Prepared Scan: Efficient Retrieval of
Structured Data from HBase

Francisco Neves Ricardo Vilaca

José Pereira Rui Oliveira

francisco.t.neves@inesctec.pt, {rmvilaca,jop,rco}@di.uminho.pt
HASLab - INESC TEC & University of Minho
Braga, Portugal

ABSTRACT

The ability of NoSQL systems to scale better than tradi-
tional relational databases motivates a large set of applica-
tions to migrate their data to NoSQL systems, even without
aiming to exploit the provided schema flexibility. However,
accessing structured data is costly due to such flexibility,
incurring in a lot of bandwidth and processing unit usage.
In this paper, we analyse this cost in Apache HBase and
propose a new scan operation, named Prepared Scan, that
optimizes the access to data structured in a regular manner
by taking advantage of a well-known schema by application.
Using an industry standard benchmark, we show that Pre-
pared Scan improves throughput up to 29% and decreases
network bandwidth consumption up to 20%.

CCS Concepts

eSoftware and its engineering — Cloud computing;

Keywords

NoSQL; structured data; performance optimization

1. INTRODUCTION

In recent years, processed and exchanged data among
connected devices grew exponentially, leading traditional
relational databases to reveal their limitations in scaling
properly. Those limitations led to design and development
of more scalable database systems, namely NoSQL data
stores [1}, |7, 13].

NoSQL data stores are usually defined as non-relational
databases because they store schema-less data in a shared
nothing fashion. These systems favor data denormalization,
meaning duplicated portions of data exist across multiple
tables. Besides the flexibility of NoSQL data stores pro-
vided by the schema-less characteristic, several applications
migrate from relational databases to NoSQL databases ex-
clusively for scalability purposes, keeping their schema un-
touched. However, the existing NoSQL databases rely on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SAC 2017, April 03-07, 2017, Marrakech, Morocco
© 2017 ACM. ISBN 978-1-4503-4486-9/17/04. .. $15.00
DOL: http://dx.doi.org/10.1145/3019612.3019863

462

simplified and heterogeneous query interfaces, that consti-
tute a barrier on their adoption. Projects like Google Big-
Query, Hive [5], DQE [10] or Tenzing [8] try to mitigate this
constraint by providing an interface based on SQL over a
MapReduce framework and a key-value store. On a different
perspective, other approaches make use of object mapping
tools that allow to bypass the database lower level inter-
faces. By using [4], the user has at its disposal the generic
object interfaces like JPA and JDO that allow it to use
NoSQL databases in an almost transparent way, leveraging
the knowledge already existent in the area.

NoSE [9] is a system for recommending database schemas
for NoSQL applications. NoSQL uses a cost-based approach
based on a novel binary integer programming formulation to
guide the mapping from the application’s conceptual data
model to a database schema. In |6] the authors present a
solution for the group of columns in a large data table into
column families in order to increase the performance of query
processing.

Existing work ease the migration of legacy SQL applica-
tions to NoSQL databases but without full exploit of schema
flexibility provided by NoSQL systems. However, accessing
structured data is costly due to such flexibility, incurring in
a lot of bandwidth and processing unit usage. Operations
like the table’s scan make more evident the negative impact
in performance associated with redundant meta-information
that these systems store and process.

We propose a new operation named Prepared Scan for
Apache HBase, a non-relational, distributed and open-source
database. It is an alternative to the native scan operation
that decreases the amount of data returned to client in appli-
cations that store their data structured in a regular manner.

2. PREPARED SCAN

Apache HBase is a distributed, scalable and open-source
non relational database. Inspired by Google BigTable, it can
be thought as a multi-dimensional sorted map indexed by
the triple: row key, column name and timestamp. Row keys
might have an unbounded and dynamic number of qualifiers,
grouped into column families, that are created in runtime as
long as new key-value pairs are inserted. Each column is
identified by family:qualifier. Row key and value are ar-
bitrary not-interpreted byte arrays and data is maintained
in a lexicographic order by the row key. Additionally, the
timestamp field is used to keep several versions of key-value
pairs. The whole key-space is horizontally partitioned into
Regions and distributed across several nodes named Region-
Servers. To access data, get, put, scan and delete operations

http://dx.doi.org/10.1145/3019612.3019863

are provided.

The scan operation is optionally applied to a specific row
range and returns key-value pairs to client including all men-
tioned fields. This is still true even if the set of desired
columns is passed to the scan operation, considering that
the application knows how data is structured. Since the na-
tive scan does not take in account the structure of stored
data, it also fetches and returns meta-information of key-
value pairs.

The new operation Prepared Scan aims to optimize ac-
cesses to structured data in Apache HBase by taking advan-
tage of the knowledge about data in applications. It extends
the client-server communication protocol through the imple-
mentation of an endpoint co-processor, which is similar to
stored procedures of traditional relational databases. This
operation consists in the following three steps: preparation,
execution and conclusion.

Client Interface. The client interface was designed in order
to match the mentioned steps. The preparation step requires
a scan instance that specifies, among other options, the set
of columns for further optimization of returned results. The
execution step requires a row key range and a cache hint
related the amount of returned rows. In the end, as the
native scan does, it returns a ResultScanner for further iter-
ation. Moreover, this step can be called several times after
a single prepare. For instance, clients may scan data that
respects the schema already defined in the preparation step
but changing only the row key range throughout consecutive
executions.

In the conclusion step, all state and allocated resources in
preparation step are freed.

Since this interface is similar to the native scan interface,
it requires only small changes to migrate from the native
scan to this new optimized scan.

2.1 Implementation

Most of the functionality of Prepared Scan falls into an
endpoint co-processor implementation, which relies on Google
Protocol Buffers for data serialization.

In this new operation, we follow the same approach as the
native scan follows in terms of how results are returned to
client. This means we only serialize meta-information using
Protocol Buffers and send results as they are. However, na-
tively, endpoint co-processors force messages to be serialized
utilizing Protocol Buffers, degrading the performance when
operations returns a lot of data. In order to avoid it, we
must use external connections to behave the same way as
the native scan.

Preparation. In preparation step, a connection to the table
where a given scan is scoped is created. Through this con-
nection, and since it is not possible to predict the row range
where the scan instance will be applied in further steps, we
sent the Scan instance to all active Regions of the connected
table. When a given Region receives a preparation message
with Scan instance, it is stored in the region-level shared
map, indexed by the identification of each client. After-
wards, an unique external connection is created between a
client and each one of target RegionServers.

Execution. An execution request message containing those
parameters is sent to the first eligible Region in the specified
row range. In its turn, the Region merges the parameters in
the Scan instance previously stored in preparation step.

463

More Row Cells Cells
e Meta
Results Key Count Positions Row
boolean byte array int32 int32 array

<4——— MetaRow ——»
Figure 1: Serialized results meta-information

An InternalScanner, a scanner that executes under the
scope of a RegionServer, is then called with the prepared
Scan instance. Each returned row is processed in order to
remove its meta-information. The InternalScanner finishes
when either the caching value is hit or there are no more
results in current Region that satisfy the Scan parameters.
When latter verifies, the following eligible Regions are the
target of next iterations.

Two important tasks are performed to each cell of rows
in optimization phase. First, each column is replaced by its
index in respect with the schema known by both client and
server. Secondly, the row key is removed from all cells but
first. In the end of execution, all cells got rid of column
names and repeated row keys.

The meta-information of optimized results is built follow-
ing the format illustrated in Figure It shows a boolean
first field, More Results, that represents the existence or
nonexistence of more results in current Region, preventing
another RPC call to this end. This field is always false if
InternalScanner is exhausted. Followed by this field, for each
row, three fields are included: Row Key is the row key where
cells belong to, Cells Count is the number of row’s cells and,
finally, Cells Positions is a list of indexes for each cell in
schema. This meta-data is serialized using Protocol Buffers
and then sent to client. In contrast, results are reduced only
to their timestamps, type of cell and values, serialized and
sent through the direct connections created in preparation
step. In the end, client reads the meta-information from the
endpoint co-processor’s response and use it to collect and
rebuild the final results from its connection to the Region-
Server.

Conclusion. In the last step, all allocated resources, spe-
cially the created connection and stored Scan instance in
preparation step, are freed.

3. EVALUATION

Prepared Scan was evaluated using the industry standard
benchmark Yahoo! Cloud Serving Benchmark|2] and com-
pared with the native scan and GZip-enabled scan.

In this evaluation, we use Apache HBase 1.0.0 and Apache
HDFS 2.6.0 with one Master and two RegionServer nodes,
respectively allocated with NameNode and DataNodes. Each
node has an Intel Core i3-2100 processor and 8GB RAM.
Each RegionServer has 4GB of heap memory. Clients run in
a dedicated node, which hardware specification is the same
as mentioned nodes. All nodes are connected with 1Gbps
network bandwidth.

In order to support this operation, we extended the orig-
inal YCSB code replacing the native scan with Prepared
Scan. Each client prepares a scan once at the beginning
of the execution, since the used schema does not change
throughout the benchmark process.

We create a single table in HBase with one million rows,
using YCSB, each one with ten key-value pairs containing a
row key which size ranges between 5 and 10 bytes and 1-byte
column. Finally, each value is sized in 100 bytes. The whole
key-space is equally partitioned based on number of rows.

—~ 4 T a— =
z 4 /‘A % 15 [AA —A'— - A - - A
E Ll ot <
Z 3fe -8 - M
BoglA%® 4 < 10| .
g e = °0 o --0 --0
= 10 B 5 5 B
Aol E | i
e 0
0 2 4 6 8 = 0 10 20
Throughput (K ops/sec) Clients

(a) Latency and throughput (b) Network usage

Zs\? 100 T g 100 T
\Qj; 80 R ‘g)'; 80 [R
2 60 . e § 6Of P
> 40 > - D 40 /!41ZA777A*
g 28 B g 28 W]
0 10 20 0 10 20
Clients Clients

(¢) CPU in RegionServer (d) CPU in client

’ Prepared Scan - - GZip Scan - 4- Native Scan

Figure 2: Results for 10 rows scan with minimal columns

3.1 Results

This evaluation aims to compare the network bandwidth
usage by the Prepared Scan and the native scan with and
without compression algorithms enabled. To do so, we col-
lected performance and resource load metrics using Dstat.

We ran scan operations for 2, 4, 8, 16, and 24 concurrent
clients. Figure [2] shows the results scan with 10 rows.

Figure 28] shows that the native scan hits its maximum
throughput with 16 clients. In general, its latency is always
between the latency of GZip Scan and Prepared Scan. In
its turn, GZip Scan starts with higher latency and keeps it
until its maximum throughput. Prepared Scan keeps the
lowest latency when compared with previous two types of
scan. It starts to increase throughput notably after 8 clients,
showing up an increase of 29% in throughput compared with
the native scan.

For the purpose of this work, we also present here network
usage. The network usage per scan operation is depicted in
Figure[2b] The native scan is the operation that uses most of
the available network bandwidth (1Gbps) to return results
to client. In contrast, GZip Scan decreases the amount of
data up to 46%, which is the best result. Also, Prepared
Scan saves up to 13% of returned data compared to the
native scan without compression.

The last metric is CPU usage, which is also important
to consider in compression algorithms. As expected, Pre-
pared Scan uses more CPU than the native scan without
compression, since there is an associated cost to pre-process
of results in RegionServer and rebuilt them in client side.
However, GZip Scan is clearly the operation that uses more
CPU to compress all data returned to client.

4. CONCLUSION

In this paper we presented a new operation for Apache
HBase that aims to improve the efficiency of retrieving struc-
tured data from this NoSQL database. It allows HBase to
be aware of the structure of data and discard the meta-
information that is not necessary due to redundancy, such
as column names and row keys, in each key-value pair, de-
creasing network bandwidth usage up to 20% and increasing
throughput up to 29%. GZip Scan is also good to decrease
network bandwidth consumption. However, it requires a lot
of CPU to perform as good as Prepared Scan.

5. ACKNOWLEDGMENTS

The research leading to this publication was funded by the
European Commission’s H2020 under grant agreement num-
ber 732051, CloudDbAppliance project. This work is also

464

financed by the ERDF — European Regional Development
Fund through the Operational Programme for Competitive-
ness and Internationalisation - COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, and by Na-
tional Funds through the Portuguese funding agency, FCT
- Fundagdo para a Ciéncia e a Tecnologia as part of project
UID/EEA/50014/2013.

6. REFERENCES

[1] R. Cattell. Scalable SQL and NoSQL Data Stores.
SIGMOD Rec., 39(4):12-27, May 2011.

B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 143-154, New York, NY, USA, 2010. ACM.

G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP’07, 2007.

P. Gomes, J. Pereira, and R. Oliveira. An object
mapping for the Cassandra distributed database. In
Inforum, 2011.

A. Hive. http://hive.apache.org.

L.-Y. Ho, M.-J. Hsieh, J.-J. Wu, and P. Liu. Data
partition optimization for column-family nosql
databases. In IEEE International Conference on
Smart City/SocialCom/SustainCom, 2015.

A. Lakshman and P. Malik. Cassandra - A
Decentralized Structured Storage System. In
LADIS’ 09, 2009.

L. Lin, V. Lychagina, W. Liu, Y. Kwon, S. Mittal, and
M. Wong. Tenzing: A SQL Implementation On The
MapReduce Framework. 2011.

M. Mior, K. Salem, A. Aboulnaga, and R. Liu. NoSE:
Schema Design for NoSQL Applications (to appear).
In IEEE 32nd International Conference on Data
Engineering (ICDE), 2016.

R. Vilaga, F. Crugz, J. Pereira, and R. Oliveira. An
Effective Scalable SQL Engine for NoSQL Databases.
In J. Dowling and F. Talani, editors, Distributed
Applications and Interoperable Systems, volume 7891
of Lecture Notes in Computer Science, pages 155—168.
Springer Berlin Heidelberg, 2013.

2]

3]

[7

8]

[9]

(10]

http://hive.apache.org

