs an array named output. In

the absence of information about the shape of input arrays,

MATISSE generates C code that uses the DynamicMatrix type for

the parameter as well as for the function’s return value, which

represents a structure with dynamically allocated memory. The

definition of types and shapes for the function parameters in a

LARA aspect (see Figure 5) enables the use of the StaticMatrix

type.

The MATLAB code in Figure 4 uses the MATLAB built-in

function sum. Currently, MATISSE supports a general version of

sum, by using a description in MATLAB translated to C by

MATISSE. With information about the types of the arguments of

sum, we can apply transformations over the code. Figure 6 shows

a possible transformation, which is applied as follows. The func-

tion sum is called with an expression as argument. By analysing

the MATLAB-IR corresponding to the expression, MATISSE

determines that it is composed only by element-wise operations

(i.e., .*). Furthermore, the operands in the expression return one-

dimension arrays (coef is used directly and we know the shape,

and vector_1d is accessed linearly, returning a one-dimension

array). The output of sum will be a scalar, and can be replaced

with an accumulator variable (sum_acc) and a for loop. If there

97

were no ranges, we could iterate the loop over the size of any of

the input matrices. As there is a range, we use it to control the for

loop: (i:-1:i-NTAPS+1). If there were any other ranges,

MATISSE would calculate the indexes outside the for and would

access them with an induction variable. The matrix coef is used as

parameter, so the compiler uses an induction variable (matrix_i) to

access the elements of coef and incremented after each loop itera-

tion. This is an example of a transformation applied with the

current framework, at the MATLAB-IR level. In this case, the

output of the transformation is a modified MATLAB-IR, but we

can perform the same transformation to generate directly C-IR.

This transformation in particular will slow down the code if exe-

cuted in MATLAB, but can significantly help to generate efficient

C code (see Figure 7).

function output=fir_1d(vector_1d, coef)

 NTAPS = numel(coef);

 N = numel(vector_1d);

 output = zeros(1, N);

 for i = NTAPS:1:N

 output(i) = sum(vector_1d(i:-1:i-NTAPS+1)

 .* coef);

 end

end
Figure 4. MATLAB fir code example.

aspectdef firSingle

 var typeDef = { // Type definition

 vector_1d : "single[1][1024]",

 coefficients : "single[1][32]",

 output : "single" };

 // Matrix sizes

 var matrixSizes = {output : "1, N" };

 // Define types

 call defineTypes("fir_1d", typeDef);

 // Define matrix sizes

 call initMatrixes("fir_1d", matrixSizes);

 // Inline all functions MATISSE supports

 call matisseInline("true");

 // Define the matrix implementation as static

 call matisseMatrixImpl("static")

end

Figure 5. LARA aspect that defines the types for the fir example.

function output=fir_1d(vector_1d, coef)

 NTAPS = numel(coef);

 N = numel(vector_1d); output = zeros(1, N);

 for i = NTAPS:1:N

 sum_acc = 0; matrix_i = 1;

 for sum_i = i:-1:i-NTAPS+1

 sum_acc = sum_acc + vector_1d(sum_i)

 .* coef(matrix_i);

 matrix_i = matrix_i + 1;

 end

 output(i) = sum_acc;

 end

end
Figure 6. MATLAB fir after transformation.

4.3 OpenCL Generation

We are developing an OpenCL generator which uses OpenACC

[12] based pragmas in the MATLAB code to decide what/how to

parallelize. Sections to parallelize begin with the “parallel loop”

pragma. The “end” pragma indicates the end of the code section

the pragma applies to. Parallel loop sections can be parameterized

with copyin, copyout and/or reduce. Two types of reductions are

supported: sums and products.

We present the OpenCL engine to illustrate the overall flexi-

bility of the framework, and of the C-IR. In a few months’ work, a

single Master student was able to develop an OpenCL engine

capable of generating the OpenCL code for sections in a relevant

subset of MATLAB annotated with pragmas, plus the necessary

wrapper classes that perform the communication between the C

and the OpenCL code (both codes are represented using the C-

IR). The OpenCL engine replaces pragma occurrences with a call

to a custom function. It then translates that function to OpenCL.

The OpenCL generation is still in a very early phase and the

currently generated code is not optimized.

float* fir(float input[1024], float coef[32],

float output[1024])

{

 int NTAPS; int N; int i; float sum_acc;
 float sum_acc; int matrix_i; int sum_i;

 NTAPS = 32; N = 1024;

 zeros_f1x1024(output);

 for(i = NTAPS; i<=N; i = i+1){

 sum_acc = 0.0f; matrix_i = 1;

 for(sum_i = i; sum_i>=(i-NTAPS)+1; sum_i--){

 sum_acc = sum_acc+(vector_1d[sum_i-1] *

 coef[matrix_i-1]);

 matrix_i = matrix_i+1;

 }

 output[i-1] = sum_acc;

 }

 return output;

}
Figure 7. C code with static matrices for the fir function generat-

ed by MATISSE with information about shapes.

5. Experimental Results

We carried out a series of experiments to evaluate the impact of

the information introduced by aspects on the performance of the

generated C code, when executed on an embedded platform. We

also compared the execution time of the generated code against

the original MATLAB code, when using a desktop PC. Finally,

we show some preliminary results obtained by an early version of

the OpenCL generator.

5.1 Methodology

We use MATISSE to automatically derive C code corresponding

to kernels written in MATLAB. We then compare the execution

time after compiling the resulting code to two architectures: 1) A

desktop PC with a 2.93GHz Core 2 Duo processor and Windows

7 32-bit, 3GB of RAM and an nVidia Quadro NVS-290; 2) A

BeagleBoard-XM revB running Ubuntu 12.10 32bit, with a 1GHz

ARM Cortex-A8 and 512MB of RAM.

We use as benchmarks a set of kernels we consider relevant

for embedded systems. We include subband and grid_it, two

critical functions from the 3D Path Planning and the MPEG audio

encoder applications [10]. In addition, we include an application

to perform correlation using FFTs and with 3D matrices as input.

This application named cfd, uses forward and inverse 2D FFTs

provided by a MATLAB function able to perform N-dimensional

FFTs (identified as fft2d), and a dot product between 3D matrices

(identified as cpx). Table 1 contains all the benchmarks used.

For both architectures, the generated C code was compiled

with gcc-4.6, using flag –O2 and the OpenCL code was compiled

with the AMD APP SDK v2.9. Besides the code of the functions,

MATISSE also generates main functions for testing purposes,

when specifying a .M or .MAT file with the values of the input

arguments of the function to test. All benchmarks output correct

98

results when compared with MATLAB original output, up to an

error of 10E-6.

Table 1. Benchmark characteristics.

Benchmark Input Sizes MATLAB LoCs

cfd 256 × 256 × 3 50

conv 96 × 11 73

cpx 512 × 512 × 10 23

dilate 2048 × 2048 , 2 17

fft2d 256 × 256 124

fir1d 1M × 32 14

grid_it 32 × 64 × 16 38

latnrm 32K × 8 29

subband 128 × 64ki 35

5.2 Results

We consider two options for generating C code: aspects (mini-

mal/optimized) and function inlining (enabled/disabled). Minimal

aspect refers to the minimum information we have to provide to

generate C code that outputs correct results (sometimes we have

to define the type of the output, or of some intermediate varia-

bles), while optimized is an aspect that has been tailored to pro-

vide specialized code.

Figure 8 shows the impact on performance by each option.

Function inlining provides the highest speedups, on average a

speedup of 1.6× for the tested codes (with speedups up to 2.2×

and 2.6×, for grid_it and conv, respectively). This was expected as

inlining removes the overhead of calling a function and enables

further optimizations. In the case of the inlining of get/set func-

tions, we are trading array-bound checking for performance.

Specialization achieved a more modest effect, on average a

speedup of 1.2×, with a maximum of 1.8× for subband. When

specializing with aspects, we are replacing certain types with

potentially less expensive types (doubles with floats, floats with

integers), and reducing the overhead of type casting. In architec-

tures more sensitive to data types a larger impact is expected (e.g.,

when double precision is supported by software).

Figure 8. Speedups on the BeagleBoard of the C code when

considering three options.

Figure 9 presents the speedups of the C code generated by

MATISSE when compared over the execution of the original

MATLAB code when using MATLAB 2012b, on the Core 2 Duo.

Significant speedups were achieved for most cases, ranging from

5× to 9×. We measured a slowdown of 0.6× for fft2d. The slow-

down is related to missing opportunities for optimizing the code

of the function. We also achieved very high speedups. E.g., for

cpx, the main reason is the pre-allocation of matrices inserted by

the LARA aspect. If we compare to the execution time in

MATLAB after the code is transformed according to LARA

specifications, the speedup reduces from 105× to 5× (the geomet-

ric mean reduces from 19× to 12×). For latnrm, we consider that

the MATLAB code does not use appropriate idiomatic constructs,

and that slowdowns the execution in MATLAB. In the case of

fir1d and subband, we are already using MATLAB built-in func-

tions (e.g., sum), and the impact of pre-allocation does not com-

pletely explains the speedups (fir1d reduces to 63×; subband

increases to 33×). The speedups come from the transformation

presented in Section 4.2. We did an experiment where we imple-

mented our own MATLAB version of sum, and used it to generate

C code instead of doing the transformation. In this case, the sub-

band speedup was reduced to 2× (MATISSE could not generate C

code using the custom sum for the other benchmarks where sum is

used, such as fir1d).

Figure 9. Speedups when comparing the execution of MATLAB

code with the C code generated by MATISSE.

Table 2 shows the speedups achieved by the code generated

with the OpenCL engine, when compared with the execution of

the original MATLAB code, running on MATLAB, and the C

version generated by MATISSE without OpenCL directives. From

the set of benchmarks, we chose those whose loops could be

parallelized and currently supported by the OpenCL generator.

The OpenACC based pragmas were manually added to the

MATLAB code. The generated OpenCL code run in the nVidia

Quadro NVS-290 of the desktop PC.

We achieved a speedup of 1.37× on dilate over C-only code,

after increasing the size of the inputs (from a 512×512 image to

1024×1024). For cpx and subband, the OpenCL implementation

could not beat the pure C code currently generated by MATISSE.

These results were expected as our current OpenCL generator is

not able to take fully advantage of the target GPUs.

Table 2. Speedup of C+OpenCL compared with execution in

MATLAB and execution of C-only MATISSE on Core 2 Duo.

Benchmark MATLAB C-only MATISSE

dilate 1024 × 1024 17.5 1.37

cpx 18.8 0.19

subband 1.9 0.05

6. Related Work

Given the importance of MATLAB there have been research ef-

forts to improve the execution of JIT MATLAB compilers. A

recent example is the compiler presented in [13] which performs

function specialization based on the runtime knowledge of the

types of the arguments of the functions. Given the widespread of

the use of MATLAB to develop embedded systems and the hard-

ware constraints of such systems that precludes the use of a

runtime MATLAB environment, an important aspect is the auto-

matic translation of MATLAB programs into equivalent C code.

DeRose and Padua developed the FALCON environment [14]

that translates MATLAB to FORTRAN90 code. They leverage an

aggressive use of static and type inference for base types (doubles

and complex) as well as shape (or rank) of the matrices. Other

researchers have explored the reuse of storage for array variables

!"!

#"!

$"!

%"!

&'()*)+,- ./0)/,- &'()*)+,-121./0)/,-

3"% 3"4

#!5

5"6

!"7

38

5"7

3$$ %$ #4

!

5

#!

#5

$!

99

across a MATLAB code thus reducing the memory footprint of the

corresponding C reference code [15]. Joisha et al [16] focused on

type and shape inference techniques. Researchers have also relied

on a mix of type inference approaches and user’s provided infor-

mation. For instance, [17][18] use annotations to specify data

types and shapes and simple type inference analysis and target

VHDL code for hardware synthesis onto FPGAs. We specifically

note that the focus of our approach is mostly on embedded im-

plementations of the MATLAB programs. In this context, an effi-

cient translation to an implementation language (mainly C) is

needed. One of the possibilities is to consider a subset of

MATLAB allowing feasible and efficient static compilation. Ex-

amples using such a subset are the Matlab Coder [2] and the

Embedded Coder [3].

The popularity of the MATLAB language is also reflected in

the similar languages that have been proposed. Examples of those

languages are Scilab [19] and Octave [20]. A Scilab to C transla-

tor [21], named Sci2C, has been developed. Sci2C focus entirely

on embedded systems, and is completely dependent on annota-

tions embedded in the Scilab code to specify data sizes and preci-

sions. Our compiler distinguishes from Sci2C as it is able to gen-

erate C code without polluting the original code. Furthermore,

Sci2C requires that the size of arrays is fixed and statically known

while our compiler also produces C code when those sizes are

unknown. The use of user-specified rules and strategies for code

transformations has been used to optimize Octave programs [22].

with loop vectorization and partial evaluation of types and values.

In this work we describe a mechanism for conveying infor-

mation about types and shape/rank similar in spirit with the notion

of Aspects [7]. Previous work has proposed aspect-oriented exten-

sions to MATLAB and an aspect-oriented code transformation

language for MATLAB [23]. Other authors have explored aspect-

oriented approaches for MATLAB [24], but do not use aspects to

specify complementary information that can be used by compilers

to produce more efficient implementations.

7. Conclusion

This paper presented the current status of MATISSE, a compiler

infrastructure for MATLAB. MATISSE relies on LARA aspects

for specifying data types, shapes, and code instrumentation and

specialization, and on the C-IR for type inference and C code

generation. We presented the general flow of the tool, and de-

scribed the possible transformations that can be applied and the

optimizations performed by the compiler. The experiments reveal

promising performance results, achieving a geometric mean

speedup of 12× over execution in MATLAB when considering 9

benchmarks. Additionally, we described our first steps on

OpenCL generation from MATLAB. Our OpenCL generator takes

advantage of OpenACC-based directives to decide about the

parallelization and about the MATLAB code sections to be

mapped to the accelerator. Ongoing work is focused on further

optimizing the C generator and on evaluating and optimizing the

OpenCL generator.

Acknowledgments

This work was partially supported by Fundação para a Ciência e

a Tecnologia (FCT) under FEDER/ON2 and FCT project

NORTE-07-124-FEDER-000062.

References

[1] MATLAB – the Language of Technical Computing,

http://www.mathworks.com/products/matlab

[2] MATLAB Coder: Generate C and C++ code from MATLAB code,

© 2012 The MathWorks, Inc.

[3] Embedded Coder: Generate C and C++ code optimized for embed-

ded systems, © 2014 The MathWorks, Inc.

[4] The OpenCL Specification, Version: 1.0, Doc. Rev.: 48, Khronos

OpenCL Working Group, Editor: Aaftab Munshi, Last Rev. Date:

10/6/09.

[5] T. S. Czajkowski, et al., “From opencl to high-performance hard-

ware on FPGAs,” 22nd Int’l Conf. on Field Progr. Logic and Appli-

cations (FPL’12), Oslo, Norway, Aug. 29-31, 2012, pp. 531-534.

[6] J. Bispo, et al., “The MATISSE MATLAB Compiler - A MA-

Trix(MATLAB)-aware compiler InfraStructure for embedded com-

puting SystEms,” in IEEE Int’l Conf. on Industrial Informatics

(INDIN’13), Bochum, Germany, 29-31 July 2013, pp. 602-608.

[7] G. Kiczales, et al., “Aspect-Oriented Programming,” In Proc. Euro-

pean Conference on Object-Oriented Programming (ECOOP'97),

Springer-Verlag, LNCS 1241, June 1997, pp. 220-242..

[8] J.D. Gradecki, and N. Lesiecki, Mastering AspectJ: Aspect-Oriented

Programming in Java, John Wiley & Sons, Inc., NY, USA, 2003.

[9] J.M.P. Cardoso, et al., “LARA: An Aspect-Oriented Programming

Language for Embedded Systems,” in Proc. Int. Conf. on Aspect-

Oriented Software Development (AOSD’12), Potsdam, Germany,

March 25-30, 2012, pp. 179-190.

[10] J.M.P. Cardoso, P. Diniz, J.G. Coutinho, and Z. Petrov (eds.), Com-

pilation and Synthesis for Embedded Reconfigurable Systems,

Springer, May 2013.

[11] A. Aho, J. Ullman, M. Lam, and R. Sethi, Compilers: Principles,

Techniques and Tools, Addison Wesley, 2006.

[12] The OpenACCTM

 Application Program Interface, August 2013.

Version: 2.0a, © 2011-2013 OpenACC-Standard.org.

[13] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge, “Optimizing

MATLAB through Just-In-Time Specialization,” in Int. Conf. on

Compiler Construction (CC’10), March 2010, pp. 46–65.

[14] L. De Rose, and D. Padua, “Techniques for the Translation of
MATLAB programs into Fortran 90,” in ACM Trans. Program.

Lang. Syst., 21, 2 (Mar. 1999), pp. 286–23.

[15] P. Joisha, and P. Banerjee, “Static array storage optimization in
MATLAB”, in Proc. ACM Conf. on Prog. Language Design and

Implementation (PLDI’03), June 9-11, 2003, San Diego, CA, USA,

pp. 258-268.

[16] P. Joisha, and P. Banerjee, “An algebraic array shape inference
system for MATLAB,” in ACM TOPLAS, 2006; 28(5), pp. 848–

907.

[17] A. Navak, M. Haldar, A. Choudhary, and P. Banerjee, “Paralleliza-

tion of MATLAB Applications for a Multi-FPGA System”, in Proc.

9th IEEE Symp. on Field-Programmable Custom Computing Ma-

chines (FCCM'01), Rohnert Park, CA, USA, May, 2001, pp. 1-9.

[18] P. Banerjee, at al., “Automatic Conversion of Floating Point
MATLAB Programs”, in Proc. 11th IEEE Symp. on Field-

Programmable Custom Computing Machines (FCCM’03), Napa,

CA, USA, 2003.

[19] Scilab, http://www.scilab.org/
[20] The Octave Home Page. http://www.gnu.org/software/octave/
[21] Scilab 2 C - Translate Scilab code into C code,

http://forge.scilab.org/index.php/p/scilab2c/

[22] K. Olmos, and E. Visser, “Turning dynamic typing into static typing

by program specialization in a compiler front-end for Octave,” in

Proc. 3rd IEEE Int. Workshop on Source Code Analysis and Manip-

ulation (SCAM’03), 26-27 Sept. 2003, pp. 141-150.

[23] J.M.P. Cardoso, et al., “A Domain-Specific Aspect Language for

Transforming MATLAB Programs,” in Domain-Specific Aspect

Language Workshop (DSAL’2010), part of AOSD’2010, March 15-

19, 2010, Rennes & Saint Malo, France.

[24] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren, “AspectMatlab:

An Aspect-Oriented Scientific Programming Language”, in Proc.

Aspect Oriented Software Development Conference (AOSD), March

2010, ACM, NY, USA, pp. 181-192.

100

