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a b s t r a c t

This paper presents an algorithm, in the context of speech analysis and pathologic/dysphonic voices
evaluation, which splits the signal of the glottal excitation into harmonic and noise components. The
algorithm uses a harmonic and noise splitter and a glottal inverse filtering. The combination of these two
functionalities leads to an improved estimation of the glottal excitation and its components. The results
demonstrate this improvement of estimates of the glottal excitation in comparison to a known inverse
eywords:
oice quality
oice diagnosis
lottal inverse filtering
lottal excitation

filtering method (IAIF). These results comprise performance tests with synthetic voices and application
to natural voices that show the waveforms of harmonic and noise components of the glottal excitation.
This enhances the glottal information retrieval such as waveform patterns with physiological meaning.

© 2013 Elsevier Ltd. All rights reserved.
armonic and noise components

. Introduction

In producing speech sounds, humans are able to regulate the
ension of laryngeal muscles in combination with the respira-
ory effort. These physiological settings change the time-varying
ow of air through the vibrating vocal folds, i.e. the glottal vol-
me velocity waveform. Since this signal serves as the source of
voiced) speech, it has an essential role in the production of several
coustical phenomena and cues that are used in everyday speech
ommunication such as the regulation of vocal intensity [1–3],
oice quality [4–7], and the production of different vocal emotions
8–10]. In addition, glottal pulse forms reveal physiological condi-
ions and dynamics of the vocals folds, which might help detecting
oice pathologies related to vocal fold changes [11–13]. Therefore,
ccurate analysis and parameterization of the glottal pulseform is
eneficial in several areas of speech science including both healthy
nd disordered voices.

It is well known that even in the case of sustained vowels pro-
uced by healthy subjects, the vibration of the vocal folds is never

ompletely periodic. Consequently, the glottal source is typically
egarded to comprise two major components; the harmonic (peri-
dic) and the noise (aperiodic) component. Several previous studies
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indicate that for certain voice types, such as breathy and hoarse
voices, the amount of noise is increased in the glottal flow [14,15].
The perceptual effects of the aperiodic components of the glottal
flow have been studied, for example, in relation to the hoarseness
[16] and the breathiness [17] of the voice. The perceptual impor-
tance of aperiodic components of the voice source is also recognized
in speech synthesis where increasing efforts are currently devoted
toward a better understanding of aperiodicities in the voice source
[18,19]. Moreover, the aperiodic behavior of the vocal apparatus
has been studied by voice pathologists who have used perceptual
parameters such as hoarseness and roughness in their voice diag-
nosis. The importance of these perceptual parameters is reflected
on the RASAT and GRBAS scales of voice quality [20] and it has
been shown that hoarseness and roughness are connected to the
presence of noise and acoustic aperiodicities in speech [21]. In par-
ticular, it has been found that some physiological conditions of the
vocal folds mucosa are connected to specific perceptual parame-
ters. For instance, rigidity of the mucosa is related to rough voices
while the corrugation is related to hoarse voices [20].

The separation of a voice signal into the harmonic and noise
components, a concept named harmonic-noise splitting, has been
widely studied in speech science during the past three decades. In
most of the methods described in the literature, the (time-domain)
signal to be processed is represented by the speech pressure wave-
form captured by a microphone but the processing can be also

performed for the glottal flow waveform. Yegnanarayana et al.
developed an algorithm based on a frequency domain approach
[22]. In their method, harmonic regions of the speech pressure
signal are defined by the harmonic peaks and the noise regions
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http://www.sciencedirect.com/science/journal/17468094
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ig. 1. Main block diagram of glottal harmonic-noise splitter. Signals s(n), h(n) an
ignals g(n), gh(n) and gr (n) denote, respectively, the glottal excitation, and its harm
he glottal inverse filtering algorithm described in Alku [24] and Alku et al. [25].

orrespond to the inter-harmonic valleys and regions where har-
onics are absent. A similar method was suggested by Jackson

nd Shadle [23] who used a comb filter structure to separate
he harmonic and noise regions of the speech spectrum. In this

ethod, the fundamental frequency of speech needs to be esti-
ated prior to comb filtering in order to find the harmonic

ositions. Stylianou proposed a harmonic-noise splitting algorithm
ased on the assumption that there is a cut-off frequency that
eparates the speech spectrum into a low-frequency band and
igh-frequency band [19]. In his method, it is assumed that the low-

requency part contains mainly harmonic component information
nd the high-frequency contains noise information.

In this paper, two techniques are combined to yield an algo-
ithm that estimates the harmonic and noise components of the
lottal pulse. These techniques take advantage of the harmonic-
oise splitting which decomposes the signal into a harmonic and
oise component, and the inverse filtering which removes the con-
ribution of the vocal tract. The application of the harmonic-noise
plitting technique to the signal followed by inverse filtering gives
ise to better glottal pulse estimations. This new algorithm was
ested with synthetic voices in order to assess the accuracy of the

ethod, and was also tested with natural voices in order to char-
cterize the algorithm behavior against an acoustic diversity.

. The splitting algorithm

.1. Algorithm overview

The main goal of the study is to develop an algorithm that splits
he waveform of the estimated glottal airflow velocity into a har-

onic and a noise component. The block diagram of the method is
hown in Fig. 1.

The algorithm consists of the following main phases. First (block
), the speech pressure signal is divided into a harmonic and a noise
omponent using a method that is described in detail in the fol-
owing section. It is worth emphasizing that this harmonic noise
plitting takes place prior to the estimation of the glottal airflow, a
hoice which is motivated by the fact that the estimation of the glot-
al airflow with inverse filtering deteriorates if the signal involves
significant amount of noise. Secondly (block 2), the obtained har-
onic component of the speech signal, denoted by h(n) in Fig. 1,
s used as an input to the glottal inverse filtering which yields an
stimate of the vocal tract inverse filter (an FIR filter), denoted by
(z) in Fig. 1. Inverse filtering based on all-pole modeling is com-
uted with a previously developed automatic algorithm, Iterative
denote, respectively, the speech signal and its harmonic and noise components.
and noise components. V(z) denotes the vocal tract transfer function. IAIF denotes

Adaptive Inverse Filtering (IAIF). For the detailed description of the
IAIF method, the reader is referred to Alku [24] and Alku et al. [25].
Thirdly, this FIR filter is used in order to cancel the effects of the
vocal tract from three signals: both from the harmonic and noise
components obtained from the harmonic-noise splitter, and from
the original speech pressure waveform. By further canceling the lip
radiation effect using an integrator whose transfer function is sim-
ply given by L(z) = 1/(1 − 0.99z−1), three glottal signals are finally
obtained: the glottal pulse harmonic component, the glottal pulse
noise component, and the glottal pulse, which are denoted in Fig. 1
by gh(n), gr(n), and g(n), respectively. The underlying model of the
complete method and the principles of the harmonic-noise split-
ter and inverse filtering methods will be described in the following
sections. Both the harmonic-noise splitting and inverse filtering are
linear operations. Eqs. (1)–(4) express the resulting signals in Fig. 1.

s(n) = h(n) + r(n) (1)

g(n) = v(n) ∗ �(n) ∗ [h(n) + r(n)] (2)

g(n) = v(n) ∗ �(n) ∗ h(n) + v(n) ∗ �(n) ∗ r(n) (3)

g(n) = gh(n) + gr(n) (4)

The parameters v(n) and �(n) denote the impulse response of
the inverse model of the vocal tract and lip radiation effect, respec-
tively. Eq. (1) represents the harmonic-noise model, which serves
as the basis for the harmonic-noise splitter. Inverse filtering is rep-
resented by Eq. (2). Finally, Eqs. (3) and (4) show that the glottal
excitation consists of harmonic and noise components.

The main advantage of the procedure depicted in Fig. 1 is the
fact that it is very simple to be implemented once the harmonic
and noise components of speech are split. However, it does not
take into account non-linear phenomena in voice production.

2.2. Harmonic-noise splitter

The harmonic-noise splitter used in our study is based on a
model of the harmonic structure of speech, which is parameter-
ized in frequency, magnitude and phase. The block diagram of the

harmonic-noise splitter is depicted in Fig. 2.

In the first stage (block no 1), the time domain input signal
is transformed into the frequency domain using an Odd-Discrete
Fourier Transform (ODFT) [27]. ODFT is obtained by shifting the
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The LF model is among to most prevalent synthetic voice source
models and it enables modeling a large variety of glottal pulse
waveforms [29]. In order to create a glottal excitation with a desired
F0, a single glottal pulse is first generated (block 1) and then
Fig. 2. Block diagram o

requency index of the Discrete Fourier Transform (DFT) by half a
in [27]:

o(k) =
N−1∑
n=0

x(n)e−j(2�/N)(k+1/2)n, k = 0, 1, . . ., N − 1 (5)

here the time-domain input signal is denoted by x(n) and the
rame length is N. If x(n) is real, this frequency shift makes the DFT
amples above � a perfect mirror (in the complex conjugate sense)
f the DFT samples below � which leads to more simple recon-
truction equations. A peak picking algorithm is used to estimate
he harmonics of the ODFT amplitude spectrum. This peak-peaking
lgorithm was based on sliding window method over the spectral
agnitude where the harmonics peaks are represented. The win-

ow has an odd number of points whose middle point is tested and
f the middle point is largest value in the window, then a peak is
dentified. Note that the sliding window moves one point at a time
long the spectral magnitude in order to test all points.

Next, the frequency, magnitude and phase of each harmonic are
xtracted (block 2) [27]. These parameters are then used to synthe-
ize the spectrum of the harmonic structure of the input signal s(n)
block 3). The spectrum of each individual sinusoid is synthesized
sing the parameters extracted from that harmonic. The harmonic
ynthesis equations are presented by Sousa [26].

Subsequently, the synthesized harmonic structure is subtracted
rom the signal s(n) and the result is regarded as the noise
omponent. Finally, the spectra of both components are inverse
ransformed in order to get time-domain representations for the
armonic and noise components (blocks 4 and 5).

An example of the harmonic-noise splitting algorithm is shown
n the frequency domain in Fig. 3. The spectra are shifted vertically
or visual clarity. The example demonstrates how the proposed

ethod is able to estimate the harmonic structure of speech even
n the inter-harmonic regions where the noise components prevail.

The main disadvantage is that some harmonics may be missing
n the spectrum of the harmonic component due to errors caused by
he peak picking algorithm. These occur typically for voices whose
pectra show a significant amount of high-frequency noise or weak
pper harmonics.

. Performance tests
.1. General overview

Experiments were conducted in order to assess the accuracy
f the proposed algorithm and to compare its performance with a
armonic-noise splitter.

previously known technique, the IAIF method. In order to achieve
this, two major experiments were designed. The first one was based
on synthetic voices and will be explained in the following section.
In the second experiment, a database of natural voices was used in
order to illustrate how the proposed algorithm performs with real
speech. All the analyses were implemented in the Matlab environ-
ment. The IAIF algorithm was included by utilizing the TKK Aparat
tool [28].

3.2. Synthetic voices

In order to generate synthetic speech material, a specific synthe-
sizer was designed. The synthesizer is based on the source-filter
model, but it also involves a harmonic-noise model. A block dia-
gram of the synthesizer is shown in Fig. 4.

The synthesizer uses the Liljencrants–Fant (LF) model as the
parametric representation to mimic the differentiated glottal flow.
Fig. 3. Complete signal (dotted), harmonic (dashed) and noise spectra (solid). The
signals are shifted along the magnitude axis to facilitate visualization.
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ig. 4. Generation of synthetic voice signals. Signals s(n), sh(n) and sr (n) denote, res
nd gr (n) denote, respectively, the glottal excitation and its harmonics and noise co
o adjust the HNR.

oncatenated to obtain a waveform with a train of glottal pulses.
he resulting harmonic waveform is denoted by g′

h(n) in Fig. 4. In
rder to produce a synthetic voice with the desired HNR, signal
′
h(n) is multiplied by factor ˛ (block 2). The value of ˛ is deter-
ined from

NRdesired =
∑N

n=1[˛ · g′
h(n) ∗ vr(n)]2

∑N
n=1[gr(n) ∗ vr(n)]2

= ˛2 · HNRcurrent (6)

here vr(n) is the impulse response of the filter that represents
he vocal tract and lip radiation effect, N is the number of sam-
les, HNRdesired is the desired HNR value and HNRcurrent is the value
ith no adjustment (˛ = 1). To generate the noise component of

he glottal excitation, a white Gaussian noise sequence is first pro-
uced (block 3). In order to modulate the noise component, the
enerated noise sequence is multiplied in the time domain by the
F modeled glottal pulse. A similar approach was utilized in a study
y Yegnanarayana et al. [22], who used as a multiplier a rectangu-

ar pulse centered at the instant of glottal closure instead of the LF
aveform. The resulting modulated noise sequence is denoted by

r(n) in Fig. 4. In the final stage, gr(n) and g′
h(n) are summed up,

esulting in a glottal excitation waveform denoted by g(n). The two
omponents are filtered (blocks 4 and 5) with the vocal tract and
ip radiation filters in order to produce three outputs: the voice sig-
al, and its harmonic and noise counterparts which are denoted,
espectively, in Fig. 4 by s(n), sh(n), and sr(n).

The synthesizer was used to generate a set of test vowels. The
undamental frequency F0 was varied from 100 Hz up to 400 Hz
ith an increment of 10 Hz, in order to mimic both male and female

peech. For each pitch, several vowel instances were generated by
arying HNR from 9 dB up to 21 dB with an increment of 1 dB. The
NR is acquired as:

NR = 10 × log10

(
Eh

Er

)
(7)

Eh and Er denote, respectively, the energy of the harmonic com-
onent, sh(n), and the noise component, sr(n), of synthetic speech.
he values of the LF model were selected according to Gobl [9] in
rder to involve three different phonation types (breathy, normal
nd pressed). The vocal tract filter was adjusted to synthesize the
owel [a] (F1 = 664 Hz, F2 = 1027 Hz, F3 = 2612 Hz). All the data were
enerated using the sampling frequency of 22.05 kHz.

.3. Performance assessment

To assess the performance of both IAIF and the proposed algo-

ithm, the estimated waveforms were compared objectively with
he LF waveform using features extracted from the flow waveforms
nd their derivatives. By referring to Fig. 4, this implies that glot-
al excitations computed from signal s(n) were compared with the
ely, the speech signal and its harmonics and noise components. Signals g(n), gh(n)
ents. Signal g ′

h
(n) is the harmonic component of the glottal excitation that is used

ideal excitation represented by signal g′
h(n). The selected voice

source parameterization methods were the Normalized Amplitude
Quotient (NAQ) and the difference (in dB) between the amplitudes
of the first and second harmonic (DH12). The NAQ parameter is a
time-based parameter that is extracted for each glottal pulse and it
measures the pressedness of phonation from the ratio of the peak-
to-peak flow and the negative peak amplitude of the flow derivative
[30]. The DH12 parameter is a frequency domain quantity and it
measures the decay of the voice source spectrum [31,32]. Both
parameters are independent of time and amplitude shifts. The rel-
ative error, defined in percentage according to Eq. (8), was used for
NAQ since this parameter is a time-domain quantity that is typically
measured on the linear scale.

NAQRel =
∣∣∣NAQo − NAQm

NAQo

∣∣∣ × 100 (8)

In Eq. (8), NAQo is the original NAQ value computed from the
LF pulse used in the sound synthesis. NAQm parameter is the mea-
sured NAQ value computed as a mean of NAQ values extracted from
individual glottal pulses of the estimated glottal excitation.

The absolute error, defined in dB according to Eq. (8), was used
for DH12 because this parameter is typically expressed in the dB
scale.

DH12Abs =
∣∣DH12o − DH12m

∣∣ (9)

In Eq. (9), DH12o is the value of DH12 obtained from the original
glottal source modeled by the LF waveform. DH12m is the value of
DH12 measured from the estimated glottal excitation waveform.

3.4. Natural voices

The proposed algorithm was also tested with real speech. The
database used included 39 sustained waveforms of the vowel [a]
uttered by 13 subjects (7 males, 6 females) using breathy, normal
and pressed phonation. The data were sampled with 22.050 kHz
and a resolution of 16 bits. From these signals, the most stable seg-
ments with duration of 200 ms were selected for the voice source
analysis.

4. Results

4.1. Experiments with synthetic voices

This section presents the results that were obtained for syn-
thetic voices when the glottal source was estimated with IAIF and
the proposed method. The NAQ error and DH12 error were deter-

mined separately for each phonation type. In order to compress the
results, a set of ranges were defined for F0 and HNR and the individ-
ual values obtained inside these ranges were pooled together. For
F0, the following three ranges were used: 100–200 Hz, 210–300 Hz,
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Table 1
NAQ mean relative error (%) for IAIF and the proposed method in the analysis of
pressed synthetic voices.

F0 (Hz) HNR (dB)

IAIF Proposed method

9–15 16–21 22–27 9–15 16–21 22–27

100–200 27.8 14.8 22.6 13.0 11.2 15.5
210–300 52.8 27.5 75.6 21.2 38.4 60.4
310–400 64.7 68.9 131.3 55.9 101.1 151.0

Table 2
DH12 mean absolute error (dB) for IAIF and the proposed method in the analysis of
pressed synthetic voices.

F0 (Hz) HNR (dB)

IAIF Proposed method

9–15 16–21 22–27 9–15 16–21 22–27

100–200 4.6 1.4 0.8 1.0 0.5 0.4
210–300 14.3 3.6 4.0 4.7 2.4 2.0
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Table 4
DH12 mean absolute error (dB) for IAIF and the proposed method in the analysis of
modal synthetic voices.

F0 (Hz) HNR (dB)

IAIF Proposed method

9–15 16–21 22–27 9–15 16–21 22–27

100–200 7.2 0.9 0.8 1.6 1.4 0.7
210–300 15.7 6.4 3.8 5.4 1.0 1.9
310–400 9.4 16.3 11.9 16.9 4.0 2.9

Table 5
NAQ mean relative error (%) for IAIF and the proposed method in the analysis of
breathy synthetic voices.

F0 (Hz) HNR (dB)

IAIF Proposed method

9–15 16–21 22–27 9–15 16–21 22–27

100–200 56.9 37.0 16.5 25.8 11.6 12.0
210–300 77.9 68.2 23.9 46.9 17.9 13.3
310–400 83.8 80.7 45.8 54.4 31.6 18.9
310–400 15.0 15.1 7.8 12.3 4.7 5.9

nd 310–400 Hz. The first two ranges correspond to typical pitch
sed by males and females, respectively. The third range repre-
ents F0 values typical in voices produced by children. For HNR,
he following three categories were used: 9–15 dB, 16–21 dB, and
2–27 dB. The first of these is typical for pathological voices while
he second is characteristic to normal speech [33–35]. The last HNR
ange is related to voices which are highly periodic with a small
mount of noise, such as the singing voice [36]. For each phonation
ype, the results are organized in tables that show the performance
f NAQ or DH12 for the selected F0 and HNR ranges.

Tables 1 and 2 show that the proposed algorithm yields smaller
H12 errors for all the F0 and HNR combinations analyzed from
ressed vowels.

The mean NAQ error was smaller with the proposed method
lso for all the F0 and HNR combinations except for three cases
F0 ranges 210–300 Hz and 310–400 Hz combined with HNR range
f 16–21 dB; F0 range 310–400 Hz combined with HNR range
2–27 dB).

Tables 3 and 4 indicate that the proposed method yielded
maller errors for all the F0 and HNR ranges in the NAQ measure-
ents in modal phonation.
For the DH12 error, the proposed method yielded larger distor-

ion than IAIF only in two cases (F0 range of 100–200 Hz combined
ith the HNR range of 16–21 dB; F0 range of 310–400 Hz combined
ith HNR range of 9–15 dB).

Tables 5 and 6 show results from breathy voices that are in

ine with those observed for modal phonation: the mean NAQ
rror is smaller for the proposed method for all the F0 and
NR categories analyzed and the mean DH12 error was also

maller with the proposed algorithm in comparison to IAIF for

able 3
AQ mean relative error (%) for IAIF and the proposed method in the analysis of
odal synthetic voices.

F0 (Hz) HNR (dB)

IAIF Proposed method

9–15 16–21 22–27 9–15 16–21 22–27

100–200 38.2 21.3 9.3 14.2 8.0 4.7
210–300 68.9 38.2 16.7 24.4 11.4 10.8
310–400 68.5 54.5 36.5 38.3 24.0 28.0
all the F0 and HNR combinations except for few cases (F0 range
of 100–200 Hz combined with the HNR ranges of 16–21 dB and
22–27 dB; F0 range of 210–300 Hz combined with HNR range of
22–27 dB).

In summary, the results obtained for the synthetic vowels show
that the proposed method yields smaller mean NAQ and DH12
errors for the majority of the sounds analyzed. In particular, we
highlight that the proposed method yields improved estimation
accuracy in conditions with large amount of noise and for high-
pitch voices. This accuracy improvement depends on the phonation
type being more pronounced for modal voices.

4.2. Experiments with natural voices

In this section, representative examples of glottal excita-
tions computed from natural speech by the proposed algorithm
are shortly demonstrated. Results are shown in the form of
time-domain waveforms by involving both the harmonic and
the noise component yielded by the novel inverse filtering
method.

Figs. 5 and 6 show waveforms computed from utterances pro-
duced by a male and female speaker, respectively. From both of
these figures one can observe that the harmonic component is
smoother than the glottal excitation waveform. In addition, low
frequency fluctuations are not present in the harmonic component

and the noise component indicates amplitude perturbations at the
instants of glottal closure.

Table 6
DH12 mean absolute error (dB) for IAIF and the proposed method in the analysis of
breathy synthetic voices.

F0(Hz) HNR (dB)

IAIF Proposed method

9–15 16–21 22–27 9–15 16–21 22–27

100–200 9.8 4.6 2.4 5.3 5.1 4.3
210–300 32.8 24.3 4.5 15.7 6.7 5.5
310–400 21.0 28.2 13.3 20.8 9.1 5.7
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Fig. 5. Glottal excitation (top), its harmonic (middle) and noise (bottom) compo-
nents estimated with the proposed method. A natural vowel [a] produced by a male
speaker was used. The noise waveform is magnified 3 times for visual clarity.
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ig. 6. Glottal excitation (top), its harmonic (middle) and noise (bottom) compo-
ents estimated with the proposed method. A natural vowel [a] produced by a

emale speaker was used. The noise waveform is magnified 3 times for visual clarity.

. Conclusions

In this article, a method to estimate the glottal excitation
ased on a known automatic inverse filtering method, IAIF, and a
armonic-noise splitter was proposed. The new method was com-
ared with IAIF in the estimation of the glottal excitation using
xperiments with both synthetic and natural vowels.

Results obtained with synthetic voices show that the proposed
ethod improves the estimation of the glottal waveform. The har-
onic component given by the new algorithm is a more accurate

stimate of the glottal source because the method is able to sup-
ress the influence of noise which is always present in natural
peech, particularly in pathological voices. For voices with low
oise levels, this method may not be necessary and the perfor-
ance of IAIF and the proposed algorithm are similar. The behavior

f both algorithms was tested as a function of the noise level

nd fundamental frequency. It was found that both IAIF and the
roposed algorithm show good accuracy for voices with low fun-
amental frequency and high HNR. Drawbacks of the proposed
ethod are due to the harmonic-noise splitter, which may pass

[

ng and Control 10 (2014) 137–143

noise to the harmonic component and itself is also sensitive to the
noise level.

The proposed method also enables joint estimation of the
harmonic and noise components of the glottal waveform. These
components may be used in the evaluation of pathological voices
since the separation enables characterizing the vocal folds dynam-
ics as a function of noise produced in the speech production
process. In addition, the noise component estimated by the pro-
posed method can be used in speech technology in order to improve
the naturalness of synthetic speech.
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