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Abstract—Solving complex optimization problems with genetic
algorithms (GAs) with custom computing architectures is a way
to improve the execution time of this metaheuristic, which is
known to consume considerable amounts of time to converge to fi-
nal solutions. In this work, we present a scalable computing array
architecture to accelerate the execution of cellular GAs (cGAs), a
variant of genetic algorithms which can conveniently exploit the
coarse-grain parallelism afforded by custom parallel processing.
The proposed architecture targets Xilinx FPGAs and is used as an
auxiliary processor of an embedded CPU (MicroBlaze). To handle
different optimization problems, a high-level synthesis (HLS)
design flow is proposed where the problem-dependent operations
are specified in C++ and synthesised to custom hardware, thus
requiring a minimum knowledge of digital design for FPGAs.
The minimum energy broadcast (MEB) problem in wireless ad
hoc networks is used as a case study. An existing software
implementation of a GA to solve this problem is ported to the
proposed computing array to demonstrate its effectiveness and
the HLS-based design flow. Implementation results in a Virtex-6
FPGA show significant speedups, while finding solutions with
improved quality.

I. INTRODUCTION

Genetic algorithms (GAs) are metaheuristic search meth-

ods inspired by the evolution of living species, where the

principles of natural selection and genetics are applied to

solve optimization problems. The algorithm have become one

of the best known and widely accepted metaheuristics used

to solve complex optimization problems, like applications in

clustering in data mining and bioinformatics [1], path planning

for autonomous navigation [2], antenna design [3], or energy

minimization in wireless ad hoc networks [4]. Although GAs,

can effectively explore a huge search space of a problem,

as it happens with NP-hard problems, only by examining a

small fraction of it, they usually suffer from long execution

times as the evolutionary process of the algorithm needs to be

repeated numerous times. Thus, solving optimization problems

where time constraints apply or when the processing power is

restricted can, in practice, constraint the utilization of GAs.

This paper presents a general framework for building a

custom computing architecture that accelerates the execu-

tion of GAs using field-programmable gate arrays (FPGAs)

devices. A scalable hardware architecture that supports the

execution of cellular GAs (cGAs) is presented, where the

population evolved by the metaheuristic is distributed over

several independent memories shared by an array of processing

elements (PEs). As a result, the level of parallelism of the

engine can be increased with the size of the array without

adding memory access bottlenecks that would compromise the

gain of performance of the hardware.

Although GAs are often associated to a representation of

solutions using a binary encoding, where each bit behaves

as a gene, more complex representations usually need to be

used, for example, to encode solutions for graph problems. As

a result, the basic genetic operators (crossover and mutation)

must be adapted for each specific representation of solutions.

Additionally, it is often the case that the encoding scheme

used to represent a valid solution requires the application

of specialized algorithms to maintain the feasibility of solu-

tions. To cope with this, we propose a design flow where

the problem-dependent operations of the metaheuristic are

specified in C++ and translated to digital hardware with

high-level synthesis (HLS) tools. Therefore, the architecture

can be rapidly customized to build a custom engine specialised

to successfully solve different problems.

To demonstrate the effectiveness of the proposed engine and

design methodology, the minimum energy broadcast (MEB)

problem is explored as a case study. This is a relevant problem

in the domain of wireless ad hoc networks and to construct

the custom engine for this application we have ported an

existing software implementation of a GA [4]. As referred in

this work, solving the MEB problem with a genetic algorithm

poses several challenges like the need for specific encoding

of solutions or the need to complement the canonical GA

with local search procedures for better performance of the

metaheuristic. Our proposal of using a HLS-based design

flow to implement GAs successfully deals with all these

issues, where other approaches that rely on a predefined set

of templates for the genetics-inspired operators may not be

usable.

The complete hardware infrastructure that supports the

execution of cGAs is named cGA processor (cGAP), and is

implemented in a Xilinx Virtex-6 FPGA. Two versions of the

cGAP are built using different intensities in the local search

procedure and implementing arrays with 5×5 PEs and 4×4
PEs. We detail the algorithms implemented in the engines and

compare the results obtained by the cGAPs with the original

work. Accelerations between 21.8× and 2.2× are obtained

while ensuring superior quality of solutions found by the
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engine.

The paper is organized as follows. Section II presents a

background about GAs and relevant hardware architectures

to implement this metaheuristic. In Section III the cGAP is

presented together with its design flow. The MEB problem is

introduced in Section IV and a combination of a genetic algo-

rithm and a local search (a memetic algorithm), is presented in

Section V including details of the mechanisms to encode and

evolve the solutions. Hardware implementation and results are

discussed in Section VI. The paper concludes with Section VII.

II. BACKGROUND

The GA is a population-based metaheuristic where a popu-

lation, which is a set of tentative solutions of the optimization

problem to be solved, goes through an evolutionary process

inspired in the biological evolution of living species [5]. The

algorithm starts with a population P where all the solutions

are evaluated by a fitness function that quantifies their quality

according to the objective function of the optimization prob-

lem. The algorithm proceeds with an iterative process where

genetics-inspired operations are applied. First, a selection of

solutions in P is performed to elect solutions that will undergo

some transformations to create new solutions. Typically, the

selected solutions are called parents and are combined (usually

in pairs) to generate new ones through a crossover operation.

Then, the new solutions (child) may suffer a mutation op-

eration that induces small changes to them. The generated

solutions P ′ are then evaluated and the population for the

next generation is elected among the solutions in P and P ′,
according to a strategy that takes into account the fitness values

to promote the evolution towards a better population.

A continuous research activity has been carried out over the

last 20 years to implement custom computing architectures in

FPGAs for GAs aiming to accelerate its execution. There are

various approaches in what concerns the variant of the GA

implemented, and the way the engines can be configured to

handle different optimization problems.

Several attempts have been made to built a GA general

engine that can be applied to different optimization problems.

However, it is clear that at least one operation of the algorithm

needs to be customized: the fitness evaluation. Moreover, it

is often the case that a GA requires special representation of

solutions, besides the usual binary codification, as for example

to encode a valid path in a graph. Additionally, some optimiza-

tion problems may require specific procedures to compensate

infeasible solutions that may be generated by the genetic

operators. Therefore, dedicated hardware architectures for GAs

that aim to be general enough to handle any optimization

problem, only succeed for problems where the straightforward

binary solutions encoding can be used.

Most of the works target a panmictic GA, which is the

best known GA where any given solution can interact with

any other during the evolutionary process. Therefore, the

population needs to be kept in a single memory that is accessed

by the processing units that compute the operations of the

algorithm. One approach is to generate a new population at

each iteration of the algorithm (generational GA), where it

is possible to have several parallel units that access to the

population and generate new solutions [6], [7]. Nevertheless,

the access to the memory that keeps the population may

represent an important bottleneck when the level of parallelism

increases. On the other hand, it is possible to generate a single

solution in a generation of the GA (steady-state GA), for which

a single processing unit is sufficient to compute the solution.

This approach has led to efficient pipelined architectures,

although the operations of the algorithm cannot be parallelized

as in the generational GA [8], [9].

Contrasting to the panmictic GA, in a structured GA the

population is somehow decentralized, resulting that a given

solution can only be combined with a limited set of other

solutions [10]. Therefore, it is possible to have a custom

computing architecture where several processing units have

their own memories that hold subsets of the population. With

the distributed GA model the population is spread in islands

that evolve autonomously, and occasionally exchange solutions

among them. The work presented in [11] adopts this strategy,

using 4 processing nodes to solve the travelling salesman

problem and the knapsack problem. The cellular GA (cGA) is

another structured GA where the solutions are distributed over

a regular grid and the operations of the algorithm are only

applied to certain overlapped subsets of solutions. Although

the cGA exhibits a great potential to be accelerated with

dedicated computing architectures, it has not been an active

subject of research by other authors.

In this work, we use a previously developed scalable

computing array architecture that supports the execution of

cGAs with a performance that is directly proportional to the

number of processing nodes [12]. We propose a HLS-based

design flow, where the problem-specific operations of the

algorithm are customized, thus allowing a rapid specification

of the architecture with the desired level of parallelism, to

solve different optimization problems. To demonstrate the

effectiveness of the design flow, we port an existing software

GA implementation to solve the minimum energy broadcast

problem, which requires special procedures to encode a valid

solution and additional search heuristics to further improve the

optimization process.

III. A CUSTOM COMPUTING FOR ACCELERATING CGAS

In this section we propose a custom computing machine for

accelerating GAs, in particular cGAs, which we call cellular

genetic algorithm processor (cGAP).

A. The cGAP architecture

Figure 1 depicts an overview of the cGAP architecture

composed by the array of processing nodes and a controller

that monitors the evolutionary process of the metaheuristic and

implements the interface with the host processor.

1) cellular genetic algorithm array (cGAA): The cGAA

is responsible to implement the execution of the cellular

genetic algorithm and thus it is the core block of the complete

processor. It is formed by a regular structure of processing
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Fig. 1. Overview of the cGAP architecture.

elements (PEs) and memories, where each PE connects to

four memories and each memory is shared by two PEs, as

shown in Figure 1. A memory holds a subset of solutions

(or subpopulation) of the algorithm, and is thus called sub-

population memory (spMEM). A PE is responsible to apply

the genetics-inspired operations of the metaheuristic to the

solutions presented in their local spMEMs, implementing a

local genetic evolution with those solutions. This configuration

of PEs and spMEMs, where each spMEM is shared by

two PEs, implements a cellular genetic algorithm since the

solutions’ information is naturally spread throughout the whole

population (all the spMEMs), those imposing an implicit

mechanism of migration of solutions.
One of the main advantages of the proposed architecture

is its scalability since the number of PEs (and associated

spMEMs) can be adjusted to ensure a trade-off between

throughput, and consequent acceleration of the algorithm, and

the number of hardware resources required to implement it.

Therefore, for a given population size, the parallelism level

can be increased by introducing more PEs in the array while

decreasing the number of solutions per spMEM. To keep the

regularity of the array, and guarantee a regular shape, only

entire rows or columns of PEs (and spMEMs) can be added

to adjust the parallelism level, while not introducing relevant

memory access bottleneck since a PE always accesses to its

four local spMEMs. Indeed, this is a clear advantage over other

custom computing architectures for GAs where the population

is kept in a single memory, thus constraining the parallelism

due to limited memory bandwidth.
Furthermore, the architecture of the cGAA is suitable for

an implementation in current FPGAs as these devices possess

large amounts of independent memory blocks, with dual-port

capabilities that can be used to implement the spMEMs of the

cGAP.
2) cellular genetic algorithm controller (cGAC): This block

controls and monitors the execution of the cGA supported

by the engine, and configures any parameter needed for the

execution of the algorithm. To accomplish that, the cGAC

performs two main tasks: it communicates with each PE

through a dedicated communication infrastructure to send and

receive commands that are used to monitor and configure them

as desired; and it interprets and executes commands received

from the exterior (e.g. a host processor) so that the cGAP can

be controlled externally.

For example, the host can start by sending a set of con-

figuration parameters that are interpreted by the cGAC to

configure itself and the PEs and then to start the cGA in all

the PEs. During the evolutionary process of the metaheuristic,

the cGAC keeps track of which PE has the best solution, and

how many generated solutions have been computed in all the

PEs. At the end of the algorithm, the cGAC requests from the

appropriate PE node in the array the best solution found, and

sends it back to the host processor.

This module also contains a global random number genera-

tor that feeds all the PEs with a random sequence of bits from

which the PEs extract the random numbers required for the

execution of the genetic algorithm.

B. Design flow

We consider in the following examples a reference design

that includes a MicroBlaze soft-core processor as the host

processor, targeting a Xilinx ML605 board that integrates

a Virtex-6 FPGA (XC6VLX240T-1) [13]. The design flow

proposed in this work aims to organize the development

process of the cGAP to ease its customization for differ-

ent optimization problems. To achieve this goal, we use a

high-level synthesis design flow (Fig. 2), where the custom

digital systems to implement the problem-specific operations

are specified with conventional programming languages (C++)

and translated automatically to Verilog hardware description

language (HDL). Therefore, the main core of the flow is the

specification of the PE and the cGAC, which are the hardware

11



Catapult HLS

Precision RTL

PE 

C++ description

cGAC

C++ description

cGAP RTL

Library

Xilinx XST

synthesis

Xilinx ISE

synthesis and P&R

Xilinx EDK project 

with MicroBlaze

PE.v cGAC.v

cGAP HLS

Library

system.bit

cGAP.ngc

design 

constraints

interfaces.tcl

MEM_access.tcl

cGAP 

parameters 

Fig. 2. Design flow of the cGAP.

blocks that need to be adapted to each problem’s requirements,

using HLS methodologies. The rest of the architecture, which

is not specific of the optimization problem, is described as a

parameterizable module in Verilog HDL.

A new design starts by defining a small set of parameters

that configure the cGAP architecture as desired. This allows

specifying the size and aspect ratio of the PE array (which

sets the parallelism level of the engine), the configuration

of the subpopulation memories (the spMEMs), the maximum

number of solutions that a subpopulation memory can handle,

and the definition of all the control commands used in the

communication between the cGAC and the PEs.

The next step is the specification of the PE and cGAC using

HLS techniques. Two independent projects must be created

(for the cGAC and the PE), where the corresponding algo-

rithms are specified in C++, following a design template and

according to a set of coding guidelines imposed by the HLS

tool. Both projects share a cGAP HLS library that contains

two C++ classes created specifically to aid in the description

of the hardware modules, mainly to handle the commands that

are sent between the PEs and the cGAC, and to ensure a

correct arbitration in the access to the shared spMEMs. We

have used Catapult HLS version 2010a (University Version)

from Calypto Design Systems, combined with RTL synthesis

by Precision RTL version 2010a from Mentor Graphics.

After generating the cGAC and the PE hardware description

files, the complete cGAP is built. To do so, a cGAP RTL
library is used that contains all the remaining files that

describe, in Verilog HDL, the cGAP and do not need to be

customized for different problems. In this phase, the cGAP

is synthesized with the XST tool from Xilinx (ISE version

13.4) to integrate all the hardware blocks required to build the

complete cGAP.

In the last phase of the design flow, the cGAP is integrated

with a Xilinx EDK design that includes a MicroBlaze pro-

cessor running Linux, using the cGAP as a memory mapped

peripheral. The ISE design flow is used to implement the

complete project provided by EDK, including the netlist

describing the cGAP block. In a typical session to use the

cGAP, the MicroBlaze is remotely accessed from a personal

computer using a remote shell and a software application that

controls the cGAP.

IV. CASE STUDY: MINIMUM ENERGY BROADCAST

The minimum energy broadcast (MEB) problem is an

optimization problem that appears with the use of the wireless

networks. This problem consists in minimizing the global

energy consumption of a set wireless devices (nodes) when

one of them needs to broadcast a message to all the remaining

nodes in that network. Unlike in a wired network, in a wireless

network a single transmission can reach several nodes, which

means that when a node i transmits to node j, all the other

nodes located near to i will also receive the transmission.

Therefore, it is possible to increase/decrease a transmission

range of a node so that more/less nodes are covered, which

reflects in the total energy used by the system. The MEB

problem is NP-hard [4] and thus metaheuristic procedures are

good approaches to solve it.

The problem is specified as follows: a direct graph G =
(V,E), represents a set of wireless nodes V , and the edges

ei,j ∈ E represent the energy required to transmit from

node i to node j; given a source node s ∈ V that has

to broadcast a message to all the other nodes in V , find

the minimum transmission energy used by all nodes in the

network, considering that all nodes can work as repeaters. This

can be accomplished by creating an arborescence1 of G rooted

at s, where an edge ei,j ∈ E included in this arborescence

defines that node i must transmit to node j with a energy

requirement equal to the cost of that edge. If a node transmits

to more than 1 node, the cost associated with that node is

defined by the maximum of its adjacent edges considered in

this arborescence. The MEB problem consists in minimizing

the total energy required to broadcast a message from s to all

nodes in V , what is equivalent to find an arborescence T ⊆ E
rooted at s that minimizes:

∑
i∈V

max
ei,j∈T

dαi,j (1)

where di,j is the Euclidean distance between nodes i and j,

and α is the channel loss exponent that takes a value in the

range of 2 ≤ α ≤ 4 depending on the characteristics of the

communication medium. This function is the addition of the

energies required for each node to reach the most distant node,

among its adjacent nodes considered in that arborescence.

Considering α = 2, as it is typically done, and knowing

that the di,j is given by:

di,j =
√
(xi − xj)2 + (yi − yj)2 (2)

1An arborescence in graph theory is a directed graph in which a vertex u,
called the root, and any other vertex v there is exactly one directed path from
u to v.
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Fig. 3. Example of a MEB solution with 6 nodes where solid edges represent
the transmission costs and dashed edges represent implicit transmissions.

where (xi, yi) and (xj , yj) are the coordinates of nodes i and

j respectively, the objective function of the MEB is now to

minimize:
∑
i∈V

max
ei,j∈T

(xi − xj)
2 + (yi − yj)

2 (3)

Figure 3 presents an example of a MEB solution with 6

nodes. As it can be seen, the source node (root) is node 0
and it transmits to node 3. In turn, node 3 transmits to node

4, and since nodes 1 and 5 are closer to 3 than node 4, they

are implicitly covered by the transmission of node 3, as it is

depicted by the dashed edges. Finally, node 4 transmits no

node 2 to complete the arborescence of the MEB solution.

V. A GENETIC ALGORITHM FOR THE MEB PROBLEM

The algorithm used to solve the minimum energy broadcast

problem has been adapted from [4], where a hybrid genetic

algorithm is used. This consists in a GA complemented with a

local search procedure (or heuristic) that tries to improve the

quality of all generated solutions during the evolutionary pro-

cess of the algorithm. (Some authors refer to this metaheuristic

as memetic algorithm.) In this section we will describe the

algorithm used and how it has been adapted to the cGAP to

solve the MEB problem.

A. Codification of solutions

As in any GA, a solution must be encoded to represent

a tentative solution of the optimization problem, so that

the genetics-inspired operators are applied. In [4] the path

representation (or permutation encoding) is used to represent

an MEB solution. Since this encoding scheme consists in a list

of unique elements, it cannot be used directly to represent a

solution (an arborescence), and therefore a decoder is used to

transform the solution representation to a valid MEB solution.

Figure 4 depicts an example of a MEB solution coded with

the path representation and the corresponding arborescence

with the physical placement of the nodes. The decoder algo-

rithm starts by introducing the source node (node 0) in the

arborescence as the first leaf node. This is not included in the

path representation because the source node is always the first

node in all solutions. Then, the first node in the list (node

MEB solution = [3 4 1 5 2]

1

2

3

4

5

0

source node

Fig. 4. GA solution representation and codification used in the MEB problem.

Algorithm 1 Pseudo-code of a MEB solution decoder and

fitness evaluation
1: solution � GA’s MEB solution to be decoded and evaluated
2: leaves← [source node] � list with all non-transmitting nodes
3: non leaves← [ ] � list with all transmitting nodes
4: fitness← 0
5: i← 0
6: while not all nodes of solution processed do
7: sel node← solution[i]
8: sel leaf ← select in leaves node that leads lower transmission
9: update leaves and non leaves

10: fitness← fitness+ transmission cost from sel node to sel leaf
11: for all nodes in solution not processed do
12: if node covered by transmission from sel node to sel leaf then
13: update leaves
14: end if
15: end for
16: increment i to next node in solution not processed
17: end while

3) is introduced in the arborescence that, at the beginning, is

formed only by a leaf node represented by the source node.

Node 3 is then removed from the list and in this case there are

no more nodes implicitly covered by the transmission 0→ 3.

Then the first node of the remaining list is chosen (node 4)

and it is inserted in the arborescence so that a current leaf

node (node not yet transmitting) will transmit to the selected

node with the minimum cost, which is node 3 (node 4 is closer

to node 3 than node 0). The transmission 3 → 4 is formed

and implicitly covered nodes are just removed from the list

(for the example nodes 1 and 5, as the transmission 3 → 4
already covers the transmissions 3 → 1 and 3 → 5). Finally

the transmission from node 4 to 2 is formed with the same

procedure. Algorithm 1 presents the pseudo-code of the MEB

solution decoder that has been implemented in the PEs of the

cGAP. This algorithm is also used to evaluate the fitness value

of the solution by adding the transmission costs of the nodes.

B. Local search heuristic: r-shrink

The local search heuristic applied to the solutions generated

by the crossover and mutation operations is the r-shrink, which

is based on shrinking the transmission energy of a node so

that the arborescences disconnected from the original solution

(nodes to which the broadcast is not performed due to the

shrinking) are reassigned to other nodes by increasing their

transmission energy. If the reduced energy is superior to the

incremented energy for the resulting assignment, a better solu-

tion is obtained. The r in the name r-shrink means the number

13



Algorithm 2 Pseudo-code of 1-shrink local search for the

MEB problem

1: non leaves � list with all transmitting nodes (created by Alg. 1)
2: fitness � MEB fitness value (created by Alg. 1)
3: number nodes � Total number of nodes
4: total fitness gain← 0
5: while true do
6: improvement found← 0
7: for all nodes in non leaves (from last element to first) do
8: node reduce← node from non leaves
9: node sel← node to which node reduce transmits

10: node improvement found← 0
11: for i← 0, number nodes− 1 do
12: if can node i transmit to node sel then � avoid cycles
13: calculate dec cost and inc cost
14: if inc cost < dec cost then
15: node improvement found← 1
16: if best gain cost of all i nodes then
17: node gain← dec cost− inc cost
18: end if
19: end if
20: end if
21: end for
22: if node improvement found then
23: improvement found← 1
24: total fitness gain← total fitness gain+ node gain
25: end if
26: end for
27: if not improvement found then
28: break
29: end if
30: update non leaves
31: end while
32: fitness← fitness− total fitness gain

of reduction steps performed by the algorithm. Therefore,

in the 1-shrink and 2-shrink for each transmitting node a

reduction on the energy is performed so that, respectively, 1

or 2 nodes (with their corresponding arborescences) are left

for reassigning.

Algorithm 2 shows the pseudo-code of the 1-shrink pro-

cedure implemented in the cGAP. The algorithm starts by

selecting one node that is transmitting and then it finds

the best possible move that leads to the minimum energy

increase. At the same time, it verifies if this move improves

the solution fitness. If an improvement occurs, the algorithm

starts again; if not, another transmitting node is selected for

the same procedure. The algorithm stops when it cannot find

any possible better solution.

The 2-shrink algorithm is identical to the 1-shrink, but

instead of moving 1 node from one place to another in the

MEB solution, now 2 nodes are moved. As proposed in [4],

the 2-shrink starts first with the 1-shrink procedure to improve

the solution.

C. The cGA operations

Table I shows all the operations used by the cellular genetic

algorithm, and thus implemented in the PEs, that we have used

to solve the MEB problem. Both the selection and mutation

operators are identical to the original work, as well as the local

search heuristic described above. Since the cGAP supports

the execution of cellular GAs, we propose to use for the

replacement operation a known strategy in this class of GAs,

TABLE I
GENETIC OPERATIONS ADOPTED IN THE PES FOR THE MEB PROBLEM.

Parent selection
probabilistic binary tournament (75% to accept
best solution)

Crossover maximal preservative crossover (MPX)

Mutation
swap 2 nodes (maximum 3 swaps with probability
75% each)

Local search 1-shrink or 2-shrink
Replacement select random solution and replace if better
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Fig. 5. Subpopulation memory (spMEM) organization in the cGAP.

which consists in randomly select a solution (from all the

subpopulations connected to the PE) and replace it with the

new generated solution if this has a better fitness value [10].

To evaluate the performance of two different crossover

operators adequate for the path representation used to encode

solutions, we have implemented the GA in software using

the maximal preservative crossover (MPX) [14], and the cycle

crossover used originally in [4]. We concluded that the MPX

has consistently obtained better results and this was adopted

for the crossover operation of the PEs.

VI. IMPLEMENTATIONS AND RESULTS

The PE algorithm has been described in C++ for the

Catapult HLS tool. Figure 5 depicts the subpopulation memory

organization used to solve the MEB problem, both for the 1-

and 2-shrink implementations, which is identical in all the

four subpopulation memories that connect to a PE. As it can

be seen, we have kept the nodes’ coordinates of the MEB

problem as additional data besides the solutions. With the

node’s coordinates replicated in the 4 spMEMs accessed by a

PE, we can parallelize the calculation of the squared distance

between two nodes (see Eq. (3)), required to compute the

fitness function. To keep the subpopulation memories with two

memory blocks of the target FPGA (BRAMs of the Virtex-6

family), we have limited our implementation to a maximum

of 128 nodes and subpopulations with a maximum of 14

solutions.

Additionally, we have used several C++ arrays (mapped to

additional memory blocks) to describe the PE algorithm that

are used, for example, to manipulable the MEB solution (an

arborescence), to compute the MPX, and to avoid recalculating

the distance between two nodes in the 1- and 2-shrink heuris-
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TABLE II
CHARACTERISTICS OF THE PROJECTS USED TO IMPLEMENT THE CGAP-1S AND CGAP-2S. TARGET FPGA IS A VIRTEX-6 (XC6VLX240T-1).

cGAP-1s cGAP-2s

Precision RTL
(PE)

ISE synthesis
(cGAP - 5×5 PEs)

ISE (cGAP +
MicroBlaze)

Precision RTL
(PE)

ISE synthesis
(cGAP - 4×4 PEs)

ISE (cGAP +
MicroBlaze)

Registers 3060 (1.0%) 90214 (29.9%) 115759 (38.4%) 3738 (1.2%) 68974 (22.9%) 94695 (31.4%)
LUTs 3996 (2.7%) 116093 (77.0%) 130943 (86.9%) 5992 (4.0%) 106437 (70.6%) 114090 (75.7%)
Slices 999 (2.7%) - 37212 (98.8%) 1498 (4.0%) - 37374 (99.2%)
BRAMs 5 (1.2%) 246 (59.1%) 207 (49.8%) 7 (1.7%) 185 (44.5%) 165 (39.7%)
DSPs 17 (2.2%) 425 (55.3%) 431 (56.1%) 4 (0.5%) 64 (8.3%) 70 (9.1%)
Frequency 87.6MHz 80.3MHz > 75MHz 104.8MHz 95.8MHz > 75MHz

tics. The high-level synthesis performed by Catapult HLS was

optimized by pipelining all the innermost loops, resulting in

most of the pipelined circuits able to work with an initiation

interval equal to 1.

Table II provides the implementation details of the main

projects used for implementing the MEB with 1-shrink and

2-shrink local search heuristics, called respectively cGAP-1s

and cGAP-2s. The two designs implemented were chosen to

maximize the number of PEs (level of parallelism), which

was constrained by the logic resources available in the target

FPGA. As presented in Table II, the cGAP-1s achieved a

maximum of 5×5 PEs, while for the cGAP-2s the maximum

array size was 4× 4 PEs. Although both implementations

support a clock frequency slightly higher than 75MHz, the

final implementation was run with this clock frequency which

is convenient for interfacing with the MicroBlaze processor.

The two cGAPs implementations were used to solve the

same instances of the MEB problem reported in [4], which

consist of two sets of instances, one with 20 nodes and other

with 50 nodes, each with a total of 30 different instances. As in

the original work, the results are averaged over 30 independent

runs for each instance.

The initial populations used in all the experiments have

been built offline and have been loaded to the subpopulation

memories during the initialization phase of the algorithm.

Furthermore, the execution times reported in this work do not

include the initialization phase. This configuration was used to

evaluate the cGAP and thus it does not reflect a real scenario

application, where the initial population can be kept in the

on-chip memories of the FPGA, thus avoiding the need to

create an initial population.

The original algorithm reported in [4] uses 400 solutions

for the population, and a stop criterion of more than 1000 · n
generated solutions, where n is the number of nodes, without

improving the best solution found. Therefore, for the cGAP-1s,

which uses an array of 5×5 PEs, a total of 7 solutions is

used per subpopulation, which results in a population of 420

solutions. The cGAP-2s, which has 4× 4 PEs, requires 10

solutions per subpopulation to achieve exactly a total of 400

solutions. To implement the stop criterion in the cGAPs, the

PEs notify the cGAC when they found a local best solution

and, periodically, when a certain number of generations has

been elapsed. With this information, the cGAC knows what

TABLE III
RESULTS PERFORMANCE OF THE CGAP-1S AND CGAP-2S. DATA IS

COMPARED AGAINST SOFTWARE GA DEVELOPED IN [4].

20-node 50-node

GA-1s
Excess (%) 0 0.81
Found 30/30 19.27/30
Time (s) 0.56 7,49

cGAP-1s

Excess (%) 0 0.63
Found 30/30 17.37/30
Time (s) 0.026 0.53
Acceleration 21.8 15.4

GA-2s
Excess (%) 0 0.25
Found 30/30 22.9/30
Time (s) 0.86 13.71

cGAP-2s

Excess (%) 0 0.10
Found 30/30 25.87/30
Time (s) 0.134 6.49
Acceleration 6.7 2.23

is the best solution in the cGAA and, approximately, how

many generations have elapsed in all the PEs since the best

solution was found. Therefore, the cGAC realizes when the

stop criterion has been met and broadcasts a command to stop

all the PEs, thus concluding the iterative process.

Table III presents the results obtained for the two groups

of instances of the MEB problem. We provide the average

excess which measures, in percentage, the distance that the

solutions obtained are from the known optimum, the number

of times the optimum solution is found out of 30 trials, and the

average execution time. All the results are compared against

the figures reported in the original work (GA-1s and GA-2s,

respectively for the 1- and 2-shrink), which were implemented

in C and executed on a Pentium 4 system running at 3.0GHz.

Additionally, we present the acceleration of the cGAPs with

respect to the corresponding software version of the GAs.

As observed from these results, for the 20-node problems

the cGAP-1s executes in average 21.8× faster than the GA-1s,

whereas the cGAP-2s achieves an acceleration of 6.7×, both

finding always the optimum solution. For the instances with

50 nodes, the cGAP-1s founds in average the optimum 17.37
times out of 30, while the original algorithm provides a slightly

better result of 19.27 out of 30. However, the excess figure is

better for the cGAP-1s, with 0.63% against 0.81% for the

software version GA-1s. Therefore, even though the cGAP-1s
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achieves less times the optimum, in average it has shown to

find solutions with better quality. For the cGAP-2s both the

excess and the number of times the optimum is found is in

average better than the GA-2s. In this case, the acceleration

figures are between 6.7× and 2.2×.

To conclude, for the instances analysed our custom proces-

sor has demonstrated to achieve solutions with superior quality

when compared to the software versions of the GAs. Addi-

tionally, the cGAP executes faster than the original software

version, running in a CPU of a personal computer. Although

these acceleration figures are naturally worst if we consider

the same software running in today’s personal computers,

the potential of acceleration of the proposed cGAP increases

significantly if we compare the performance of the custom

processor to the software genetic algorithm running in an

embedded processor, as for example the soft-core MicroBlaze

implemented in the same FPGA technology. Moreover, the

scalability of the cGAP allows to take advantage of the

larger FPGAs presently available by enlarging the array of

processing nodes, thus increasing the level of parallelism and

consequently the global throughout of the engine.

VII. CONCLUSIONS

In this paper we presented a custom computing array

architecture to accelerate the execution of cellular genetic

algorithms. The computing engine is formed by a regular

array of identical problem-specific processing nodes, sharing

a set of independent memory blocks that hold the pool of

solutions evolved by the genetic algorithm. To facilitate the

implementation and customization of the processing nodes, a

high-level synthesis design flow is proposed to synthesize its

digital implementation from a C++ functional specification,

using commercial high-level synthesis and FPGA back-end

tools. The proposed array architecture has demonstrated a

performance for solving different genetic algorithms that is

almost directly proportional to the number of processing

nodes. This is mainly due to the scalability of the distributed

memory architecture that provides to each processing node a

set of local memories that are only shared with the PEs in its

neighbourhood.

Using this architecture, we have successfully ported an

existing software implementation of a variant of a genetic al-

gorithm (combined with a local search heuristic, usually called

a memetic algorithm) to solve an energy minimization problem

in wireless ad hoc networks. Results have shown interesting

speedup figures compared to the original software version of

the same genetic algorithm. Besides, the cellular GA approach

implemented by our architecture has also shown to obtain

slightly better results in terms of the quality of the solutions

found. Although this framework has been designed originally

for cellular genetic algorithms, the flexibility of the processor

array and the high-level specification of the core processing

units make this interesting for building custom processing

arrays for other population-based optimization metaheuristics,

like particle swarm optimization or differential evolution.
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