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Abstract: Nontechnical losses in electricity distribution networks are often associated with a countries’
socioeconomic situation. Although the amount of global losses is usually known, the separation
between technical and commercial (nontechnical) losses will remain one of the main challenges
for DSO until smart grids become fully implemented and operational. The most common origins
of commercial losses are energy theft and deliberate or accidental failures of energy measuring
equipment. In any case, the consequences can be regarded as consumption anomalies. The work
described in this paper aims to answer a request from a DSO, for the development of tools to
detect consumption anomalies at end-customer facilities (HV, MV and LV), invoking two types of
assessment. The first consists of the identification of typical patterns in the set of consumption profiles
of a given group or zone and the detection of atypical consumers (outliers) within it. The second
assessment involves the exploration of the load diagram evolution of each specific consumer to detect
changes in the consumption pattern that could represent situations of probable irregularities. After
a representative period, typically 12 months, these assessments are repeated, and the results are
compared to the initial ones. The eventual changes in the typical classes or consumption scales are
used to build a classifier indicating the risk of anomaly.

Keywords: typical patterns; nontechnical losses; anomaly detection; energy theft; clustering; data mining

1. Introduction

The advent of smart grids and smart equipment in electricity distribution networks is
expected to cause a substantial increase in the volume of available data, which will amplify
the potential of data-driven knowledge extraction applications. New approaches such as
the identification of archetypal consumption patterns and also the detection of the most
abnormal ones, some of which might indicate illegal behavior (e.g., energy theft) start
to be feasible under this new smart grid environment. The present article illustrates the
exploitation of this new opportunity in terms of the characterization of consumers and the
detection of nontechnical losses.

Consumer characterization has always been an important part of the electricity dis-
tribution business, increasingly so with the advent of smart grids. New energy resource
such as distributed energy storage or load flexibility are essential components for the
decarbonization of electricity systems. From this perspective, determining load profiles
will be crucial to making the most of the new energy resources [1–3].

Energy losses in the distribution grid are usually classified into technical losses and
commercial or nontechnical losses. The total annual losses are often assessed through the
total energy balance: the sum of all the energy entered into the grid subtracted by all billed
energy. Therefore, while global losses are easily calculated, their division into technical and
nontechnical losses is often problematic [4–8]. The technical losses depend on the physical
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characteristics of the grid components and energy flows. The major component of these
losses is related to the joule effect in conductors [6,8–11]. Commercial losses, however, are
related to nonbilled energy, namely because of metering errors or energy theft. In Portugal,
the cost of nontechnical losses is estimated to be over EUR 100 M per year.

The knowledge of consumer characteristics and behavior is also often used for non-
technical loss detection [12–15]. Sometimes, such as in [12], the analysis is based on hourly
(or 15 min) data, usually to obtain average daily diagrams. In other studies [15], authors
consider high-level features such as the average consumption and the maximum consump-
tion in the last six months. The latter case was the most common before the dissemination
of interval meters (in the scope of the transition to the smart grid paradigm), a process
that began roughly 10 years ago in several European countries. In fact, these new meters
can provide detailed information, far beyond the classical monthly energy consumption.
The article [16] is an example of theft detection based on the new opportunities created by
smart meter implementation. An alternative hardware-based approach for fraud detection
is presented in [17]. In this case, the utility installed dedicated ammeters, upstream and
downstream of the meter to check for differences. Customized hardware systems are quite
expensive; thus, they are not feasible global solutions.

This paper describes the methodologies adopted for detecting anomalies in the energy
consumption of high, medium and low voltage installations. This study involves two types
of strategies:

1. Identification of patterns, consumption profiles and atypical consumers (outliers).
2. Analysis of the evolution of the energy consumption of each specific installation to

detect changes in the consumption patterns that configure situations of potentially
illicit behavior.

The innovation of the present article lies in the originality of the methodology. First,
the consumption time series provided for this study has a daily time base, i.e., each item of
the sequence is the consumption of a given day, for a given consumer. Consequently, the
typical consumption patterns and atypical behaviors are based on daily consumption, or
aggregation of this data (e.g., typical consumption distribution throughout the week) but
never on intraday distributions (e.g., peak hours). Naturally, the hourly load distribution
could provide a supplementary characterization of consumer behavior. However, that level
of detail was not available. The most common approaches are in both extremes: either
they use an hourly (or 15 min) base or a monthly base. Of course, this becomes a trade-
off between the level of information detail and data processing requirements. Another
interesting and useful characteristic of the proposed methodology concerns the type of
typical patterns to be identified: by weekday, month and logarithmic scale. Moreover, this
is an integrated approach that provides both the identification of the most typical profiles
and the most anomalous ones at the same time. Finally, to the best of our knowledge, the
detection of anomalies based on a twofold analysis (distance to the classes of prototypes
and behavioral changes) is also a novel proposal.

2. Methodology

The adopted approach is comprised of the following main steps:

1. Exploratory data analysis. The first goal is to acquire a general perspective of data
distributions, according to the type of installation (industry, residential, etc.), voltage
level (high, medium or low), geographical zone (region or district), type of energy
contract and eventual changes in these contracts. Another important feature high-
lighted by this initial step is the identification of measurement gaps, i.e., occasional
issues in the meter or in the communication system that cause an eventual lack of
consumption records in certain intervals. In the case of a substantial number of gaps
(larger than a given prespecified threshold) for a given meter, the respective time
series is signaled as improper for analysis, and the DSO is informed about the need to
perform a check-up of this meter.

2. Identification of typical consumption patterns.
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3. Detection of changes in the consumption patterns and/or scale as a potential anomaly symptom.

2.1. Exploratory Data Analysis

This section describes the initial phase of data analysis and preprocessing, both con-
cerning technical-commercial characteristics and daily consumption diagrams (time series).
This allows a familiarization with the data of the facilities and the identification of poten-
tial inconsistencies.

The data were provided by the DSO in “.txt” format and hosted in a SQL Database
(DB) “MySQL”. The exploratory analysis was performed in R [18], which includes features
for communication with the DB, allowing the extraction of the necessary data for further
analysis and information treatment.

The exploratory analysis was developed with the following main purposes:

1. Data extraction and restructuring—This step was comprised of data withdrawal from
different sources and reorganization of all the necessary information into a single but
comprehensible DB. This process also permitted familiarization with the data.

2. Identification of gaps in the data, allowing for the identification of a lack of records, in
both interday and intraday levels.

2.1.1. Data Organization

The information was structured across 8 tables: Installations, Contracts, Powers, Tariffs,
Equipment, Anomalies, Nonanomalies and the daily consumption time series for each
installation. A simplified schematic of the relational BD can be seen in Figure 1.

Figure 1. Structure of the DB.

A full description of the DB is outside the scope of this article. However, for a matter
of illustration, the following figures are provided.

Figure 2 shows the distribution of consumers who changed their tariff during the
period under analysis. In suspicious cases, the installation meter was inspected. If the meter
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was found to be not in conformity with the standards or if the seal was broken, the case
was tagged as abnormal. Figure 3 shows the statistics of these initiatives recorded in the
DB in 2017. This information is complemented with another tag that indicates whether or
not the anomaly was considered to have impacted the consumption. This type of analysis
contributes toward a deeper characterization of the system. For example, it was found that
from the total identified anomalies, only 20% had an impact on the measured energy.

Figure 2. Distribution of consumers who change their tariff contract.

Figure 3. Meter anomalies (A—Abnormal; NA—Not-abnormal; X—Not tested.

2.1.2. Identification of Data Gaps

The identification of gaps in the records is a crucial step toward assessing the consis-
tency and reliability of the available data. In this research, two types of data gaps were
considered: interday and intraday.

Interday gaps refer to missing records in the daily time series between the start and
the end dates of the analyzed period. Figure 4 shows a histogram of interday gaps in the
consumption series: occurrence frequency versus the size of the gap.

This histogram shows that most installations have gaps of less than 50 days. However,
a few installations have larger gaps, representing a substantial percentage of the whole
time series.

The identification of these gaps is important not only to recognize registration flaws but
also as a complementary piece of information in the processes of detection and identification
of anomalies (e.g., when the meter is disconnected from the system with the purpose of
meter tampering).
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Figure 4. Histogram of interday gaps in the consumption series.

Intraday failures occur when the number of measurements throughout the day differs
from the expected number for that date. The total number of 15-min measurements in one
day should be 96, except for the daylight-saving time transition days. The histogram in
Figure 5 shows the frequency of days with intraday record failures.

Figure 5. Histogram of intraday gaps in the consumption series.

Most of the problematic cases have less than 5 days of intraday lacks. The identifica-
tion of these cases and their preprocessing is essential, as they directly affect the energy
value since the daily energy consumption is derived from the sum of energy measured in
these intervals.

2.2. Identification of Typical Patterns

The search for abnormal consumption patterns assumes that it is possible to identify
a set of patterns considered typical. The first approach to anomaly detection consists
of the identification of installations with atypical consumption patterns, which refers to
installations with consumption characteristics that differ from the typical prototypes in
their class.

In this work, clustering algorithms were used to group consumers according to their
consumption characteristics (specified in the next section), to identify the prototypes (typical
behaviors) and the installations that deviate most from those prototypes (outliers).
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2.2.1. Feature Engineering

One of the most important phases of data-driven approaches is the identification of a
set of relevant features able to characterize the system under analysis and, at the same time,
provide meaningful inputs for the clustering algorithm and other datamining tools.

The adopted strategy involves a large volume of preliminary tests to identify the
most suitable set of variables to be used as inputs of the clustering algorithms. As each
consumer time series is a sequence of daily energy consumption, several transformations
of these data were considered as potential features for consumers characterization, such as
weekly feature (percentage of total consumptions that occur on Sundays, Mondays, etc.) or
monthly feature (percentage of total consumptions that occur at January, February, etc.). A
clustering algorithm is then applied to each feature, providing a classification tool for each
consumer from different perspectives.

2.2.2. Consumers Representation

Three types of consumption aggregation were considered during this phase. The
outcome of this procedure is a set of three vector features to characterize each consumer:

1. P_week is a vector with seven elements, with the percentage of the consumption that
occurs on each weekday.

2. P_month is a vector with 12 elements, with the percentage of the consumption in each
month of the year.

3. Log_E is the logarithm of the annual consumption. As the range of consumption
scales is enormous, the logarithm attenuates that difference, making the clustering
output more interesting. In the same way, the installations were previously split
according to voltage levels.

Tables 1 and 2 illustrate the P_week and P_month vectors. As an example, the first
consumer in Table 1 has a larger consumption on weekends (Saturday and Sunday with
18.9% and 20.3%, respectively). The same type of analysis can be made for P_month and
Log_E, providing the DSO with some significant insights about consumption distributions.

Table 1. Examples of P_week instances.

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

0.123 0.119 0.118 0.121 0.127 0.189 0.203

0.143 0.144 0.144 0.144 0.144 0.142 0.139

0.159 0.166 0.168 0.165 0.159 0.103 0.079

. . . . . . . . . . . . . . . . . . . . .

Table 2. Examples of P_month instances.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

0.09 0.08 0.08 0.08 0.08 0.09 0.08 0.08 0.09 0.08 0.08 0.08

0.02 0.01 0.03 0.06 0.08 0.12 0.22 0.22 0.14 0.06 0.02 0.03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, the vectors are subjected to clustering, integrating a process that is sum-
marized in the next section.

2.3. Detection of Primary Atypical Consumption (Outliers)

Initially, a set of filters was applied to the data with the purpose of filtering the time
series with low data quality and categorizing the most discernible abnormal cases. Within
this phase the following abnormality filters were implemented:
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a. Data gaps—permits the identification of the lack of quality in the analyzed series. If
a consumer data series has too many gaps, the consumer will be labelled as “Large
gaps” and the classification for these cases stops here.

b. Low or no consumption—identifies installations with very low or no consumption. If
the consumption is N times smaller than the first quartile limit, the consumer is clas-
sified as “Low consumption”. This analysis and the quartiles set are independently
attained for each voltage level. N is specified by the user.

c. Low-frequency usage—identifies the consumers that have a large percentage of
very low consumption (below a minimum threshold). This minimum is defined
individually for each installation and is based on the average consumption. The user
is allowed to modify these parameters. The installations identified by the defined
filters in points “b” and “c” are labelled “low or no consumption” and “low-frequency
usage” respectively.

d. Concentrated consumption (week)—identifies the installations with a considerable
percentage of the total consumption on a specific day of the week. If the consump-
tion on Wednesdays is 50% of the week, then the consumer is classified as “CC_w”.
The same applies to other weekdays or other percentages (specified by the user).
For example, it was found that some consumers have approximately 60% of their
consumption on Tuesdays. This set of consumers is immediately classified as CC_w
and extracted from the set of consumers that will be subjected to weekly consump-
tion clustering.

e. Concentrated consumption (month)—identifies the installations with a large part of
the consumption in a specific month of the year. For example, if the consumption in
September is 40% of the whole year, then the consumer is classified as “CC_m” and
extracted from the set of consumers that will be subjected to monthly consumption
clustering. The same applies to other months or other percentages (specified by
the user).

These cases represent certain aspects of abnormalities. The consumers with these tags
are filtered and do not pass to the following phase. In this way, the clustering algorithm
will be applied to a more homogenous set which makes the clustering much more effective.

2.4. Clustering

The remaining consumers are then moved to the clustering phase.

a. A clustering algorithm is applied to each feature (P_week, P_month and Log_E).
b. The output of the previous step is a classification tool to label each consumer ac-

cording to the weekly consumption distribution (P_week), monthly consumption
distribution (P_month) and total annual consumption (Log_E).

c. After new consumption data is collected during some months, this process is re-
peated, aiming at the detection of eventual alterations in these patterns. In general,
class changes are considered an indicator of abnormality.

2.5. Detection of Scale Changes

A complementary analysis is applied to the consumption evolution to detect abnormal
consumption patterns. For example, the DSO considers a consumer who has shown
historically consistent high consumption, which suddenly drops by 70% suspicious. For
this test, a reference date (Dref, in Figure 6) is set to divide the time series into two
subperiods: DS0 and DS1. Then, three comparison tests are considered:

a. Compare DS0 to DS1.
b. Compare DS0 to DS0 + DS1.
c. Compare A to B.
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Figure 6. Subdivision of the consumption time series to perform the test scale changes.

2.6. Anomaly Detection and Ranking

When this procedure is concluded the consumer record is complemented with the
following tags:

• Scale variation type (increase/decrease).
• Scale variation intensity.
• Change in week pattern (class).
• Change in month pattern (class).
• Distance between weeks shapes.
• Distance between months shapes.

These tags are considered potential indicators of some type of anomaly. For instance,
a large-scale reduction in consumption might be an indicator of energy theft. On the one
hand, this kind of circumstance is considered to have a high impact on the final anomaly
score, while on the other, a small change in week or month shape has a smaller contribution
to the final anomaly score.

The last phase consists of establishing a ranking of the consumers according to the
anomaly degree. According to the DSO requirements, in the default implementation, a
user-defined factor is associated with each tag, and the ranking is the sum-product of
factors by tags. A final feature is used to build the final ranking: the data completeness.
If the consumer record has no data gaps, the anomaly classification is assumed to be
more reliable.

3. Results

This section presents the results according to the methodological sequence. In the
following figures, a linear transformation was applied to the consumption time series for a
matter of confidentiality, as requested by the DSO. The periods marked with yellow lines
indicate missing values (gaps) in the consumer time series.

3.1. Primary Abnormality Filters (Outliers)

The following figures show an example of consumption time series for each primary
filter (Figures 7 and 8).

Data Gaps

Figure 7. Example of installations labelled “Data Gaps”.

Low consumption & Low usage
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Figure 8. Example of installations labelled “Low consumption” and “Low usage”.

Concentrated consumption (week)

Figures 9 and 10 show examples of Concentrated Consumption: more than half of the
total consumption occurs on Saturdays and during November, respectively.

Figure 9. Example of installations labelled “Concentrated consumption (week)”.

Concentrated consumption (month)

Figure 10. Example of installations labelled “Concentrated consumption (month)”.

3.2. Clustering

In this work, the elected clustering tool was the Self-Organizing Maps (SOM) [19–25]
followed by k-means [26–29]. These studies were developed on WEKA [30,31] and KN-
IME [32].

SOM performs a projection of the multidimensional space of variables into a two-
dimensional map, where similar patterns are close to each other. The separation of classes
and determination of an adequate number of clusters is made with the support of another
clustering algorithm, k-means, which is fed with the outputs of SOM.

Several heuristics can be used to determine the “ideal” number of clusters. The most
frequently used elbow method is based on the observation of the clustering performance
curve as a function of the number of clusters, that is, to the extent that an increase in the num-
ber of clusters (k) can help in reducing the sum of variances “within the cluster”—var(k).
Technically, given a k > 0, k groups of the dataset in question can be formed. Using k-means,
the sum of variations “within the cluster” var(k) is calculated and a WSCC (Within Cluster
Sum of Squares) var(k) curve is constructed according to the number of clusters k. The
WSCC for the two cases of Figure 11 are shown in Figure 12.
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Figure 11. Clustering considering a 5 × 5 and 15 × 15 alternative maps.

Figure 12. WCSS obtained for the maps 5 × 5 and 15 × 15.

Figure 13 shows the graphical result of the first part of the clustering algorithm
for P_week. Each represents a subprototype of a set of consumers with similar weekly
consumption distributions.

The final step of the clustering phase consists of applying a hierarchical clustering
(k-means) to group the SOM nodes into N classes (specified by the user) as illustrated in
Figure 14: defining three classes on the left side and five classes on the right side.

The clustering studies lead to four classes to define the prototypes of consumption
evolution throughout the week and the months of the year. A total of five classes were
stipulated to define the scale/amplitude of consumption prototypes.

Figure 15 shows that more than half of the consumers have a regular consumption
throughout the week (Class 3). Class 4 represents the consumers with higher electric-
ity consumption during the weekends, and Classes 1 and 2 show the consumers with
lower consumption during the weekends. The pie chart on the right side shows that the
distribution of consumers in Classes 1, 2 and 4 is rather balanced.

Conversely, in the month patterns (Figure 16), the number of consumers in each
class is uneven. Most consumers belong to Classes 2 and 3, which is characterized by
regular monthly consumption throughout the year, with a slight drop of consumption
during the summer and a slight rise during the winter, respectively. Class 1 represents
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winter consumers. Finally, Class 4 is for summer consumers showing the highest variation
throughout the months of the year with a large peak in July and August, most probably due
to seasonal factors or activities mainly developed during the summer season (e.g., tourism).

Figure 13. SOM projection for P_week.

Figure 14. Gathering similar nodes into classes: cases 5 × 5 and 15 × 15).

Figure 15. Four prototypes for week patterns defined by a range of 39,126 available installations.
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Figure 16. Four prototypes for month patterns defined by a range of 33,858 available installations.

One final clustering exercise was applied to the annual energy consumption (Figure 17).
In this case, the cluster prototypes are presented on a logarithmic scale, due to the large
differences among the classes’ prototype magnitudes, even within the same voltage level.
In this example, Class 5 consumption is roughly 300 times higher than Class 1.

Figure 17. The scale classes for annual energy consumption defined by a range of 22,296 available
MV installations.

The differences in the total available installations for each type of clustering is due
to the previous filter for the concentrated consumptions. That is to say, more installations
with concentrated consumption (month) were filtered.

3.3. Anomalies Detection

The previous section describes how a consumer is characterized according to different
perspectives (classes of weekday and month distribution and consumption scale). These
classes are only applied to the consumers who do not fall into the categories identified in
the initial stage (see Section 2.3).

After this phase, each consumer is labelled with a set of tags that identify their classes.
This is completed using the past consumption evolution during a given prespecified period
(ideally, at least 12 months). The same classification procedure is repeated with a new
dataset of measurements, in general with the most recently acquired data. It is assumed
that a change in any class is a potential symptom of anomaly. These changes are then
assigned to the consumer record.

Similarly, the tests of scale changes (Figure 6) contribute to the characterization of
eventual changes in the “normal” consumption pattern. These tests aim to detect changes
in average consumption as well as in the evolution of the consumption trend.

In summary, three tests are considered:

• Test1—to detect changes in the weekday consumption patterns and test changes in
the average consumption.
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• Test2—to detect changes in weekly, monthly and long-term trend consumption evolution.
• Test3—to detect changes in weekly and monthly consumption evolution.

The result of these tests is appended to the consumer record as illustrated in Figure 18.

Figure 18. Building anomaly potential and ranking.

Finally, a potential anomaly score is built on the base of all tags.
The following figures illustrate some cases of anomalies’ detection. Figure 19 displays

examples of cases tagged as anomalous because of large scale variations. Figure 20 includes
some examples of consumers that present considerable changes in the weekday and/or
month patterns.

Figure 19. Three examples of anomalous detection (large scale variation).
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Figure 20. Three examples of anomalous detection (large changes on weekday/month patterns).

4. Conclusions

The developed approach showed very interesting and useful results. First, it provided
a clear view of the consumers’ most typical behaviors (week and month patterns) and con-
sumption scale distribution. Second, it provided a classification of consumption anomalies
according to some predefined settings, which can be changed by the user. The abnormal
symptoms are detected, in the first stage, by a simple filtering procedure (e.g., a large
percentage of the total consumption in a single month). In a second stage, a set of tests is
performed to detect changes in week or month patterns, as well as in the consumption scale.

The analysis of the results confirmed that the implemented tool can effectively detect
anomalous consumption cases, as it was projected to do. Several types of anomalies were
discovered and characterized, leading to a ranking of suspicious cases, which will be later
analyzed in detail by the DSO, including the examination of the meter installation.

Naturally, other types of anomalies cannot be perceived by the current approach, such
as, if the meter was improperly installed or altered in the moment of its commissioning. In
this case, the resulting consumption diagram would be consistently below what it should
be, but with no changes in shape or scale of the diagram.

The typical consumption patterns and atypical behaviors were based on daily con-
sumption, or aggregation of this data (e.g., typical consumption distribution throughout
the week), but never on intraday distributions (e.g., peak hours). Naturally, the hourly load
would have been more valuable, allowing, for example, an identification of characteristic
load distributions within the day. Still, the present tool is certainly perceived as useful, and
has been incorporated into the DSO set of tools to detect anomalous cases.
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Nomenclature

API Application Programming Interface
DB Database
DSO Distribution System Operator
HV High voltage
LV Low voltage (normal)
LVS Low voltage (special)
MV Medium voltage
PAA Piecewise Aggregate Approximation
SOM Self-Organizing Maps
SQL Structured Query Language
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