
Com2: Fast Automatic Discovery

of Temporal (’Comet’) Communities

Miguel Araujo1,5, Spiros Papadimitriou2, Stephan Günnemann1,
Christos Faloutsos1, Prithwish Basu3, Ananthram Swami4,

Evangelos E. Papalexakis1, and Danai Koutra1

1 iLab & School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
{maraujo,sguennem,christos,epapalex,danai}@cs.cmu.edu

2 Rutgers University, New Brunswick, USA
spapadim@business.rutgers.edu

3 BBN Technologies, Cambridge, USA
pbasu@bbn.com

4 Army Research Laboratory, Adelphi, USA
ananthram.swami.civ@mail.mil

5 University of Porto, Porto, Portugal

Abstract. Given a large network, changing over time, how can we find
patterns and anomalies? We propose Com2, a novel and fast, incremen-
tal tensor analysis approach, which can discover both transient and pe-
riodic/repeating communities. The method is (a) scalable, being linear
on the input size (b) general, (c) needs no user-defined parameters and
(d) effective, returning results that agree with intuition.

We apply our method on real datasets, including a phone-call network
and a computer-traffic network. The phone call network consists of 4
million mobile users, with 51 million edges (phonecalls), over 14 days.
Com2 spots intuitive patterns, that is, temporal communities (comet
communities).

We report our findings, which include large ’star’-like patterns, near-
bipartite-cores, as well as tiny groups (5 users), calling each other hun-
dreds of times within a few days.

Keywords: community detection, temporal data, tensor decomposition.

1 Introduction

Given a large time-evolving network, how can we find patterns and communities?
How do the communities change over time? One would expect to see strongly
connected communities (say, groups of people, calling each other) with near-
stable behavior—possibly a weekly periodicity. Is this true? Are there other
types of patterns we should expect to see, like stars? How do they evolve over
time? Is the central node fixed with different leaves every day or are they fixed
over time? Perhaps the star appears on some days but not others?

Here we focus on exactly this problem: how to find time-varying communi-
ties, in a scalable way without user-defined parameters. We analyze a large,

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 271–283, 2014.
c© Springer International Publishing Switzerland 2014

272 M. Araujo et al.

million-node graph, from an anonymous (and anonymized) dataset of mobile
customers of a large population and a bipartite computer network with hun-
dreds of thousands of connections, available to the public. We shall refer to
time-varying communities as comet communities, because they (may) come and
go, like comets.

Spotting communities and understanding how they evolve are crucial for fore-
casting, provisioning and anomaly detection. The contributions of our method,
Com2, are the following:

– Scalability: Com2 is linear on the input size, thanks to a careful, incremen-
tal tensor-analysis method, based on fast, iterated rank-1 decompositions.

– No User-Defined Parameters: Com2 utilizes a novel Minimum Descrip-
tion Length (MDL) based formulation of the problem, to automatically guide
the community discovery process.

– Effectiveness: We applied Com2 on real and synthetic data, discovering
time-varying communities that agree with intuition.

– Generality: Com2 can be easily extended to handle higher-mode tensors.

2 Background and Related Work

In this section, we summarize related work on graph patterns, tensor decompo-
sition methods, and general anomaly detection algorithms for graphs.

Tensor Decomposition. An n-mode tensor is a generalization of the concept
of matrices: a 2-mode tensor is just a matrix, a 3-mode tensor looks like a
data-cube, and a 1-mode tensor is a vector. Among the several flavors of ten-
sor decompositions (see [1]), the most intuitive one is the so called Canonical
Polyadic (CP) or PARAFAC decomposition [2]. PARAFAC is the generalization
of SVD (Singular Value Decomposition) in higher modes.

Tensors have been used for anomaly detection in computer networks [3] and
Facebook interactions [4] and for clustering of web pages [5].

Static Community Detection. Static community detection methods are
closely related to graph partitioning and clustering problems. Using a more alge-
braic approach, community detection can also be seen as a feature identification
problem in the adjacency matrix of a graph and several algorithms based on
spectral clustering have been developed. Santo Fortunato wrote a detailed re-
port on community detection [6].

Time Evolving Graphs. Graph evolution has been a topic of interest for some
time, particularly in the context of web data [7,8]. MDL-based approaches for
detecting overlapping communities in static graphs [9] as well as non-overlapping
communities in time-evolving graphs [10] have been previously proposed. How-
ever, the former cannot be easily generalized to time-evolving graphs, whereas
the latter focuses on incremental, streaming community discovery, imposing seg-
mentation constraints over time, rather than on discovering comet communities.
Other work, e.g. [11], studies the problem of detecting changing communities,

Com2: Fast Automatic Discovery of Temporal (’Comet’) Communities 273

but requires selection of a small number of parameters. Furthermore, broadly
related work uses tensor-based methods for analysis and prediction of time-
evolving “multi-aspect” structures, e.g., [12].

Table 1 compares some of the most common static and temporal community
detection methods.

Table 1. Comparison of common (temporal) community detection methods

Sc
ala

ble

Te
mp

or
al

No
n-
co
ns
ec
ut
ive

∗

Pa
ra
me

ter
fre
e
†

In
ter

pr
eta

bil
ity

‡

Com2 � � � � �
Graphscope[10] � � × � �
CP × � � × ×
SDP + Rounding[13] × � � × �
Eigenspokes[14] � × N/A � �
METIS[15] � × N/A × �
∗ Temporal communities do not need to be contiguous.
† No user-defined parameter.
‡ Results are easy to interpret; elements of the community can be identified easily.

3 Proposed Method

In this section, we formalize our problem, present the proposed method and
analyze it. We first describe our MDL-based formalization which guides the
community discovery process. Next, we describe a novel, fast, and efficient search
strategy, based on iterated rank-1 tensor decompositions which can discover time
varying communities in a fast and effective manner.

3.1 Formal Objective

We are given a temporal directed network consisting of sources S, destinations
D, and time stamps T . We represent this network via a 3-mode tensor X ∈
{0, 1}|S|×|D|×|T | where Xi,j,t = 1 if source i is connected to destination j at
time t. As abbreviations we use N = |S|, M = |D|, and K = |T |. The goal is to
automatically detect communities:

Definition 1. Community
A community is a triplet C = (S,D, T) with S ⊆ S, D ⊆ D, and T ⊆ T such
that each triplet describes an ‘important’ time-varying aspect.

We propose to measure the ‘importance’ of a community via the principle
of compression, i.e. by the community’s ability to help us compress the 3-mode
tensor: if most of the sources are connected to most of the destinations during
most of the indicated times, then we can compress this ’comet-community’ easily.

274 M. Araujo et al.

By finding the set of communities leading to the best compression of the tensor,
we get the overall most important communities.

More specifically, we use MDL (Minimum Description Length) [16]. That is,
we aim to minimize the number of bits required to encode the detected patterns
(i.e. the model) and to describe the data given these patterns (corresponding to
the effects of the data which are not captured by the model). Thus, the overall
description cost automatically trades off the model’s complexity and its goodness
of fit. In the following, we provide more details about the description cost:

Description cost. The first part of the description cost accounts for encoding
the detected patterns C = {C1, . . . , Cl} (where l is part of the optimization and
not a priori given). Each pattern Ci = (Si, Di, Ti) can completely be described by
the cardinalities of the three included sets and by the information which vertices
and time stamps belong to these sets. Thus, the coding cost for a pattern Ci is

L1(Ci) = log∗ |Si|+ log∗ |Di|+ log∗ |Ti|+ |Si| · logN + |Di| · logM + |Ti| · logK

The first three terms encode the cardinalities of the sets via the function log∗

using the universal code length for integers [17]1. The last three terms encode the
actual membership information of the sets: e.g., since the original graph contains
N sources, each source included in the pattern can be encoded by logN bits,
which overall leads to |Si|·logN bits to encode all sources included in the pattern.

Correspondingly, a set of patterns C = {C1, . . . , Cl} can be encoded by the
following number of bits:

L2(C) = log∗ |C|+
∑

C∈C
L1(C)

That is, we encode the number of patterns and sum up the bits required to
encode each individual pattern.

The second part of the description cost encodes the data given the model. That
is, we have to provide a lossless reconstruction of the data based on the detected
patterns. Since in real world data we expect to find overlapping communities, our
model should not be restricted to disjoint patterns. But how to reconstruct the
data based on overlapping patterns? As an approach, we refer to the principle
of Boolean algebra: multiple patterns are combined by a logical disjunction.
That is, if an edge occurs in at least one of the patterns, it is also present in
the reconstructed data. This idea related to the paradigm of Boolean tensor
factorization. More formally, the reconstructed tensor is given by:

Definition 2. Tensor reconstruction
Given a pattern C = (S,D, T). We define the indicator tensor IC ∈ {0, 1}N×M×K

to be the 3-mode tensor with ICi,j,k = 1 ⇔ i ∈ S ∧ j ∈ D ∧ k ∈ T .

Given a set of patterns C, the reconstructed tensor XC is defined as XC =∨
C∈C I

C where ∨ denotes element-wise disjunction.

1 Not to be confused with the iterated logarithm (log�). log∗ is defined as log∗ x =
log x+ log log x+ ..., where only the positive terms are included in the sum.

Com2: Fast Automatic Discovery of Temporal (’Comet’) Communities 275

The tensor XC might not perfectly reconstruct the data. Since MDL, however,
requires a lossless compression, a complete description of the data has to encode
the ’errors’ made by the model. Here, an error might either be an edge appearing
in X but not in XC , or vice versa. Since we consider a binary tensor, the number
of errors can be computed based on the squared Frobenius norm of the residual

tensor, i.e.
∥∥X−XC∥∥2

F
.

Since each ’error’ corresponds to one triplet (source, destination, time stamp),
the description cost of the data can now be computed as

L3(X|C) = log∗
∥∥X−XC∥∥2

F
+
∥∥X−XC∥∥2

F
· (logN + logM + logK)

Technically, we also have to encode the cardinalities of the set S, D, and T (i.e.
the size of the original tensor). Given a specific dataset, however, these values
are constant and thus do not influence the detection of the optimal solution.

Overall model. Given the functions L2 and L3, we are now able to define the
communities that minimize the overall number of bits required to describe the
model and the data:

Definition 3. Finding comet communities
Given a tensor X ∈ {0, 1}|S|×|D|×|T |. The problem of finding comet communities
is defined as finding a set of patterns C∗ ⊆ (P(S)× P(D)× P(T)) such that

C∗ = argmin
C

[L2(C) + L3(X|C)]

Again, it is worth mentioning that the patterns detected based on this definition
are not necessarily disjoint, thus better representing the properties of real data.

Obviously, computing the optimal solution to the above problem is infeasi-
ble as it is NP-hard. In the following, we present an approximate but scalable
solution based on an iterative processing scheme.

3.2 Algorithmic Solution

We approximate the optimal solution via an iterative algorithm, i.e., we sequen-
tially detect important communities. However, given the extremely large search
space of the patterns (with most of the patterns leading to only low compres-
sion), the question is how to spot the ’good’ communities?

Our idea is to exploit the paradigm of tensor decomposition [2]. Tensor de-
composition provides us with a principled solution to detect patterns in a tensor
while simultaneously considering the global characteristics of the data. It is worth
mentioning that tensor decomposition cannot directly be used to solve our prob-
lem: (1) Tensor decomposition methods usually require the specification of the
number of components in advance, while we are interested in a parameter-free so-
lution. (2) Traditional tensor decomposition does not support the idea of Boolean
disjunctions as proposed in our method, and Boolean tensor factorization meth-
ods [18] are still limited and a new field to explore. (3) Tensor decomposition
does not scale to large datasets if the number of components is large as many
local maxima exist. In our case, we expect to find many communities in the data.

Thus, in this work, we propose a novel, incremental tensor analysis for the
detection of temporal communities. The outline of our method is as follows:

276 M. Araujo et al.

– Step 1: Candidate ‘comet’ community: We spot candidates by using
an efficient rank-1 tensor decomposition. This step provides 3 vectors that
represent the score of each source, destination and time stamp.

– Step 2: Ordering and community construction: The scores from step 1
are used to guide the search for important communities. We order the can-
didates and use MDL to determine the correct community size.

– Step 3: Tensor deflation: Based on the communities already detected, we
deflate the tensor so that the rank-1 approximation is steered to find novel
communities in later iterations.

In the following, we discuss each step of the method.

Candidate Generation. As explained, exhaustive search of all candidate com-
munities is not possible. We propose to find a good initial candidate community
using a fast implementation of rank-1 tensor decomposition. We aim at finding
vectors a ∈ R

N , b ∈ R
M , and c ∈ R

K providing a low rank approximation of
the community. Intuitively, sources connected to highly-connected destinations
at highly active times get a higher score in the vector a and similarly for the
other two vectors. Specifically, to find these vectors, a scalable extension of the
matrix-power-method only needs to iterate over the equations:

ai ←
M,K∑

j=1,k=1

Xi,j,kbjck , bj ←
N,K∑

i=1,k=1

Xi,j,kaick , ck ←
N,M∑

i=1,j=1

Xi,j,kaibj

(1)
where ai, bj and ck are the scores of source i, destination j and time k. These
vectors are then normalized and the process is repeated until convergence.

Lemma 1. ALS [19] reduces to Equation 1, when we ask for rank-1 results.

Proof. Substituting vectors a, b, c, instead of matrices (A,B,C), and carefully
handling the Khatri-Rao products, we obtain the result.

Notice that the complexity is linear in the size of the input tensor: Let E be
the number of non zeros in the tensor, we can easily show that each iteration
has complexity O(E) as we only need to consider the non zero Xi,j,k values.
In practice, we select an ε and compare two consecutive iterations in order to
stop the method when convergence is achieved. In our experimental analysis in
Section 4 (using networks with millions of nodes) we saw that a relatively small
number of iterations (about 10) is sufficient to provide reasonable convergence.

We can now use the score vectors a, b and c as a heuristic to guide our
community construction.

Community Construction Using MDL. Since the tensor decomposition pro-
vides numerical values for each node/time stamp, its result cannot be directly
used to specify the communities. Additionally, there might be no clear threshold
to distinguish between the nodes/time stamps belonging to the community and
the rest. Our goal is to find a single community C′ ∈ (P(S)×P(D)×P(T)) lead-
ing to the best compression, based on a local (i.e. community-wise) evaluation
based on MDL (see Definition 3).

Com2: Fast Automatic Discovery of Temporal (’Comet’) Communities 277

The definition of L3(X|C) can be adapted to represent the MDL of this single

community. By using the Hadamard product (X ◦ IC′
), we restrict the tensor to

the edges of the pattern:

L̂3(X|C′) = log∗
∥
∥
∥X ◦ IC′ − IC

′∥∥
∥

2

F
+

∥
∥
∥X ◦ IC′ − IC

′∥∥
∥

2

F
· (log |S|+ log |D|+ log |T |)

+ log∗
∥
∥
∥X−X ◦ IC′∥∥

∥

2

F
+

∥
∥
∥X−X ◦ IC′∥∥

∥

2

F
· (logN + logM + logK)

Even though we now only have to find a single community, minimizing this
equation is still hard. Therefore, we exploit the result of the tensor decomposition
to design a good search strategy.

We first sort the sources, destination, and time stamps according to the scores
provided by the tensor decomposition. Let S ′=(s1, . . . , sN), D′=(d1, . . . , dM) and
T ′=(t1, . . . , tK) denote the lists storing the sorted elements. We start construct-
ing the community by selecting the most promising triplet first, i.e., we form the
community using the most promising edge and we evaluate its description cost.

Given the current community, we incrementally let the community grow. For
each mode, we randomly select an element that is not currently part of the
community using the score vectors as sampling bias. For each of these elements,
we calculate the description length considering that we would add it to the
community. The lowest description length is then selected, and the corresponding
element is added to the community. If none of these elements decreases the overall
description length, we reject them, proceed with the old community and repeat
this process. If we observe l consecutive rejections, the method stops. It can be
shown that the probability that an element that should have been included in
the community was not included decreases exponentially as a function of l and
of its initial score, thus a relatively small value of l is sufficient to identify a
vast majority of the elements in the community. In our experimental analysis,
a default value of l = 20 was seen to be enough, i.e. larger values have not
led to the addition of further elements even when considering communities with
thousands of elements. Therefore, we consider this parameter to be general and
it does not need to be defined by the user of the algorithm.

Tensor Deflation. The output of the previous two steps is a single community.
To detect multiple communities, multiple iterations are performed. The chal-
lenge of such an iterative processing is to avoid generating the same community
repeatedly: we have to explore different regions of the search space.

As a solution, we propose the principle of tensor deflation. Informally, we
remove the previously detected communities from the tensor, to steer the tensor
decomposition to different regions. More formally: Let X(1) = X be the original
tensor. In iteration i of our method we analyze the tensor X(i) leading to the
community Ci. The tensor used in iteration i+ 1 is recursively computed as

X(i+1) = X(i) − ICi ◦X(i)

where ◦ is once again the Hadamard product. This deflated tensor might either
be used in both the candidate generation and community construction stages,

278 M. Araujo et al.

in case we want to penalize overlapping communities, or in the candidate gen-
eration stage alone if overlapping communities are not to be penalized.

The method might terminate when the tensor is fully deflated (if possible),
or when a specific number of communities has been found, or when some other
measure of community quality was not achieved in the most recent communities
(e.g. community size).

Complexity Analysis

Lemma 2. Our algorithm has a runtime complexity of O(M ·(k ·E+N ·logN)),
where M is the number of communities we obtain, E is the number of non-zeros
of the tensor, N is the length of the biggest mode, and k the number of iterations
to obtain convergence. Thus, our method scales linearly w.r.t. the input E.

Proof. Omitted for brevity.

4 Experiments

We tested our method on a variety of synthetic tensors to assess it’s quality and
scalability. We also applied Com2 on two realworld datasets: a large phone call
network and a public computer communications network, demonstrating that
it can find interesting patterns in challenging, real-world scenarios. This section
details the experiments on the datasets summarized in Table 2.

Table 2. Networks used: Two small, synthetic networks; two large real networks

Abbr Nodes #Non zeros Time Description

OLB 10-20 1000-2000 100 Overlapping blocks.
DJB 1 000 50000 500 Disjoint blocks.

LBNL 1 647 + 13 782 113 030 30 Bipartite Internet traces from LBNL.
PHONE 3952 632 51 119 177 14 Phone call network.

4.1 Quality of the Solutions

The characterization of the temporal communities identified by the method is
important. In particular we want to answer the following questions: How are
“overlapping blocks” identified? How “dense” are the communities found?

Impact of overlap. A tensor with two disjoint communities was constructed
and, iteratively, elements from each of the modes of one of the communities were
replaced with elements of the other. Our tests show that the communities are
reported as independent until there is an overlap of about 70% of the elements
in each mode, in which case they start being reported as a single community.
This corresponds to an overlapping of slightly over 20% of the non-zero values
of the two communities and the global community formed has 63% of non-zeros.

Com2: Fast Automatic Discovery of Temporal (’Comet’) Communities 279

This clearly demonstrates that Com2 has high discriminative power: it can de-
tect the existence of communities that share some of their members and it is able
to report them independently, regardless of their size (the method is scale-free).

Impact of block density. We also performed experiments to determine how
density impacts the number of communities found. Fifty disjoint communities
were created in a tensor and non-zeros were sampled without repetition from
each community with different probabilities and random noise was then added.
We analyzed the number of non-zeros in the first fifty communities reported by
our method in order to calculate its accuracy. As we show in Figure 1a, Com2
has high discriminative power even with respect to varying density.

0

20

40

60

80

100

0 50 100

ac
cu
ra
cy

density

(a) Tensor with disjoint blocks - Com2
identifies communities even at low
densities.

f(x) = 8E 05x + 1.0516
R² = 0.9918

0

20

40

60

80

100

0 500,000 1,000,000

ru
nt
im

e
[s
ec
]

number of non zeros

(b) Com2 scales linearly with input
size: Running time versus number of non-
zeros for random tensors.

Fig. 1. Experiments on synthetic data

4.2 Scalability

As detailed before, Com2’s running time is linear on the number of communities
and in the number of non-zero values in the tensor. We constructed a tensor of
size 10 000× 10 000× 10 000 and randomly created connections between sources
and destinations at different timesteps. Figure 1b shows the runtime versus the
number of non-zeros in the tensor when calculating the first 200 communities of
the tensor. We consider random insertion to be a good worst-case scenario for
many real-life applications, as the lack of pre-defined structure will force many
small communities to be found, effectively penalizing the running time of Com2.

In addition to its almost linear runtime, Com2 is also easily parallelizable.
By selecting different random seeds in the tensor decomposition step, different
communities can be found in parallel.

4.3 Discoveries on Real Data

We applied Com2 to a dataset from a european mobile carrier, to charac-
terize the communities found in real phone call data. We considered the net-
work formed by calls between clients of this company over a period of 14 days.

280 M. Araujo et al.

During this period, 3 952 632 unique clients made 210 237 095 phone calls,
51 119 177 of which formed unique (caller, callee, day) triplets. The tensor is
very sparse, with density in the order of 10−7. We extracted 900 communities
using Com2. These communities contain a total of 229 287 unique non-zeros.
293 unique callers and 97 677 unique callees are represented, so the first observa-
tion is that the temporal communities are usually heavy on one side with large
outgoing stars.

We also applied Com2 to a public computer network dataset captured in
1993, made available by the Lawrence Berkeley National Laboratory. 30 days of
TCP connections between 1 647 IP addresses inside the laboratory and 13 782
external IP addresses were recorded. This tensor was totally deflated and a total
of 19 046 communities were found (1 930 of them having at least 10 non-zeros).

In both, fairly different, realworld scenarios, Com2 uses the default parame-
ters (cf. Sec. 3), showing it can be applied without any user-defined parameters.

Observation 1. The biggest communities are more active during weekdays.

Figure 2 shows the number of active communities per day of the week on both
datasets and we can see that most communities are significantly more active
during weekdays. In the phone call data, we are led to believe that these are
mostly companies with reduced activity during weekends, while the reduced
activity during the weekends in the research laboratory is to be expected.

0

200

400

600

800

0 2 4 6 8 10 12 14

ac
tiv

e
co
m
m
un

iti
es

days

(a) Weekly periodicity phone
call data.

200

400

600

800

1000

0 5 10 15 20 25 30

ac
tiv

e
co
m
m
un

iti
es

days

(b) Weekend activity computer
network data.

Fig. 2. Weekly periodicity: number of active communities vs time. Notice the week-
end dives on a) days 4, 5 and 11, 12 and b) days 3, 4, 10, 11, 17, 18, 24, 25

Observation 2. A typical pattern is the “Flickering stars”.

When analyzing a phone call network, a pattern to be expected is the marketeer
pattern in which a number calls many others a very small number of times (1 or
2). Surprisingly, the stars reported by Com2 were not of this type. Two callers
stand out in an analysis of the communities reported: one participated in 78 279
(source, destination, time) triplets as a caller but only in 10 triplets as a receiver,
while the other participated in 8 909 triplets as a caller and in none as a receiver.
These two nodes are centers of two distinct outgoing stars and were detected
by the algorithm. However, the time component of these stars was not a single
day but rather spanned almost all the weekdays. This behavior does not seem

Com2: Fast Automatic Discovery of Temporal (’Comet’) Communities 281

typical of a marketeer, so we hypothesize that it is a big company communicating
with employees. Many of the reported communities are stars of this type: a caller
calling a few hundred people in a subset of the weekdays - we call them flickering
because there is still some activity during the rest of the weekdays, only reduced
so that those days are not considered part of the community.

In the LBNL dataset, one star was particularly surprising. It received connec-
tions from over 750 different IP addresses inside the laboratory but only on a
single day. One of the other big stars corresponded to 40 connections on a single
day to an IP address attributed to the Stanford Research Institute, which is not
surprising given the geographical proximity.

We define Flickering stars as a common temporal-community that has a vary-
ing number of receivers. These communities are active on different days, not nec-
essarily consecutive. Stars active on many days (e.g. every weekday) are more
common than single day stars.

Observation 3. A typical pattern is the “Temporal Bipartite Cores”.
Several near-bipartite cores were detected as communities in the phone call
dataset. These are communities with about 5 callers and receivers that are active
on nearly each day under analysis. These communities represent between 75 and
150 of the non-zeros of the original tensor, with a block density of around 40%.

An example of such communities can also be shown for the LBNL data. 7
machines of the laboratory communicated with 6 external IP addresses on every
weekday of the month. After analyzing the IP addresses, the outside machines
were found to be part of the Stanford National Accelerator Laboratory, the
University of California in San Francisco, the UC Davis, the John Hopkins Uni-
versity, and the U.S. Dept. of Energy. Com2 was able to detect this research
group (possibly in particle physics) using communications data alone.

5 Conclusions

We focused on deriving patterns from time-evolving graphs, and specifically on
spotting comet communities, that come and go (possibly periodically). The main
contributions are the following:

– Scalability: Our method, Com2, is linear on the input size; instead of rely-
ing on a complete tensor factorization, we carefully leverage rank-1 decom-
positions to incrementally guide the search process for community detection.

– No user-defined parameters: In addition to the above, efficient, incre-
mental search process, we also proposed a novel MDL-based stopping crite-
rion, which finds such comet communities in a parameter-free fashion.

– Effectiveness: We applied Com2 on real and synthetic data, where it dis-
covered communities that agree with intuition.

– Generality: Com2 can be easily extended to handle higher-mode tensors.

Com2 can also be applied on edge-labeled graphs, by considering the labels
as the third mode of the tensor. Future work could focus on exploiting side
information, like node-attributes (for example, demographic data for each node).
Com2 is available at http://cs.cmu.edu/∼maraujo/publications.html.

282 M. Araujo et al.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-1247489. Research was sponsored
by the Defense Threat Reduction Agency and was accomplished under contract
No. HDTRA1-10-1-0120. Also, sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number W911NF-09-2-0053.
Additional funding was provided by the U.S. Army Research Office (ARO) and
Defense Advanced Research Projects Agency (DARPA) under Contract Number
W911NF-11-C-0088. This work is also partially supported by a Google Focused
Research Award, by the Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) through the Carnegie Mellon Portugal
Program, and by a fellowship within the postdoc-program of the German Aca-
demic Exchange Service (DAAD). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation, DARPA,
or other funding parties. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright no-
tation here on.

References

1. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Review 51(3)
(2009)

2. Harshman, R.: Foundations of the PARAFAC procedure: Models and conditions
for an “explanatory” multimodal factor analysis (1970)

3. Maruhashi, K., Guo, F., Faloutsos, C.: Multiaspectforensics: Pattern mining on
large-scale heterogeneous networks with tensor analysis. In: Proceedings of the
Third International Conference on Advances in Social Network Analysis and Min-
ing (2011)

4. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Parcube: Sparse parallelizable
tensor decompositions. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012, Part I. LNCS, vol. 7523, pp. 521–536. Springer, Heidelberg (2012)

5. Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-order web link analysis using mul-
tilinear algebra. In: ICDM, pp. 242–249. IEEE Computer Society (2005)

6. Fortunato, S.: Community detection in graphs. Physics Reports 486(35), 75–174
(2010)

7. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of
blogspace. In: WWW (2003)

8. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. IEEE TKDD (2007)

9. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0–1
data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004)

10. Sun, J., Papadimitriou, S., Faloutsos, C., Yu, P.S.: Graphscope: Parameter-free
mining of large time-evolving graphs. In: KDD (2007)

11. Liu, Z., Yu, J., Ke, Y., Lin, X., Chen, L.: Spotting significant changing subgraphs
in evolving graphs. In: ICDM (2008)

12. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: Dynamic tensor anal-
ysis. In: KDD (2006)

Com2: Fast Automatic Discovery of Temporal (’Comet’) Communities 283

13. Tantipathananandh, C., Berger-Wolf, T.Y.: Finding communities in dynamic social
networks. In: ICDM (2011)

14. Prakash, B.A., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C.: Eigen-
spokes: Surprising patterns and scalable community chipping in large graphs. In:
Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119,
pp. 435–448. Springer, Heidelberg (2010)

15. Karypis, G., Kumar, V.: Metis: unstructured graph partitioning and sparse matrix
ordering system. Technical report (1995)

16. Grünwald, P.D.: The minimum description length principle. The MIT Press (2007)
17. Rissanen, J.: A universal prior for integers and estimation by minimum description

length. The Annals of Statistics, 416–431 (1983)
18. Miettinen, P.: Boolean tensor factorizations. In: ICDM (2011)
19. Takane, Y., Young, F.W., De Leeuw, J.: Nonmetric individual differences mul-

tidimensional scaling: an alternating least squares method with optimal scaling
features. Psychometrika 42(1), 7–67 (1977)

	Com2: Fast Automatic Discovery
of Temporal (’Comet’) Communities

	1 Introduction
	2 Background and Related Work
	3 Proposed Method

	3.1 Formal Objective
	3.2 Algorithmic Solution

	4 Experiments
	4.1 Quality of the Solutions
	4.2 Scalability
	4.3 Discoveries on Real Data

	5 Conclusions
	References

