
Testing the perception of time, state and causality
to predict programming aptitude

José Paulo Leal
DCC/FCUP & CRACS/INESC-TEC

University of Porto, Portugal

Email: zp@dcc.fc.up.pt

Abstract—The aim of the research presented in this paper is
the development of a novel approach to predict programming
aptitude. The existing programming aptitude tests rely on the
past academic performance of students, on their psychological
features or on a combination of both. The novelty of the proposed
approach is that it attempts to measure student capabilities to
manipulate abstract concepts that are related with programming,
namely time, state and causality. These concepts were captured
in OhBalls - a physical simulation of the path taken by a
sequence of balls through an apparatus of conveyor belts and
levers. An engine for this kind of simulation was implemented
and deployed as a web application, creating a self-contained test
that was applied to a cohort of first-year undergraduate students
to validate the proposed approach. This paper describes the
proposed type of programming aptitude test, a software engine
implementing it, a validation experiment, discusses the results
obtained so far and points out future research.

I. INTRODUCTION

PROGRAMMING is hard to learn for most people [9],

[12]. Although some students seem to learn it without

apparent difficulty, this is not the case of most of them,

especially those majoring in subjects other than computer

science or software engineering. Even students in those areas

are not immune to these problems, as many educators feel

that they do not acquire the necessary programming skills in

introductory courses [10]. Probably some students are not cut

out to be programmers and knowing it in advance would a

great advantage [7].

Predicting which students are likely to succeed in learning

programming is not easy, some even say it is unfeasible [9].

Nevertheless, this is precisely the goal of the research de-

scribed in this paper: to create a programming aptitude test,

and especially to explore new ways to predict programming

aptitude.

Several studies suggest that the high school performance in

mathematics is the best indicator of a programming aptitude

in college [3], [6], although the correlation between both is

usually small. The standard explanation is that both mathemat-

ics and programing require abstract reasoning, thus a student

with a good performance in mathematics during high school

is bound to succeed also in college programming courses.

It is indisputable that a connection exists between program-

ming and mathematics, at least in a broad sense. Although it is

much more difficult to define mathematics than programming,

if we accept that the realm of mathematics is patterns of

thought them clearly computer science in general, and com-

puter programming in particular, are deeply connected to this

discipline. However, the mathematical knowledge of a high

school student is essentially algebra, calculus and basic logic,

and these fields lack a number of abstract concepts that are

essential in programming, namely time, state and causality.

The concept of time is central to computing. Computers

have an internal clock that regulates how instructions are

executed. Programs are sequences of instructions that are

executed in a flow over a period of time. All the elements of a

computer, or of a program, are in a certain state that evolves

over time. The execution of instructions causes changes to

these states, that are influenced by their previous states.

This type of reasoning, however abstract, is in general

absent from mathematics, especially from the branches of

mathematics taught in high school. Take calculus for instance.

Although the variable of a function may be interpreted as time,

the function itself exists beyond time; it always existed and

never changes. A derivative may be seen as the amount of

change of the function’s value but it has no discernible causes

or consequences. Or take Boolean logic as another instance,

where A implies B that does not mean that A precedes B or

caused by B. If A is true then it has always been true and

will never change. This timelessness exists also in algebra

where “variables” are actually “unknowns”, values that can

and eventually will be determined by a computation, not values

that actually change over time.

It can be argued that some programming languages, namely

declarative languages, are closer to mathematics and above

these concepts of time, state and causality. Although this is

true, these languages are not widely used and certainly not

used as much as Java, C/C++ and Python in introductory pro-

gramming courses [11]. Moreover, although the denotational

semantics of these languages may be independent from time

and state, their operational semantics depends on them and the

programmer must understand them, if not for anything else,

to be able to debug programs.

An algorithm is probably the mathematical concept learned

before college that most closely resembles to a computer

program. However, students learn specific algorithms that

they execute, for instance the division algorithm, rather than

study algorithms as a topic, without actually creating new

algorithms. These differences between mathematics and pro-

gramming are possibly the reason why a student may reveal

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 721–726

978-1-4673-4471-5/$25.00 c© 2013, IEEE 721

aptitude for maths but none for programming and vice versa,

and why math grades are insufficient to predict proficiency in

programming.

The motivation for this research comes from the intuition

that there is a kind of reasoning that is specific to pro-

gramming, that is different from the reasoning required in

mathematics. Based on this insight, the goal of this research

is to develop a new kind of test based on the concepts of time,

state and causality. The test should be self-contained, in the

sense that it should not require a person to administer it and

should not require any previous knowledge of programming

concepts.

The remainder of this paper is organized as follows. Sec-

tion II reviews the related work on predicting programming

aptitude. Section III presents the proposed type of aptitude test

and describes a JavaScript engine implementing it. Section IV

reports on an experiment to evaluate the proposed type of test.

The final section summarizes the research conducted so far and

identifies paths for future research.

II. RELATED WORK

Predicting programming aptitude is still a challenging task,

although this topic is being studied for more than 40 years [1]

and its relevance has been well establish for almost a quarter

of a century [7].

Most of the recent research in the literature attempts to

correlate programming aptitude with factors that are unrelated

with programming, either the student academic record or

psychological features. As part of the academic performance

the most relevant factor is previous math grades [2], [3], [8] al-

though science grades and even average grades have also been

investigated. Other plausible factors were also investigated,

such as creativity, problem solving aptitude, attitude toward

computers, with even lower correlations [6]. None of these

factors has yet provided a good predictor of programming

aptitude.

The test recently proposed by Dehnadi [5] differs from the

previous since it is actually related to programming; it is a

sequence of questions on Java assignment statements. Dehnadi

claims that consistency in the interpretation rather than its

correctness is the main indicator of programming aptitude.

The purpose of the test is not to discriminate students who

answered correctly, which would assume prior knowledge of

programming. The purpose is actually to determine those who

answered consistently according to a single mental model.

This would reveal the ability to create a meaningful rule to

interpreter the assignment command, from which the aptitude

to learn a programming language could be inferred. Unfor-

tunately, this experiment was later repeated by Caspersen [4]

and also by Wray [12] and none was able to reproduce the

results of Dehnadi.

Wray [12] explored the known link between autism and

descendants of mathematicians and scientists. He proposed

an alternative method for predicting programming aptitude

based on mild autistic-spectrum related questionnaires from

the Autism Research Center. These questionnaires tests two

facets of autism: the level of understanding of systems of

objects (SQ) and the level of understanding of other people

emotions (EQ). Individually these tests are moderately corre-

lated, but combined they provide a good correlation (r=.67)

with programming aptitude. However, the test was applied

only to 17 students after they have completed an introduc-

tory programming course, and no subsequent results were

published on the use of this method to predict programming

aptitude.

III. TESTING PROGRAMMING APTITUDE

The goal of this research is to develop a new kind of test

to estimate programming aptitude. This kind of test intends to

estimate the perception of time, state and causality, under the

assumption that these concepts are present in programming

reasoning and should reveal an aptitude to program. Also, the

test must not require any programming knowledge and be self-

contained, in the sense that anyone should be able to take it

alone, without or with minimal supervision.

The test that is being developed is based on a set of

physical simulations with a common scenario called OhBalls.

This name comes both from the blue ball than moves on a

screen, and the interjection that participants pronounce when

it doest not behave exactly as expected. Since it is based on a

simulation the test must taken on a computer, which nowadays

is hardly a difficulty. In its current implementation the OhBalls

test is deployed on the web hence it can be taken virtually

anywhere.

A test with the OhBalls scenario is composed by a sequence

of panels. Each panel presents a physical simulation set in a

room where balls are dropped from a pipe on the ceiling, move

through a system of conveyor belts and eventually fall in one

of several buckets on the floor. The participant must predict

the number of balls that will land on each bucket when the

simulation is executed. Figure 1 depicts a example of those

panels.

Fig. 1. Example of an OhBalls panel

722 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Balls falling from the pipe land on a conveyor belt that

carries them either to the left or to the right. The direction in

which the upper side of the belt is moving and the ball would

be carried is shown by the arrow head in the middle of the

conveyor belt. This direction can be reversed by one of the

levers connected to the wheels of the conveyor belt when a

ball pushes it. For instance, the first ball falling from the pipe

in Figure 1 will be carried to the right by the top conveyor belt

and fall in the rightmost bucket. When falling to the bucket it

will activate the right lever of the top conveyor belt, reversing

its direction, and thus the second ball will go to the left.

The levers have always the same effect – reverse the

conveyor belt to which they are connected – but are activated

in different ways. For instance, the right lever on the top belt

is activated when the ball falls out of the belt, while the left

lever on the same belt is activated when the ball is carried

to the right by the bottom belt. Hence, the second ball will

fall on the second bucket from the right, and will reverses the

direction of both belts.

The levers change the state of the system from one ball

to the other. In the panel of Figure 1, when the third ball

falls from the pipe the top belt will be moving again to the

right, while the bottom one will be moving to the left. Hence,

this ball will eventually land on the rightmost bucket, raising

its count to 2, while reversing the top belt. At this moment

both belts will be moving to the left. Thus, the fourth and last

ball will be carried to the left, and is dropped on the leftmost

bucket. Any subsequent ball would also end in the leftmost

bucket but this simulation stops after 4 balls.

The number initially on the pipe indicates the number of

balls that will fall during the simulation, and each bucket

counts the number of balls that reached it. Under each bucket

there is a selector where the participant predicts the number

of balls that will reach it when the simulation is completed.

The simulation is started by pressing a button (not shown in

Figure 1) that is activated when the sum of these selectors

equals the number in the pipe.

During the simulation balls fall from the pipe on the ceiling

one after another. When a ball is dropped the counter in the

pipe is decreased. When the ball reaches a bucket its counter

is increased. Then a new ball is dropped from the pipe if this

counter has not yet reached 0. When all balls reach a bucket the

simulation stops and the number in each bucket is compared

with the number in the selector beneath it. The participant

is considered to have successfully predicted the outcome of

the simulation if these figures match for all buckets. The

participant may replay each simulation several times but will

not be able to change the answer made before executing the

simulation for the first time.

It should be noted that levers do not stop balls by them-

selves. They are activated by balls and change the direction

of belts that carry them through the apparatus. For instance,

the left lever on the top belt will be activated when a ball is

moving to the right on the lower belt. The lever will not stop

the ball in this belt but will reverse the direction of the top

belt, affecting only the following balls. If this particular lever

(in the left on the top belt) was pointing up instead of down

then it would affect balls coming to the left in the top belt. It

would not stop them but it would reverse the belt before they

reach the point where they would fall.

In summary, the apparatus is composed of one or more

conveyor belts that carry a ball falling from the pipe to the

buckets on the floor. The motion of each belt is given by a pair

of wheels. Levers are always bound to a belt, more precisely

to one of its wheels, and can be in 4 possible directions (left,

right, up and down).

It is obvious that many panels of this kind can be created

with a different number of belt and lever settings. For instance,

with a single belt there are 16 different combinations. On each

side there are 4 possibilities for placing a lever: no lever at

all, pointing up, pointing down, left or right, depending on the

position of the wheel1. More than one lever per wheel would

be possible but would also be too confusing. In a panel with

2 belts these must be arranged so that falling balls go either

to another belt or to a bucket.

The easiest way to achieve this is to use a grid to place

the center of the belts, the buckets and the pipe. The distance

between the wheels of a belt must be set in a way that balls

are dropped in alignment with the center of other belts and

buckets positioned bellow them. Also, the distance between

consecutive rows must take in consideration that a certain gap

between belts, large enough for the ball to move between them,

and small enough for the ball carried by the lower belt to

activate a lever in upper belt. The pipe should be at the center

and have a belt aligned bellow.

With this approach a setup with 2 belts in two different

ways can be created, with the lower belt either to left or to

the right, with a total of 512 possibilities. It would not make

sense to place belts exactly over each other, or any relative

position where balls would not go from one to the other.

An engine to execute this kind of simulation was imple-

mented in JavaScript using the HTML 5 canvas element with

a 2D context. This engine runs on a recent version of all major

web browser. It can be parametrized with any number of panels

following the approach described above. Currently the panels

are limited to a grid of 5 rows by 7 columns, which is large

enough to place 4 belts, a pipe and bottom row of buckets in

each column of the grid.

The current version of engine supports only the prediction

of the simulation outcome. In a future version it should allow

the participant to place levers in order to achieve a certain

configuration. Obviously, this is much closer to the reasoning

involved in programming than the current implementation,

which is comparable to tracing a program for debugging it.

Implementing this feature is not difficult. The main reason for

not having it in the first version was lack of knowledge on

how the participants would react to this kind of test and the

possibility that they would find it too complex as it is.

1a lever pointing inwards would be senseless

JOSÉ PAULO LEAL: TESTING THE PERCEPTION OF TIME, STATE AND CAUSALITY 723

IV. EXPERIMENT

An experiment was designed to investigate how potential

participants perceive the OhBalls type of test and its effective-

ness in predicting programming aptitude. For this experiment

a number of students enrolled in an introductory programming

course took an OhBalls test and the outcome was compared

with the grades of their middle term exam. This section

presents the web application developed as the main instrument

for this experiment, analyses the data collected with it and

discusses the obtained results.

The web application developed for the experiment is based

in the simulation engine described in section III. It allows a

considerable number of participants to take the test simulta-

neously, while it collects data for later processing.

The interaction of each participant with the web application

proceeds in four stages: identification, questionnaire, tutorial

and test. The total time of each participation is about 20

minutes. To start the participation each student introduces his

or her ID that is checked against a list previously loaded

into the application, ensuring that each student participates

only once. After being identified, the participant completes a

small questionnaire with demographic data, mathematics and

average grades from high-school, and former experience with

computer and programming.

The OhBalls test is preceded by a tutorial that explains how

it works. The tutorial runs on the same type of interface and

highlights each important part while a text in a message box

provides the necessary details. It explains how the balls are

carried by belts in the simulation, how they activate levers and

these change the direction of belts, how they reach buckets and

new balls repeat the simulation until a predefined number of

balls is processed trough the simulation. This tutorial explains

also that the participant must predict the number of balls

ending in each bucket before running the simulation, and how

to activate it and proceed to the next panel. This tutorial runs

in a loop until the participant decides to start the test. During

the test the participant may rerun this tutorial, if needed.

The OhBalls type of test configured for this instrument con-

sists of a sequence of 30 panels. Each panels is accompanied

by a small text that emphasizes a particular point that was not

present in the previous ones, such as “note that levers may by

activated while balls are falling”.

The first set of panels has a single conveyor belt, and each

panel is increasingly more complex than the previous ones.

The following set of panels has two belts also with increasing

complexity. Nevertheless, the first panels with two belts are

less complex than the last ones with a single belt, since they

have no levers or just a single lever. The following two sets,

with three and four belts, are ordered in the same fashion: the

first panels are fairly easy and the last are more difficult.

After the simulation is run the participant is informed if

she succeeded in predicting the outcome of the simulation, the

time she took to complete it (the number of seconds the panel

was shown before pressing the button to start the simulation)

and the percentage of correct answers.

When the participant proceeds to the next panel the applica-

tion sends the data it collected to the server. The data collected

for each panel includes the time the student took to complete

it, the number of balls the student expected in each bucket

and a Boolean indicating if the outcome of the simulation

was predicted with success or not.

The participants were students enrolled for the first time in

an introductory programming course. This course is common

to the computer science and computer engineering programs

offered by the computer science department of the faculty

of sciences at the university of Porto. The course syllabus

is problem solving oriented and uses C as programming

language.

The experiment took place in September of 2012 during

their first practical class and the participation was optional.

Although no student refused to participate in the experiment,

those that were unable to complete the test due to timetable

constraints were excluded. The students received a brief expla-

nation on the purpose of the experiment and were assured that

their participation would not have any impact on their course

grades.

The number of participants in the OhBalls test was 153

of which 115 where considered valid. Of these students a

considerable number decided they were not ready to take

the middle term exam. Only the data referring to the 57

students that took also the middle term exam was used in this

experiment. Of these 57 students considered in the experiment

the number of females was 10 (17.5%) and 18.16 was the

average age.

OhBalls grade

15 20 25 30

●●● ●●

Fig. 2. Box plot of experiment grades

The time taken in each panel by the participants varied from

1 to 558 seconds, with a mean of 33.25 seconds. A possible

inverse correlation between time spent analysing the panel and

the a correct prediction was investigated, but it was not very

high (c = −0.24).

To measure the outcome of each participant’s test a grade

was computed by assigning 1 point to to each panel correctly

answered and 0 otherwise. Thus, each participant had a grade

with range 0 to 30 (the number of panels) assigned to her.

Considering the series of test grades, the minimum grade was

12, the mean 23.3, the median 24 and the maximum 30. A

5 value summary of the ObBalls grades in the experiment is

shown in Figure 2.

724 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

There was a good number of very simple panels, to make

sure the participants understood the test, but most likely this

difficulty was overestimated. In fact, taking 1 for a panel

correctly answered and 0 otherwise, the overall median of was

1 and the mean 0.74; by panel, in 23 out 30 the median was 1.

The data suggests that the OhBalls test used in the experiment

is too simple and more complex panels are needed.

The correlation of the OhBalls grade with the middle term

exam was not high (c = 0.31) and inferior to the correlation

between the high school math grade reported by the students

(c = 0.39). Nevertheless it was possible to identify a subset

of 8 panels for which the correlation is comparatively high

(c = 0.54). Figure IV is a plot of the the grade for this selected

set of panels (as percentage) and the grade in the middle term

exam (also as percentage).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

50 60 70 80 90 100

0
2

0
4

0
6

0
8

0
1

0
0

Selected OhBalls panels (%)

M
id

d
le

 t
e

rm
 e

x
a

m
 (

%
)

Fig. 3. Scatter Plot of selected panels and mid-term grades

Figure IV shows that the selected OhBalls panels predict

the maximum grade the student will obtain, i.e. the student

grade is almost always lower than the grade obtained in the

selected panel of OhBalls.

The grade in the selected panels was also used in com-

plement with other factors that are known to have influence

in programming aptitude, namely math and other high school

grades. The initial questionnaire collected the average grade

used by Portuguese state universities to rank students applying

to their programs. This average includes in equal parts the high

school average grade and the national exams grades in particu-

lar subjects. In this case these subjects can be either math alone

or math, physics and chemistry. A sum of equal parts of these 2

grades (selected OhBalls panels and average grade) reached a

higher correlation (c=.64). By comparison, the average grade

alone obtained a smaller correlation (c=0.57). The scattered

plot of these combined grades with the mid-term grades, with

the regression line in red, is presented in Figure 4.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

55 60 65 70 75 80 85 90

0
2

0
4

0
6

0
8

0
1

0
0

Selected OhBalls panel + high school average (%)

M
id

−
te

rm
 g

ra
d

e
 (

%
)

Fig. 4. Scatter plot of selected panels + average and mid-term grades

In any event, these are just preliminary results suggesting

that there is room for improvement. The OhBalls panels used

in this test were clearly too simple and more complex ones

should be used. The capacity for the participants to understand

the test seems to have been underestimated. With the current

implementation of the OhBalls engine it is easy to create

more complex panels. However, new types of panels where

the participant must place levers in order to achieve a certain

outcome (number of balls in each bucket) should also be used.

The experiment showed also that the OhBalls type of test

is able to engage students. They were much more quiet and

focused when they were taking the test than they were in the

rest of the class. This kind of test has a game-like quality that

motivates students to complete it, which is a requirement if

students have to take the test on their own without supervision.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel approach to estimate program-

ming aptitude based on the understanding of the concepts

of time, state and causality. The proposed type of test is

named OhBalls and does not require any prior knowledge

of programming since it is based on physical simulations

displayed on a a web application. The object of the simulation

is the path of a sequence of balls trough an apparatus of

conveyor belts and levers, until they reach a bucket, which

is simple to understand by any undergraduate student. The

test is self-applicable, in the sense that it does not require the

presence of a person supervising its application.

JOSÉ PAULO LEAL: TESTING THE PERCEPTION OF TIME, STATE AND CAUSALITY 725

An OhBalls test was applied to a cohort of computer science

and software engineering undergraduate students. The initial

results are promising but reveal that more work is still needed

to fine tune the test. The average results are comparatively

high, suggesting that larger number of panels, and more

difficult panels ones, are necessary. Still, a subset of the panels

from the current version has a reasonably high correlation with

the student intermediary grades.
The main conclusion is that the OhBalls tests must have

more panels and more difficult ones, in order to discriminate

better the students with higher understanding of time, state

and causality. Moreover a new class of panels will be added

with a different type of challenge. Instead of simply predicting

the number of balls reaching each bucket, considering the

influence of the levers, the participant will have to position

levers bound to the belts to achieve a certain configuration of

balls in the buckets. The kind of reasoning involved will be

closer to programming, since currently it can be considered

closer to debugging.
In the continuation of this research the methodology of the

experiments will have also to be changed. In the experiment

presented in this paper only the students that took the middle

term test were considered and the students that dropped out

where ignored. This “negative” information will be taken in

consideration when comparing with the final results.
The current results obtained with the OhBalls test used in

the experiment need to be checked against not only the final

course grades but also with other programming courses that

these students are going to take in the following semesters. To

prove the effectiveness of OhBalls test the kind of experiment

presented in this paper must be repeated in computer science

programs with different pedagogical approaches, in different

universities and countries.

ACKNOWLEDGMENT

The author wishes to thank to the students that voluntarily

participated in the test reported in this paper, as well as

to the lecturer and teaching assistants of the introductory

programming course where it took place. This work is in

part funded by the ERDF/COMPETE Programme and by FCT

within the FCOMP-01-0124-FEDER-022701 project.

REFERENCES

[1] Carol Ann Alspaugh. Identification of some components of computer
programming aptitude. Journal for Research in Mathematics Education,
3(2):pp. 89–98, 1972.

[2] Susan Bergin and Ronan Reilly. Programming: factors that influence
success. SIGCSE Bull., 37(1):411–415, February 2005.

[3] Pat Byrne and Gerry Lyons. The effect of student attributes on success
in programming. In Proceedings of the 6th annual conference on

Innovation and technology in computer science education, ITiCSE ’01,
pages 49–52, New York, NY, USA, 2001. ACM.

[4] Michael E. Caspersen, Kasper Dalgaard Larsen, and Jens Bennedsen.
Mental models and programming aptitude. In Proceedings of the 12th

annual SIGCSE conference on Innovation and technology in computer

science education, ITiCSE ’07, pages 206–210, New York, NY, USA,
2007. ACM.

[5] S. Dehnadi. Testing programming aptitude. In Proceedings of the 18th

Annual Workshop of the Psychology of Programming Interest Group,
pages 22–37, Brighton, UK, 2006.

[6] Yavuz Erdogan, Emin Aydin, and Tolga Kabaca. Exploring the psycho-
logical predictors of programming achievement. Journal of Instructional

Psychology, 35(3):264–270, September 2008.
[7] Gerald E. Evans and Mark G. Simkin. What best predicts computer

proficiency? Commun. ACM, 32(11):1322–1327, November 1989.
[8] Annagret Goold and Russell Rimmer. Factors affecting performance in

first-year computing. SIGCSE Bull., 32(2):39–43, June 2000.
[9] Tony Jenkins. On the Difficulty of Learning to Program. In 3rd annual

Conference of LTSN-ICS,, Loughbourgh, 2002.
[10] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial,

Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas,
Ian Utting, and Tadeusz Wilusz. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students.
SIGCSE Bull., 33(4):125–180, December 2001.

[11] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth
Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A survey
of literature on the teaching of introductory programming. In Working

group reports on ITiCSE on Innovation and technology in computer

science education, ITiCSE-WGR ’07, pages 204–223, New York, NY,
USA, 2007. ACM.

[12] Stuart Wray. Sq minus eq can predict programming aptitude. In PPIG

19th Annual Workshop, University of Joensuu, Finland, July 2007.

726 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

