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Portable digital devices equipped with GPS antennas are ubiquitous sources of continuous information for

location-based Expert and Intelligent Systems. The availability of these traces on the human mobility patterns

is growing explosively. To mine this data is a fascinating challenge which can produce a big impact on both

travelers and transit agencies.

This paper proposes a novel incremental framework to maintain statistics on the urban mobility dynamics

over a time-evolving origin-destination (O-D) matrix. The main motivation behind such task is to be able

to learn from the location-based samples which are continuously being produced, independently on their

source, dimensionality or (high) communicational rate. By doing so, the authors aimed to obtain a generalist

framework capable of summarizing relevant context-aware information which is able to follow, as close as

possible, the stochastic dynamics on the human mobility behavior. Its potential impact ranges Expert Systems

for decision support across multiple industries, from demand estimation for public transportation planning

till travel time prediction for intelligent routing systems, among others.

The proposed methodology settles on three steps: (i) Half-Space trees are used to divide the city area into

dense subregions of equal mass. The uncovered regions form an O-D matrix which can be updated by trans-

forming the trees’leaves into conditional nodes (and vice-versa). The (ii) Partioning Incremental Algorithm is

then employed to discretize the target variable’s historical values on each matrix cell. Finally, a (iii) dimen-

sional hierarchy is defined to discretize the domains of the independent variables depending on the cell’s

samples.

A Taxi Network running on a mid-sized city in Portugal was selected as a case study. The Travel Time Esti-

mation (TTE) problem was regarded as a real-world application. Experiments using one million data samples

were conducted to validate the methodology. The results obtained highlight the straightforward contribu-

tion of this method: it is capable of resisting to the drift while still approximating context-aware solutions

through a multidimensional discretization of the feature space. It is a step ahead in estimating the real-time

mobility dynamics, regardless of its application field.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Today, there is a vast number of widespread portable gadgets

uch as smartphones, laptops and GPS navigational devices which

re capable of tracking and communicate their position continuously.
∗ Corresponding author. Tel.: +4962214342261.

E-mail addresses: luis.matias@fe.up.pt, luis.matias@neclab.eu (L. Moreira-Matias),

gama@fep.up.pt (J. Gama), michel@dcc.fc.up.pt (M. Ferreira), jmoreira@fe.up.pt

(J. Mendes-Moreira), luis@geolink.pt (L. Damas).

i

d

2

fl

l

ttp://dx.doi.org/10.1016/j.eswa.2015.08.048

957-4174/© 2015 Elsevier Ltd. All rights reserved.
hese devices represent an opportunity to trace their owners’ activi-

ies. These activities are closely related to the underlying patterns of

he daily human behavior. Researchers worldwide aim to transform

hese patterns into useful information about urban mobility dynam-

cs. These patterns are valuable assets for various research fields, from

isease containment to traffic management (Castro, Zhang, Li, & Pan,

013).

These devices work as ubiquitous sensors of human mobility

ows. They do it so by producing continuous records of GPS data,

eaving a trace of their spatiotemporal activity. Mining this new type

http://dx.doi.org/10.1016/j.eswa.2015.08.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.08.048&domain=pdf
mailto:luis.matias@fe.up.pt
mailto:luis.matias@neclab.eu
mailto:jgama@fep.up.pt
mailto:michel@dcc.fc.up.pt
mailto:jmoreira@fe.up.pt
mailto:luis@geolink.pt
http://dx.doi.org/10.1016/j.eswa.2015.08.048


276 L. Moreira-Matias et al. / Expert Systems With Applications 44 (2016) 275–288

a

p

T

o

e

j

i

n

2

Z

t

a

e

k

i

p

b

s

t

s

a

u

b

2

W

2

t

d

n

O

a

f

l

d

a

p

t

(

k

o

i

v

t

(

c

i

a

c

d

c

o

l

O

i

a

c

m

f

i

t

s

of data is an huge challenge. Moreover, the availability of the data

broadcasted by such mobility tracing devices is largely increasing.

Consequently, it is reasonable to conclude that, in a near future, we

will be able to freely collect in real-time mobility traces from multiple

and heterogeneous sources such as buses, taxis, trams, private cars,

individual smartphones, loop counters or even video cameras. Some

cities are already opening their data repositories to the world, allow-

ing the real-time collection of mobility based data (e.g. Bristol City

Council, 2015). Moreover, the advances on communicational devices

– which exhibit a growing trend on increasing their bandwidth while

still reducing the cost per communicated packet (e.g. 4G Huang, Qian,

Gerber, Mao, Sen, and Spatscheck, 2012) –, point a clear trend to sup-

port an expectation that such samples can be transmitted on a very

high rate. Such characteristics imply that any Expert and Intelligent

system built upon such data will have to deal with an evergrowing

training set of heterogeneous samples in a fast mutation.

Generically, we can point three of the most common questions on

Urban Mobility mining as follows:

1. Where are we traveling from/to? (i.e. spatial analysis Liu, An-

dris, Biderman, & Ratti, 2009);

2. How long it takes to go from point A to point B? (i.e. tempo-

ral analysis Mendes-Moreira, Jorge, de Sousa, & Soares, 2012;

Moreira-Matias, Gama, Mendes-Moreira, & de Sousa, 2014);

3. When are we traveling? Or, how many of us are going from

point A to point B in the time instant/interval t? (i.e. demand

analysis Moreira-Matias, Gama, Ferreira, Mendes-Moreira, &

Damas, 2013b).

Commonly, the question (1) is formulated as a Clustering prob-

lem (Liu et al., 2009), while the remaining ones (2,3) are formulated

as Regression (Mendes-Moreira et al., 2012) ones. Typical approaches

to such unsupervised/supervised learning problems (such as the (1)

Expectation-Maximization algorithm (Fraley & Raftery, 2002) or (2,3)

Support Vector Regression Cortes and Vapnik, 1995) are known by

formulating them (partially or fully) as local optimization problems.

Most of the well-known solvers for such problems require multi-

ple scans over all the samples within a given training set. This type

of learners is also known as offline learning methods. Despite their

innumerous successful applications, these formulations are not ad-

equate to model the dynamic nature of urban mobility problems,

which usually include multiple Concept Drifts during a single day (i.e.

samples that have distinct characteristics from the ones existing in

the training set, which provoke a shift on the characteristics of the

Statistical Population that we are aiming to generalize).

Three simple and yet impactful examples on such issues can be

a (i) car accident/breakdown, a (ii) fast weather change or (iii) a big

convention going on a (usually not that busy) conference center. The

(i) would impact the short-term expected/predicted (2) link travel

time on the affected road, as well on the ones which are more directly

connected to those - which should be foreseen by any straightforward

intelligent routing algorithm (e.g. Ge, Xiong, Tuzhilin, Xiao, Gruteser,

& Pazzani, 2010). The (ii) may impact both the transportation demand

(e.g. (2,3) bursty peaks in taxis due to heavy rains Kamga, Yazici, and

Singhal, 2013) and the travel time within the entire urban area (i.e. a

global reduction of the (2) average link speed), which may impact a

swift change of the control policies on a given public transportation

network of interest (e.g. real-time bus bunching mitigation Moreira-

Matias et al., 2014). On the other hand, a type-(iii) event will seasonly

change the typical (1,3) demand patterns within a given city area -

which may be of interest of any smart recommendation system of

profitable areas for taxi operations (Ge et al., 2010).

The abovementioned examples illustrate the need of update the

learning model throughout the day on an constant manner to ade-

quately handle the most recent information within. However, to carry

out such learning task using the aforementioned problem formu-

lations for offline learning require an unaffordable amount of time
nd/or resources. Recently, online learning methods had become

opular by their abilities on learning from high-speed data streams.

hey usually do it so by relaxing some of the typical constrains of the

ffline learning methods using approximations to conventional learn-

rs (e.g. Hoeffding bounds Domingos and Hulten, 2000) or keeping

ust sufficient statistics of the input samples (e.g. Online Forest Trees

n Gama, Medas, and Rocha, 2004).

The Origin-Destination (O-D) matrix is a state-of-the-art tech-

ique to analyze urban mobility in general (Lee, Shin, & Park,

008; Phithakkitnukoon, Veloso, Bento, Biderman, & Ratti, 2010; Yue,

huang, Li, & Mao, 2009) which can cover most of the typical ques-

ions (e.g. 1,2,3) on this research topic. It consists of dividing an urban

rea into two finite sets of ko, kd non-overlapping subregions which

ntirely cover the initial one. Then, each cell of a (jo × jd): jo ≤ ko ∧ jd ≤
d matrix is used to generate relevant information on the city dynam-

cs, including traffic flow analysis and transportation supply/demand

rediction, among others. This information is often inferred using a

road range of algorithms and statistical models over the GPS data

treams produced by each network’s vehicle. Commonly, an O-D ma-

rix comprises a time-dimension in its cells – which contain some

ort of summarization of the data samples within. Consequently, it is

discretization method for both time and space. Despite the contin-

ous characteristics of the GPS streams, most works on O-D matrices

ased on taxi GPS traces employ batch learning methods (Lee et al.,

008; Liu et al., 2009; Phithakkitnukoon et al., 2010; Qi, Li, Li, Pan,

ang, & Zhang, 2011; Yue et al., 2009; Zhang, Li, Zhou, Chen, Sun, & Li,

011) or Bayesian statistics (Hazelton, 2008; Li, 2005; Parry & Hazel-

on, 2012; Perrakis, Karlis, Cools, & Janssens, 2015) using, at most, two

ifferent data sources.

This application paper proposes incremental discretization tech-

iques to maintain accurate statistics of interest over a time-evolving

-D matrix. These statistics can be used as a bedrock for real-time

nalysis on human mobility dynamics, or as a valuable training input

or machine learning algorithms. Our goal is to provide a sustainable

earning framework, from a computational point of view, which can

eal with a continuous stream of GPS traces broadcasted by multiple

nd heterogeneous sources. Moreover, we also intend to admit sam-

les defined in multiple dimensional spaces by using the rich addi-

ional information that different sources may include on each sample

e.g. driver’s gender and/or age, passenger load). To the best of our

nowledge, this approach meets no parallel in the existing literature

n data driven Expert and Intelligent systems on urban dynamics.

This methodology starts by employing spatial discretization us-

ng a mass-based clustering technique (K.Ting & Wells, 2010) to di-

ide an urban area into a set of subregions. Then, the resulting clus-

ers are incrementally updated over time using Half-Space (HS) trees

Bentley, 1975). Thirdly, a temporal discretization is performed by

reating hierarchized dimensional spans (Chen, Chen, Lin, & Ramakr-

shnan, 2005) whose size depends on the amount of information

vailable in each matrix cell. Finally, the Partition Incremental Dis-

retization (PiD) algorithm (Gama & Pinto, 2006) is proposed to ad-

ress the incremental maintenance of histograms on one (or more)

ontinuous time-dependent variables of interest about the historical

rigin-destination data.

A large taxi fleet running in the city of Porto, Portugal, was se-

ected as a case study. A time stamped dataset containing the spatial

-D coordinates of one million trips was used to conduct the exper-

ments. In this study, the travel time was selected as the target vari-

ble. Travel Time Estimation (TTE) was performed as an application

ase of this framework.

Contributions. The results demonstrate that the proposed incre-

ental discretization framework is a straightforward contribution in

our distinct aspects: (i) to monitor the evolution of urban dynamics

n real-time by maintaining a flexible sample-by-sample discretiza-

ion method over the O-D continuous spatial space; (ii) to obtain

tatistics with distinct levels of detail about the flows between each
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Table 1

Notation and symbols employed along this section.

D Urban area to decompose

v(lat, lon) An O-D location represented by a pair of coordinates

� Set of initial subregions / stage1 city decomposition

ψ Membership function to get the location’s cluster in �

k Number of subregions after the stage1 city decomposition

� Parameter set to refine each subregion by density (stage2)

� Set of final subregions / stage2 city decomposition

ω Membership function to get the location’s cluster in �

j Number of subregions after the stage2 city decomposition

M Resulting O-D matrix

S Initial finite dataset of O-D locations

si Data points inside the cluster Psii or �i

hDimi Dimension chose to split a subregion Psii or �i (i.e. lat./lon.)

θ i Break point to split a subregion in the hDimi

C Regions of Psii that must be refined (i.e. candidates)

c Number of regions in C

κ Maximum number of points in memory about one cluster

si Set of data points inside the cluster Psii or �i kept in memory

n Total number of data points/locations in memory

N Total number of data points/locations processed

α Max. threshold for the mass ratio contained in a single O-D region

rt Min. threshold for excessive mass ratio to refine a O-D region

ξ Min. threshold for mass ratio contained in a O-D region

φ Min. threshold for mass density in a O-D region

p Split/merging test periodicity on the layer-on
ρ i Be the mass density of a region � i

ai Area occupied by a region � i

smi Set of data points in region � i

sui Number of data points contained in a region � i after its last update

ϑ Highest mass value contained inside one subregion

θ�i
Split point to divide a region � i in two with equal masses
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-D pair, thereby reducing the variance in each O-D pairs’ cell; (iii)

o build induction models capable of characterizing the expected be-

avior of a given random variable about the city mobility dynamics

sing the aforementioned statistics as input; (iv) it discards the need

f converging for any local/global minima by performing a series of

pproximations. These approximations are driven by the nature of

he most recent samples. By doing so, the inference methods built

pon this learning framework are able to simultaneously return re-

iable results while keeping intact its ability of dealing with one or

ultiple concept drifts.

The remainder of the paper is structured as follows: the Section 2

efines the problem. The related work is briefly revised in Section 3.

he fourth Section describes the two-layer framework employed to

ncrementally estimate the O-D matrix. Section 5 starts by describing

histogram-based technique to discretize the target variable; then,

discussion is provided on how the histograms can follow the evo-

ution of the O-D matrix. A multidimensional discretization model is

lso proposed to handle discretization in multiple dimensions. The

fth Section briefly describes the Case Study addressed in this work

long with some details about the data employed in the experiments.

he Section 7 starts by presenting an application case for the method-

logy (i.e. TTE), along with the experimental setup and its results.

he Section 8 discusses the results obtained, as well as the applica-

ion of this framework in real-world problems. Finally, conclusions

re drawn, as well as future research directions on this topic.

. Problem statement

O-D matrices are a widespread analysis technique employed in

any research fields. This work addresses both the generation and

aintenance of O-D matrices by mining (A) a high-speed continu-

us flow of origin/destination spatial points (discarding the path fol-

owed between the points). This task can be divided into two distinct

tages. Firstly, (B) the urban area is divided into two finite sets of non-

verlapping ko, kd subregions. Then, (C) the origin and destination (i.e.

o, jd: jo ≤ ko∧jd ≤ kd) subregions of those initial decomposition are se-

ected as Regions of Interest (ROI) to form the final O-D matrix. A ROI

orresponds to an O-D hotspot in a city. Then, it is necessary to decide

ow to store all the data inside each matrix cells given its multiple

imensions. These problems are formulated along this Section. The

ymbols and notations used in this paper are provided in Table 1.

.1. Learning from high speed data streams

Typically, data streams comprise a (a) neverending flow of data

amples. Moreover, the (b) data distribution may not be stationary.

hese characteristics disable the use of many state-of-the-art ma-

hine learning algorithms. High-speed data streams assume that it is

ot possible to scan all the past samples before predicting the target

alue of the following sample (Gama, 2010). Let X = {x1, x2, . . . , xn}
e a dataset produced by a high-speed data stream until time in-

tant t. Let learner() be a batch learning algorithm of interest where

odel(X, t) is the predictive model inferred by it at instant t. Finally, let

X be the expected sample arrival rate. The worst-case time complex-

ty of the learner() is, at best, a single-scan complexity (i.e. O(n)). (c)

igh-speed data streams assume the validity of the following equa-

ion

(n) = c × n : lim
n→∞

λX

T(n)
= 0 (1)

here T(n) is the time required by the learner algorithm to perform

n individual scan for every past n samples, and c is the constant time

equired to process each sample. In fact, the average number of sam-

les that may be used by any learning algorithm applicable to X is

iven by τ = c
λX

. In these conditions, a learner is allowed to inspect

ust a small number of past samples to update its model before the
ollowing sample arrives. In extreme scenarios, the learner may be

orced to process just one instance at a time (i.e. τ = 1). This is called

n incremental learning method. This paper follows two assumptions:

1) a GPS data source is an (a) infinite stream of (b) time-evolving data;

2) its (c) high arrival rate implies that processing is made just one in-

tance at a time.

.2. City decomposition

A city region is a continuous two-dimensional area (i.e. a subset

f R
2), which is difficult to work with. Consequently, it is common

ractice to decompose the city into k disjoint areas to perform any

ata analysis of interest (Castro et al., 2013). Let va(lata, lona) be a pair

f geographic coordinates representing a location. Let D ⊆ R
2 be an

rban area of interest defined by two rectangular vertices with the

oordinates (v1, v2): lat1 > lat2∧lon1 < lon2. Implicitly, it is possible

o infer the following

= [lon1, lon2] × [lat2, lat1] (2)

he city decomposition is a pair (� , ψ), where � is a finite set of

egions and ψ : D → � is a membership function mapping any loca-

ion va ∈ D to a region given by ψ(va) ∈ � . This work uses the def-

nitions in the Eq. 3 presented below. An example of this process is

llustrated in Fig. 1.

k

i=1

�i = D ∧ �i ∩ �l = ∅ , ∀i, l ∈ {1, . . . , k} : i �= l (3)

.3. ROI selection

The ROI selection is commonly made by employing a threshold-

ased 0–1 function ω over some user-defined continuous criteria γ i,

uch as the O-D location number or density within an input region

i. Formally, it is possible to define ω: � → � as a membership

unction ω(�), which can be used to iteratively form the ROI set �
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Fig. 1. A naive example on city decomposition.
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from the original subregion set � . It does so based on the criteria set

� = ⋃k
i=1 γi. Consequently, k ≡ |�| ∧ j ≡ |�|: j ≤ k∧�⊆� .

In various works, only one spatial dimension is considered as they

decompose the city according to the destinations or the origins, and

not based on the relationship between these locations (e.g., the pas-

senger demand (Lee et al., 2008) or the service offer quantity analysis

Phithakkitnukoon et al., 2010). An O-D matrix M comprises the re-

lationships between two ROI sets (i.e. origin and destination). It can

be formed using two distinct approaches: (i) a unique pair of func-

tions (ψ , ω) to generate both the O-D ROI sets (�o, �d) or (ii) two

distinct pairs of functions {(ψo, ωo), (ψd, ωd)} that produce two sep-

arate decompositions on the discretization of the origin/destination

continuous spaces. For very large datasets, it is expected that �o �
�d as they contain the city’s ROI. However, it is very common to ob-

serve seasonal changes throughout time (i.e.: similarly to human be-

havior). Therefore, it is common to employ a type-i approach where �

≡ �o ≡ �d. Consequently, M is represented as a quadratic matrix with

size jo × jd : jo = jd . The temporal discretization is then performed

on the matrix cells (as suggested by previous works on related top-

ics Lee et al., 2008; Phithakkitnukoon et al., 2010; Yue et al., 2009).

The present work follows a type-i approach which also benefits from

those assumptions.

2.4. Mobility modeling

After performing such spatial discretization, it is necessary to de-

cide how to structure the data inside each sample xi which is within

inside each ROI considered. The problem is that those samples of trip-

based locations may contain additional rich information (e.g. driver’s

age, gender, weather-based, etc.) rather than only a timestamp. Con-

sequently, they are represented as multi-dimensional features rather

than unidimensional ones. The challenge lies on make everything

cope together on a learning system that is able to learn from any type

of location-based samples, independently on the dimensions where

they are defined. Moreover, we aim on letting this system evolve

over time to let it express the most current state of the network

at each moment - including forgetting mechanisms for deprecated

data.

In the next Section, we perform a small overview on the

related work on this topic, while the subsequent sections de-

scribe the methodology proposed to address the abovementioned

problem.
. Literature review

The estimation of time-dependent O-D Matrices is a thrilling

roblem in many research areas. Each area may face the problem us-

ng different approaches, assumptions and ends. From the abovemen-

ioned problem formulation, we can state two distinct subproblems:

1) the identification of the ROIs to form the O-D pairs and (2) the

obility modeling through analyzing one or multiple variables of in-

erest inside each cell. The related work on those subproblems are

riefly analyzed below.

.1. ROI identification

The ROI identification is a problem of high relevance, especially

n the taxi industry due to its need of an ubiquitous demand analy-

is. However, such analysis is also relevant for other transportation-

elated topics such as car sharing (for the deployment of the

ick-up/drop-off stations) or even on route planning on mass tran-

it agencies (Ceder, 2002). This analysis is firstly performed by de-

omposing the city into one or two-dimensional O-D zones/matrices,

espectively (as previously stated in Section 2.2). This problem

an be seen as a non-overlapping spatial clustering process. In

Phithakkitnukoon et al., 2010), a grid-based decomposition was used

o predict the number of vacant taxis in a subregion. A Naive Bayes

lassifier was applied to historical GPS data of Lisbon, Portugal. (Liu

t al., 2009) analyzed the Taxi Driver’s Mobility Intelligence by cate-

orizing the drivers based on their profitability. It did it so by employ-

ng a three dimensional clustering technique (space × space × time).

In (Zhang et al., 2011), a low granularity grid was employed to infer

anomalous trajectories. By detecting abnormal sequences of origin-

destination cells, the authors expect to avoid frauds.

(Lee et al., 2008) created a recommendation model based frame-

work to describe the spatiotemporal structure of the passenger de-

mand on Jeju Island, South Korea. A spatial k-Means was employed

to form time-dependent clusters. Hierarchical clustering is employed

in (Qi et al., 2011; Yue et al., 2009) to mine time-dependent attrac-

tive areas concerning the passenger-finding problem. As many clus-

tering based algorithms, these works employ the Euclidean distance

to form its partitions. Consequently, these approaches are useless

when using highly dimensional data. They also discard some of the

most important characteristics of the GPS stream by employing batch

learners and low volumes of data on their test beds. An mass-based
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ncremental clustering framework like our own is capable of mod-

ling seasonal demand patterns on a spatial dimension (e.g. a large

onference taking place on a congress place or a big soccer match).

uch characteristic is key to highlight its contribution facing the pre-

ious work on this topic.

For these reasons, the authors believe that the present approach

as no parallel in the existing literature on ROI discovery for the spa-

ial definition of O-D matrices.

.2. Mobility modeling

Data driven approaches to estimate reliable O-D matrices for

obility modeling have been extensively studied in the literature

Barceló, Montero, Marqués, & Carmona, 2010; Bera & Rao, 2011; Li,

005; Lu, Zhou, & Zhang, 2013; Park, Murphey, McGee, Kristinsson,

uang, & Phillips, 2014; Perrakis et al., 2015; Toledo & Kolechkina,

013). Commonly, this type of technique is used to characterize one

pecific variable of interest over multiple pairs of (known) O-D pairs.

he most common types are traffic flow counts (Perrakis et al., 2015),

peed profiling (Park et al., 2014) and travel time prediction (Barceló

t al., 2010).

Traditionally, the most usual formulation for the O-D estimation

roblem aims to do it so using incomplete data. Such issue can lead to

non-deterministic solution, where multiple plausible non-unique

-D matrices which may diverge considerably from each other (as

uggested by Lu et al., 2013). The main problem within is, given

fixed list of O-D pairs previously selected, estimate a reliable O-

of flow counts given a stream of incomplete mobility data (e.g.:

raffic link counts from Automatic Vehicle Identifiers which have a

atural low penetration rate as it only models data acquired from

ehicles that used a toll-based road to go from O to D). Then, the prob-

em is modeled using parametric estimation techniques such as Max-

mum Likelihood (Spiess, 1987), Generalized Least Squares (Toledo &

olechkina, 2013) or, most commonly, Bayesian Inference (Hazelton,

008; Li, 2005; Parry & Hazelton, 2012; Perrakis et al., 2015). The

ain drawback of the first approach regarding the latter two is that it

equires the user to make an assumption on the functional form of the

nderlying probability distribution (typically, a Multivariate Normal

istribution or a Poisson one Bera and Rao, 2011). On the other hand,

he parametrization of the model in the last two techniques is done

y adding one additional source of static data (e.g. mobility surveys

uwahara & Sullivan, 1987) which is obtained apriori. The advantage

f this type of techniques is to leverage on a previous belief of the O-D

atrix values in order to update them with a small percentage of the

urrent stream evidences, thus tackling the eventual low penetration

ates of the data acquisition system used1.

This paper focuses on analyzing the O-D urban dynamics. It dif-

ers from the abovementioned approaches because it focuses on hu-

an behavioral patterns rather than on modeling traffic patterns per

e. Even so, there is a clear overlap between the two topics that is

orthy to be analyzed on three fundamental points: (i) the type of

ssumptions made within, (ii) the type of data considered and (iii)

he amount of data available today versus the quantity of information

hat it may, or not, contain.

The (i) typical abovementioned approaches to O-D modeling re-

uire one (or multiple) assumptions in order to provide accurate fore-

asts of the target variable. Obviously, this is a clear limitation of such

pproaches as any of those assumptions may not reflect adequately

he evolution of the network status (e.g. a probability density func-

ion describing the travel time between two locations which main

onnecting link’s flow is currently affected by a car accident). Re-

ently, some approaches have tried to model the noise introduced by
1 The reader can consult the Section 2.3 in (Bera & Rao, 2011) to know more about

his type of parametric methods;

t

u

s

c

uch stochastic events using state-based models such as Kalman Fil-

ers (Barceló et al., 2010). However, their approach is still parametric

s they assume that noise follows a Gaussian distribution (i.e. white

oise). Per opposition, the methodology proposed in this paper is

ompletely non-parametric and still incremental. Consequently, it

s able to accommodate any type of functional forms on the proba-

ility distributions that describe the target variable behavior for each

-D pair.

Even if the most well known approaches for O-D take, at most,

wo data sources as input, there are works utilizing multiple differ-

nt types (iii) such as loop counters (Djukic, van Lint, & Hoogendoorn,

012), toll-based Automatic Vehicle Identifiers (Zhou & Mahmassani,

006), smartphones via bluetooth connections (Barceló et al., 2010)

r simple handovers (Iqbal, Choudhury, Wang, & González, 2014),

robe car data from private users (Giannotti, Nanni, Pedreschi, Pinelli,

enso, Rinzivillo, & Trasarti, 2011) and from public transportation

etworks such as buses (Munizaga & Palma, 2012), trains (van der

urk, Kroon, Maróti, & Vervest, 2015) and taxis (Zheng, Liu, Yuan, &

ie, 2011), or even multimodal smartcards (Ji, Mishalani, & McCord,

015). However, just a few works consider more dimensions than the

patial and temporal one to construct the O-D matrix. A rare excep-

ion is the work presented by (Verbas, Mahmassani, & Zhang, 2011),

here the vehicle classes are considered to estimate flow counts. Per

pposition, this methodology is able to accommodate rich types of

ata associated with the O-D locations, which may be dispersed

y multiple and distinct dimensions. This rich data is key to create

cenario-oriented learning, which aim to model the expected net-

ork behavior under specific conditions - as it is properly described

long Section 5.3.

Such multiple mobility data sources are opening new possibili-

ies on the O-D matrix estimation problem. The main breakthrough

elies on the data availability, which is today considerably (and in-

reasingly) higher than it used to be some time ago due to the re-

ent advances on communicational frameworks (e.g. 4G Huang et al.,

012). Moreover, the large increasing of the urban areas worldwide

s pushing them to find solutions to maintain sustainable mobility

evels within. One of the solutions is to create open repositories of

obility data, which are accessible by anyone. Portland (U.S. De-

artment of Transportation, 2015), Dublin (Dublinked, 2015), Porto

Moreira-Matias, Azevedo, Mendes-Moreira, Ferreira, & Gama, 2015)

nd Ottawa (CKAN, 2015) are some of the examples which pub-

ished location-based data from their public transportation networks

buses, taxis and light tram), along with loop counters. (Bristol City

ouncil, 2015) went to another level by providing an unprecedented

eal-time access to multiple city mobility indicators (such as flow-

ounts, congestion levels or car accidents) to anyone interested on

ccessing it so. Such trend is clearly pointing that the problem will

hift from dealing with a low penetration rate to handle an excessive

ow of data, given by mixing all those heterogeneous sources of mo-

ility data. Consequently, the problem on O-D matrix estimation is

ow on how to learn from such multiple sources. Our work results on

flexible discretization framework which summarizes this data on

ifferent levels of detail, depending on the amount of data available

n a given multidimensional chain. This characteristic is key to suc-

essfully deal with the high speed data streams generated by those

ultiple sources. The authors want to claim it so even considering

hat the experiments conducted to validate the methodology hereby

roposed used (rich) probe car data (i.e. taxis) standalone. This ability

omes from the way that the framework is designed. The mechanisms

hat validate such claim are presented in detail along Section 5.

The two works that have more similarities to our own are pre-

ented by (Zheng et al., 2011) and (Giannotti et al., 2011), respec-

ively. The work of (Zheng et al., 2011) also models urban mobility

sing O-D matrix matrices using taxi trajectories. However, they con-

train the matrix spatial boundaries to be major roads - which

an be faced as a limitation of such approach. (Giannotti et al., 2011)
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propose a new query-oriented logical language to store information

typical trajectories collected from an unbounded stream of locations

collected from probe car data. Despite the straightforward character-

istics of this framework in terms of scalability, it does not model other

context-aware data dimensions (such as the vehicle class or the users’

charateristics). The different discretization levels of this framework -

which extend the classical spatiotemporal concept - can be seen as

an opportunity to maintain multiple statistics of interest of the O-D

patterns instead of just one. By these reasons, the multidimensional

tree-based discretization of the trips’ attributes is straightforward on

the real-time O-D matrix estimation problem, regardless of the re-

search goal and scope. This methodology is presented along the next

two Sections.

4. Online O-D matrix estimation

One of the major problems of decomposing an area into a set of

subregions � is guaranteeing that each subregion contains sufficient

data points to characterize it. An example of this problem is the pop-

ular grid-based decomposition (see Fig. 1b), where the city is decom-

posed on equal-sized regions based on a user-defined width/height

(Castro et al., 2013). Its popularity resides on its simplicity. However,

it is naive as it is independent from the data spatial distribution. It

results in regions containing an excess/deficit of data samples. The

goal with this work is to decompose a city area into equal-sized sub-

regions regarding the number of points within (i.e. mass).

Let S = {v1, v2, . . . , vn} : S ⊆ D be a set of n O-D locations of inter-

est and spcls be a data driven spatial discretization function defined

as follows

spcls(D, S, �) = {�,ψ,�,ω} : γi = γl,∀i, l ∈ {1, . . . , k} (4)

Finally, let si⊆S be the set of data points contained in a subregion � i,

where |si| is the region mass. The high-level goal is to build an online

unsupervised learning method spcls that minimizes the value of

mass standard deviation (σ|si|).
The incremental estimation of an O-D Matrix without any prior

knowledge is a difficult task. A two-layer discretization algorithm

is proposed to overcome this problem. In the layer-off, (A) a

batch learning algorithm starts by performing hierarchical mass-

based clustering (K.Ting & Wells, 2010) to find the best k subregions

that meet this last high-level goal. Then, a density-based function is

defined as ω. Finally, the O-D matrix is built based on the resulting �.

The second layer (layer-on) (B) goes from the output of the pre-

vious layer to incrementally update a sufficient amount of statistics

about the regions in �. This methodology is thoroughly described

along this section.

4.1. layer-off: Batch O-D matrix estimation

Let � i be a rectangular subregion defined by two vertices vi, 1, vi, 2

whose coordinates are defined as follows:

lati,1 = max (lati), loni,1 = min (loni),

lati,2 = min (lati), loni,2 = max (loni) : lati, loni ∈ �i (5)

This algorithm starts by initializing � = �1, k = 1 : �1 = D. Then, it

iteratively runs a cycle composed of five steps: firstly, it selects the

ith subregion as arg max i∈{1,...,k}|�i|. Secondly, the length of the verti-

cal/horizontal ith subregion is computed using the Haversine distance

between two geographic coordinates (Robusto, 1957). Then, one of

the latitude/longitude is selected as the largest/shortest dimension

hDimi, lDimi based on that length. The third step consists on find-

ing the binary split point θ� which divides the region space � into

two regions with equal masses. Fourthly, it creates a new k + 1th sub-

region defined by {�k+1, sk+1}, where �k+1 ⊂ �i is defined by the
rea’s breakpoint θ� of the hDimi dimension. sk+1 is defined as fol-

ows:

k+1 =
{
vo| vo[hDimi] ≥ θ�,∀o ∈ {1, . . . , |si|}

}
(6)

inally, the algorithm updates the k number of partitions as k′ = k +
, as well as the sets � i, si as � ′

i
, s′

i
defined in the following equations.

′
i = {vo| vo ∈ �i ∧ vo /∈ �k′ ,∀o} (7)

′
i = {vq|vq ∈ si ∧ vq /∈ sk′ ,∀q} (8)

his cycle only stops when ϑ≤ α, where α is a user-defined parameter

commonly a small ratio of n) and ϑ = max i ∈{1,...,k}|si|. It defines the

esired granularity level.

The suggested mass-based partitioning method follows closely

he method proposed by (K.Ting & Wells, 2010). This application case

s a two-dimensional case as D ⊆ R
2. Its implementation is also made

hrough a Half-Space tree where the concept of space is given by each

egion’s mass. The split point θ is computed as the median value of

Dimi on si. Consequently, ψ will be a decision tree where the leaves

ill contain a cluster and the nodes will contain a split-point condi-

ion regarding one of the two spatial dimensions.

After the initial decomposition, an ROI selection is performed. Let

i be the mass density of a region � i given by ρi = |si|/ai,∀i, where

i is an area occupied by the region �i. Let φ, rt be a user-defined

inimum density-based threshold and a mass-based threshold ratio,

espectively. Let ξ denotes a minimum mass-based threshold ratio

here ξ � α. The membership function ω: � → �1 can be defined

s follows:

1(ρi, φ) =
{

1 i f ρi ≥ φ ∨ |si| ≥ α×n
1+rt

0 i f ρi < φ ∧ |si| < α×n
1+rt

: 0 < rt � 1 (9)

he remaining regions form a set of c region candidates C = {�i|�i ∈
∧ ψ /∈ �1} which may need to be refined. The goal now is to find

ubregions in each region Ci which have, at least, 1 − rt percent-

ge of the total data points ∈ Ci, i.e. |si|. For that, the method runs

four-step cycle: firstly, it selects the ith subregion candidate as

rg min i∈{1,...,c} ρi. Secondly, it discards the candidate Ci if |si| < ξ
n. Such test aims to filter regions without a relevant quantity of

-D flows within. Thirdly, it finds a split point θ to divide Ci into

Cc+1,Cc+2} as |sc+1|/|sc+2| � rt, using an approach similar to the

ne employed in stage 1. Finally, C and � are updated as follows
′ = C \ Ci and � ′ = � \ {Ci} ∪ {Cc+1} ∪ {Cc+2}. The ROI set � is up-

ated as �′ = � ∪ {Cc+2} if ω(ρc+2, φ) = 1. Otherwise, Cc+2 returns

o the candidate set as C′′ = C′ ∪ {Cc+2}. This cycle runs continuous

ntil C ≡ ∅.

.2. layer-on: Incremental O-D matrix Estimation

Let St = {v1, v2, . . .} be an infinite set of locations where N is

he number of samples achieved at time instant t defined as |St | =
: limt→∞ N = ∞. Let sm = {sm1, . . . , smk} be the set containing the

ata points smi within a subregion � i and n be the number of

oints stored in memory at instant t. After performing the first run

f layer-off, n = N and s ≡ sm. However, this relationship cannot

e maintained as the memory has a bounded domain, while N has an

nbounded domain. Therefore, n is constrained as limt → ∞n � N.

To define the domain boundaries of n, it is necessary to describe

he minimum amount of information required to characterize the spa-

ial data distribution in � . This information can be used to recon-

truct � , � at all times by using the points in sm :
∑k

i=1 |smi| = n.

o do so, the layer-on starts by setting the maximum number of

oints κ = arg maxi∈{1..k} |smi| ∈ sm as the one obtained at the time

nstant immediately after the first run of layer-off. Consequently,

he domain of n meets its constraint as limt→∞ n = κ × k � N.
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Let ¯lati,
¯loni be the average latitude/longitude of the |si| O-D points

n region � i at time instant t. This algorithm iteratively processes

ach new sample vN ∈ St in a three-step loop: firstly, it determines

i = ψ(vN) : Ri ∈ � as the O-D subregion to which vN belongs. Sec-

ndly, it updates the number of points |si|, as well as ¯lati,
¯loni, based

n vN. smi is also updated as sm′
i
= smi ∪ {vN}. However, if |sm′

i
| > κ,

forgetting mechanism is launched. The algorithm deletes the most

utdated data point (smi
′
1
) from the memory as sm′′

i
= sm′

i
\ {smi

′
1
}.

ts goal is to maintain the n inside a bounded domain. Finally, the al-

orithm determines which of the current partitions in � meets the

erge/split criteria. This operation is periodically performed, where

represents its period . p can be defined in time as (i.e. p ≥ λSt, where

St stands for the expected arrival rate of new locations vN ∈ St) or in

pace (i.e. each p samples) as p ≥ 1. The value of p sets how reactive

ur model will be.

.2.1. Merging partitions

By merging, the algorithm aims at recovering the regions from

he ROI set � where the number of O-D points increases more

han expected. Let su represent the region mass after its last up-

ate (i.e. merge/split). su is initialized as sui = |smi| : i ∈ {1, . . . , k}
ight after the last run of the layer-off. The merge operator is

aunched in every region in C = {Ci|Ci /∈ � ∧ Ci ∈ � ∧ |si| > 2 × sui}.

he merge operation starts by finding the deepest conditional node

ode of ψ which divides Ci from another region �old (it is an oper-

tion with a worst-case time complexity of O(k)). Secondly, the op-

ration transforms the node into a leaf node with the cluster of the

ewest region �new defined as �new = �old ∪ Ci. � , k and s are up-

ated accordingly as � ′ = � ∪ {�new} \ {�old} \ {Ci}, k′ = k + 1 and
′ = s ∪ {snew} \ {sold} \ {si}. � and su are also updated as �new ∈ �:

snew| ≥ ξ × N and sunew = |snew|.
.2.2. Splitting partitions

The splits follow a similar approach as the one proposed in Stage 1

f the layer-off. The split operator is triggered in every region

n C = {Ci|Ci ∈ C : Ci ∈ � ∧ |si| > α × N}. The main difference resides

n defining the split point θ . In this layer, it is not possible to conduct

single-scan operation on multiple data points ∈ smi to calculate the

edian. Instead, ¯lati,
¯loni are used, - which are easily maintained fol-

owing an incremental logic.

.3. Two-layer framework

Similarly to many incremental learning algorithms (Gama &

into, 2006), the spcls(D, S, �) maintains two distinct layers: the

ayer-off, which determines the best possible ROI set � by em-

loying unsupervised batch learning methods over the entire dataset

vailable, and layer-on, which approximates � by updating itself

o each new data point. This flexibility comprises an error which

rows as the split operator is invoked in the layer-on. To mit-

gate this effect, the framework can launch the layer-off on-

emand. The foundation for this ability is s. It is a set of data points

hat keeps the most recent data points of each existing region � i. s is

aintained using a sliding window whose size is determined by the

onstant κ , which is obviously correlated to the parameters α and n.

Therefore, the spcls can be classified as an unsupervised learn-

ng method which is also incremental. Its parameter set � is defined

s � = {n, α,φ, rt, ξ , p}. The most sensitive parameters are φ and ξ
s they define the boundaries of �. rt just defines if a region may be

efined or not. n and α affect spatial complexity, while p causes small

rifts on the time complexity.

The O-D matrix is formed as M[r, i] denotes a cell containing

nformation on the mobility flows from the region �r to the re-

ion �i. The matrix evolution over time poses constrains when stor-

ng this information, because not only should it be maintained in-

rementally, but it should also be easily decomposed in order to
ollow the splits/merges performed. Incremental Histograms are pro-

osed to meet these constraints, which are described in the following

ection.

. Incremental data discretization using histograms

Histograms are a state-of-the-art method in exploratory data

nalysis. They make it possible to discretize continuous variables into

ntervals. This approach is a common building block of many machine

earning algorithms (e.g. Bayesian Learning Domingos and Pazzani,

997), and for that reason it is proposed as a tool to maintain accu-

ate statistics over a time-evolving O-D matrix.

Let H be defined as the set of all histograms in M (i.e. the his-

ograms describing a variable of interest in each cell of M). Let ho, d

H represent a histogram of q intervals discretizing a continu-

us spatiotemporal variable of interest Xo,d = {(xi, vi)|vi ∈ �o ∀i} and

ho, d| denotes the mass within. Xo, d describes directional interac-

ions between the O-D regions �o, �d ∈ � (e.g.: xi may represent

value of any variable of interest). ho,d = (B, F) can be defined as a

et of breakpoints B = {b1, . . . , bq−1} and a set of frequency counts

= { f1, . . . , fq}. This section describes a fully incremental strategy

o maintain histograms on Xo, d in real-time on distinct dimensional

evels.

.1. The partition incremental discretization PiD

The PiD is a fully incremental algorithm capable of maintain-

ng accurate histograms of never-ending streams of data (Gama &

into, 2006). This paper proposes the employment of the algorithm

o maintain histograms of equal width, such as (bi − bi−1) = (bl −
l−1) = δq, ∀i, l.

This algorithm works on two different layers. Let q, q1 be two

ser-defined number of bins and [ν1: ν2] be the range of Xo, d. q

tands for the desired number of bins, while q1 is used as input pa-

ameter to the layer1 defined as q1 � q. The layer1 is initial-

zed as F = { fi| fi = 0, ∀i} and B = {ν1, . . . , ν2} : (bi − bi−1) = δq1
,∀i.

hen, the algorithm runs continuously, incrementing fi every time a

ample (xa, va) is added, where va ∈ �o. If xa < ν1∨xa ≥ ν2, a new

in is added to such extremity with the step δq1
. The split opera-

or is triggered on a bin if fi > η, where η is a user-defined parameter

sually defined as a ratio of the histogram mass. Consequently, two

ins are created, each one comprising half of the interval [bi, bi+1] and

ontaining the same frequency f ′
i

= fi/2 : f ′
i

∈ N.

The layer2 is launched every time the user needs to analyze the

ata. It iteratively merges the bins in layer1 to meet the desired q in

erms of size intervals δq. The main advantage of maintaining these

ayers is that it is possible to easily produce histograms of different

izes each time it is necessary to discretize the domain variable. Ad-

itional details on the PiD algorithm are provided in (Gama & Pinto,

006).

.2. Following the O-D matrix evolution

One of the major issues of building histograms is the definition of

. There is not a well-established general strategy to do so. Different

trategies may be employed depending on the user’s purposes. The

ain contribution of PiD is that q does not need to be constant: it can

e either time or sample dependent. Whenever � , � and M change

ver time, H must follow the merge and split operations. Let δmin be

he minimum interval size in H. The interval widths in H must be

ubjected to the following constraint:

= {hi(B, F)| ∃ a ∈ N : (bl − bl−1) = δmin × 2a−1, ∀i, l} (10)
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Fig. 2. Example of a multidimensional hierarchy to discretize attributes. Note that the

zoom level and the discretization intervals may not be constant.
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Consequently, the problem of merging two histograms ho1,d, ho2,d

into a single one ho, d can be defined as

qo,d = max bl − min bl

δo,d

: bl ∈ {Bo1,d ∪ Bo2,d} (11)

where δo,d = max (δo1,d, δo2,d). Then, the layer2 is employed to

turn the histograms ho1,d, ho2,d into equal-width histograms as

qo1,d ≡ qo2,d ≡ qo,d . Finally, the frequency set is defined as Fo,d =
{ fi| fi = fio1,d + fio2,d, ∀i ∈ {1, . . . , qo,d}}.

The constraint defined in Eq. 10 makes the layer2 task easier

by guaranteeing that δi mod δmin = 0,∀i. This property guarantees

that all the histograms in H are additive between each other (Moreira-

Matias, Gama, Ferreira, Mendes-Moreira, & Damas, 2013a). The di-

vision of ho, d into ho1,d, ho2,d is a simple operation where Bo1,d =
Bo2,d = Bo,d and Fo1,d = Fo2,d = { fi ∈ N| fi � fiod

/2 ,∀i}.

5.3. Dimensions and hierarchies

The histograms are a well-known approach to provide sample-

based discrete approximations of a Probability Density Function

(p.d.f.) on the value of a continuous variable Xo, d. However, it is

known that the mobility dynamics (such as the number of taxi pick-

ups/drop-offs (Yue et al., 2009) in a region, or a bus round-trip time

Mendes-Moreira, Moreira-Matias, Gama, and de Sousa, 2015), follow

a bimodal distribution (e.g. peak/non-peak hour) throughout the day.

Mobility dynamics can even be multimodal if a larger time span is

considered, such as one week (workday/weekend). This p.d.f. can be

difficult to learn online. To overcome this problem, Dimensional Hi-

erarchies are proposed as a flexible method to discretize other dimen-

sions describing Xo, d (e.g. the temporal).

Let Z be a set of χ dimensions related to Xo, d, where Zi ∈ Z denotes

a hierarchized set of |Zi| dimensional attributes. (Chen et al., 2005)

firstly propose it as a method to discretize Xo, d on multiple χ dimen-

sional axis. Depending on the amount of data available on Xo, d, the

discretization layers on each axis may have different zoom values.

This work adapts this definition by redefining Z as a hierarchical

set of dimensions. Let Zχ = ⋃χ
i=1

Zi be an ordered set of multidimen-

sional attributes where the order is user-defined (depending on the

purpose of the histogram). The discretization intervals in each zoom

level may also be user-defined or data-driven (e.g. breakpoints on av-

erage values and/or quartiles). The proposed framework maintains

distinct histograms ho, d, i on every zoom level i by continuously run-

ning the layer1 over the histograms. The layer2 is triggered prior

to each statistical analysis of ho, d, i only if |ho,d,i| > εi = 2 × ε0. ε0 de-

notes a user-defined parameter for the minimum amount of available

data points to trigger the layer2 on the zero-level dimensional hi-

erarchy (i.e. base histogram; without dimensional discretization). An

illustrative example of this framework is provided in the Fig. 2. In this

example, h1 stands for a histogram of the maximum instant speed of

a taxi driven from region o to region d by a 40-year-old female subject

between 07am and 11am.
Zχ establishes relationships between attributes of distinct di-

ensions. Conversely to Z, initially proposed in (Chen et al., 2005),
χ does not allow different levels of discretization in different di-

ensions. It is necessary to maintain additional histograms if this

nalysis is intended. This step works as a threshold search for the

earest neighbor, which tries to build statistics using past samples

here the descriptive variables are similar to the present variables.

t does so by maintaining a decision tree of each O-D where the goal

s to find the histogram which gives the best approximation to the

resent scenario. Consequently, the goal is to describe Xo, d using mul-

iple attribute-based histograms which are more likely to approxi-

ate unimodal p.d.f. (rather than multimodal p.d.f.).

. Case study

A taxi company operating in the city of Porto, Portugal, was used

s the case study. This city is the center of a medium-sized urban

rea (consisting of 1.3 million inhabitants), where passenger demand

s lower than the number of vacant taxis running, resulting in a huge

ompetition between companies. The data were acquired using the

elematics installed in each of the 441 running vehicles of the com-

any fleet. The data refer to a non-stop period of nine months be-

ween August 2011 and April 2012. Each data chunk firstly arrives

ith the following six attributes: the driver’s ID, a Julian timestamp,

he taxi status (zero/one for vacant/busy), and the latitude/longitude

oordinates.

The variable of interest in this study is the travel time between

wo O-D locations. This dataset was processed to obtain a stream con-

aining two million O-D locations. They correspond to one million

axi trips performed during this period. Fig. 3 represents a sample-

ased estimation of the p.d.f.. The lognormal form indicates that the

axi services in the city are usually short timed (such as 50% < 10m).

owever, at this granularity, it is not possible to infer more than this

ince a specific route between an O-D pair is not explained.

. Experiments

This section presents the experimental work performed in this

ontext. It starts by describing a naive online learning model built

ver the proposed framework to perform Travel Time Estimation

TTE). Secondly, the experimental setup and the evaluation metrics

re described. Finally, the results obtained are presented.

It is important to highlight that the authors do not want to claim

his induction model as a contribution to the TTE problem per se.

he literature on this topic is extensive (Mendes-Moreira et al., 2012).

he results obtained thorough this model work as a proof of concept

n the applicability of this framework to maintain accurate real-time

tatistics on urban dynamics.

.1. An application for travel time estimation

TTE aims to predict the cruise time of a given trip between an O-D

air of locations. It can be defined as short or long-term depending on

he predicting horizons (Mendes-Moreira et al., 2012). The most com-

on is the short-term one. It is commonly employed in Automatic

raveler Information Systems (ATIS) and Navigational GPS devices

Carrascal, 2012; Chien, Ding, & Wei, 2002). Producing online predic-

ions on this stochastic variable is a difficult problem. Typically, these

ystems employ batch regression models along with online models

such as time-series analysis and/or state-based induction models) to

pdate the initial predictions using the real-time vehicle trace (Bin,

hongzhen, & Baozhen, 2006; Chen, Liu, Xia, & Chien, 2004; Chien

t al., 2002).

This work considers the TTE in a more classical approach: given a

air of O-D locations (vo, vd) at time instant t, the target variable is the

ruise time between these locations, expressed as βo, d, t. Let ho, d, z be
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Fig. 3. Kernel Density Estimation (Gaussian) of the Travel Time (in minutes). Note the lognormal form and the low density values ( < 0.0014).
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Table 2

Parameter Setting used in the experiments.

Parameter Value Description

n 6000 Number of O-D points used on the

layer-off
α 0.05 × N Maximum mass ratio contained in a O-D

subregion

rt 0.1 Minimum excessive mass ratio to refine a

O-D subregion

ξ 0.01 × N Minimum mass ratio contained in a O-D

subregion

φ 0.5 of the avg. mass

density

Minimum mass density in a O-D subregion

p each sample Split/merging test periodicity on the

layer-on
qo, d, i Eq. 14 Desired number of bins on layer2
q1 270: width

(δq1
)=10s

Initial number of bins in layer1

ε0 100 Minimum number of samples to build a

zero-level histogram

δmin 2s Minimum interval width for the histograms

η 0.30 Maximum total mass ratio contained on a

single bin in layer1

s

T

g

l
{
{
t

h

a

t

{
t

a

m

p

p

he most suitable histogram to describe the present scenario given

he values of the dimensional attributes defined in Zχ . Let b̄i = (bi −
i−1)/2 denote the center of the interval corresponding to the upper

nd lower bounds on the bin i. βo, d, t can be obtained as follows:

o,d,t = 1

ϒ
×

qo,d,z∑
i=1

[(
fo,d,z,i

max ( fo,d,z,i)

)2

× ¯bo,d,z,i

]
(12)

=
qo,d,z∑
i=1

(
fo,d,z,i

max ( fo,d,z,i)

)2

(13)

here T denotes the time elapsed between t and t − 1. The quadratic

ormalization of the frequencies in the Eq. 12 aims at minimizing the

ell-known vulnerability of equal-width discretization techniques:

utliers (Gama & Pinto, 2006).

.2. Experimental setup

To define qo, d, i, it was necessary to have a rule capable of deal-

ng with large volumes of samples as long as it meets the constraint

xpressed in the Eq. 11. It can be expressed as follows:

o,d,i � |ho,d,i|( 2
3 ) : bo,d,i − bo,d,i−1 ≤ 120 ∧ qo,d,i ∈ N (14)

his rule is merely user defined and it was chose after carrying out

sensitivity analysis on five different equations to set the num-

er of bins qo, d, i. These methods were developed following closely

he Section 2 in (Birge & Rozenholc, 2006). A sensitivity analysis

as performed for the parameters n, rt, φ, ξ and α based on a

implified version of Sequential Monte Carlo method over an older

ataset (the reader can consult the survey in (Cappé, Godsill, &

oulines, 2007) to know more about this topic). These parameters

ere chose because are the ones which variations reflected some

hanges on the method outcome during such analysis. The tested val-

es were all the admissible combinations (i.e. α > ξ ) on the follow-

ng ranges: n = {2000, 4000, 6000, 10000}, α = {0.02, 0.05, 0.10},
t = {0.1, 0.2, 0.3}, ξ = {0.005, 0.01} and φ = {0.3, 0.5, 0.8}. The best

ombination of values for this set of parameters was then selected to

onduct these experiments. This combinations is detailed in Table 2,

long with the remaining ones.
In the experiments, the time dimension is expressed in

econds. They were conducted using the R Software (R Core

eam, 2012). The graphical representations of the city O-D re-

ions were obtained using the package [RGoogleMaps]. The

ayer-off was just triggered once to start the algorithm. Z =
Distance, Time} were the dimensions considered, while Zχ =
haversineDistance, dayTime, weekType, dayType} was defined as

he multidimensional hierarchy set. The (1) haversineDistance
as an unique breakpoint based on historical data (the aver-

ge distance in the trips described by ho, d, 0). The remaining

hree attributes have breakpoints for their intervals defined as (2)

07h-11h, 11h-16h, 16h-21h, 21h-07h}, (3) {Workday,Weekend} and

he (4) seven days of the week, respectively. The sea was considered

constraint to compute a region area. This was done by defining a

inimum longitude along the coast. The areas were calculated by ap-

roximating the constraints using trapezoids.

The histograms built were used as input for the prediction model

resented here to infer the travel times of the most recent 250,000
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Fig. 4. Illustration of the Time-Evolving OD-Matrix Estimation Process. Note the density refinement in the northwest airport area discovered in C), the ability to adapt to a large

increase in the region’s mass in (D), and the low memory requirements to maintain a time-evolving framework in (E).
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trip samples (i.e. O-D trip pairs (vo, vd)). The attribute values of each

sample were used to select the most suitable histogram. The op-

tion chosen was to build histograms in every region � i ∈ � , main-

taining a quadratic k × k O-D matrix over the entire city. However,

the histograms were not employed if �o �∈� in the current time in-

stant. Whenever there is no zero-level histogram available, a naive

approach is followed by assuming a constant cruising velocity of

30 km/h. Predictions were also produced on the travel time interval

by selecting the minimum number of consecutive bins containing, at

least, 75% of the mass |ho, d, i|.

To demonstrate robustness, the model was tested in three distinct

scenarios: maintaining the histogram framework over an O-D ma-

trix built on a grid-based City Decomposition (by dividing the city

into 7 × 7 equally sized areas) and comparing it with the mass-

based approach; employing zero-level histograms vs. the proposed

multidimensional discretization, and monitoring the performance

of the induction algorithm over time against two state-of-the-art

offline regression methods on TTP: the Random Forests (Mendes-

Moreira et al., 2012) and the Support Vector Machines (Bin et al.,

2006; Mendes-Moreira et al., 2012). The regression features were de-

fined as follows: (1) day, coded as a sequence of integer numbers;

(2) starting Time (in seconds) and (3) day of the week. The packages

[randomForest], [e1071] provided the methods’ implementa-

tions used in the experiments. They were executed using their default

parameter setting. Each O-D pair was treated as an independent re-

gression problem (as in the induction model proposed).

7.3. Results

Fig. 4 illustrates the multiple stages of estimating the O-D matrix

using HS Trees. The first four subfigures report the Offline Estimation

process, while the fifth reports a layer-on iteration. The fifth sub-

figure compares the memory used during the online estimation with

the number of data points processed. The last subfigure reports the
volution of the algorithms’ prediction error throughout time. This

eport is based on a normalized RMSE. This metric is calculated firstly

y computing the average RMSE throughout time for each predictive

ethod. Then, all the series obtained are divided by the same maxi-

um value. The aggregated results for all the tested samples are pre-

ented in Table 4. The effects of the multidimensional discretization

ramework are exemplified in Fig. 5. In average, the layer-off took

2 sec. of computational time on each run, while the layer-on just

ook 0.01 s. per iteration.

. Discussion

This section provides a critical overview of our framework. Fisrtly,

n overview on the conclusions drawnable from our experimental re-

ults are provided. Then the advantages of our methodology regard-

ng related works are discussed, along with its limitations. Finally, an

verview of the resulting insights is presented.

.1. Results analysis

Five main conclusions can be drawn from the results presented:

he proposed O-D matrix estimation method is able to discover dense

OI. Note the evolution from Fig. 4a to c. The area uncovered in the

orthwest area is the city’s airport. This ROI was initially contained

n a vast area, but the density refinement staged uncovered its true

hape. However, such refinement is only performed by launching the

ayer-off. This is one of the main drawbacks of this methodology.

etting an adequate periodicity to launch this layer prepares the sys-

em’s ability to react to the formation of highly dense zones. Yet, a

igh periodicity will largely increase the computational effort in the

rocessing task.

The system is able to maintain a (2) flexible O-D matrix over time

y updating the low levels of memory required. Fig. 4d highlights

he framework’s flexibility to sudden changes in the cluster’s masses.



L. Moreira-Matias et al. / Expert Systems With Applications 44 (2016) 275–288 285

TT Histogram between O−D pair (22,11), zoom=0
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(a) Zero-Level
Bimodal Histogram.

TT Histogram between O−D pair (22,11), zoom=1
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(b) Zoom Level 1 of
dimensional discretization.

TT Histogram between O−D pair (22,11), zoom=2
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(c) Zoom Level 2 of
dimensional discretization.

Fig. 5. Example of the multidimensional discretization effects of the travel time density function. Note that the zero-level histogram approximates a bimodal p.d.f while the

zoom=2 in (C) highlights a unimodal p.d.f. by selecting the trips occurred in 11am–4pm.

Table 3

TTE Prediction Evaluation comparing a Grid-Based City Decomposition and a Mass-

Based City Division.

RMSE MAE Average interval width In interval (%)

Grid-Based 349.33 222.22 466.06 66.54

Mass-Based 306.34 198.66 531.47 79.10

Table 4

Comparison of different online/batch predictive models on TTE.

RMSE MAE Average interval

width

In interval (%)

Random forests 307.94 209.89 Not applicable

SVM-linear 321.96 189.87 Not applicable

Histogram-Based

MaxZoom=0

316.69 210.60 557.38 79.13

Histogram-Based

MaxZoom=4

306.34 198.66 531.47 79.10
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ig. 4e shows that the algorithm maintains a logarithmic space com-

lexity. Note that this complexity is not affected by the layer-off
aunching periodicity.

The mass-based city decomposition (3) outperforms the grid-

ased one. It is not only able to discover equal-mass ROI, but also

o maintain equally-sized cells on the O-D matrix. It is not surpris-

ng to find that the grid-based histograms are less suitable than the

istogram proposed in this paper for TTE (as observed in Table 3).

he grid-based simplicity is its best quality as well as a strong draw-

ack. The proposed HS trees are also simple but data driven, which

trengthens the distribution of data in their leaves.

This incremental approach (4) is more suitable than the state-of-

he-art batch regression models in the present TTE scenario. Since

he models obtained from the training set are not updated using the

ewly arrived samples, their performance decreases throughout time

see Fig. 4f and Table 4). Even if the SVM-linear presents the lower

AE in Table 4, it is highly questionable to claim that it would be

ble to maintain such performance, especially if we see its evolution

n Fig. 4f. The mean deviation (i.e. � 200sec.) also reflects the stochas-

icity of the variable, demonstrated in Fig. 3.

It is also important to highlight the histogram’s ability to produce

ccurate intervals in the domain of the target variable. The accuracy

f these intervals can be partially user-defined by setting a mini-

um mass ratio, similarly to what was done in these experiments.

owever, it also depends on the quality of the histograms provided.

able 4 denotes (5) that the multidimensional discretization of the
xplanatory variables has a considerable effect on the prediction’s

uality. This reduction of the target variable’s variability is explained

n the example provided in Fig. 5 (where it is possible to reduce the

nitial number of modes to just one).

.2. Advantages

This framework possesses multiple advantages regarding the ex-

sting state-of-the-art. Regarding the ROI selection stage, there is no

ther research work which proposes an incremental method to do

t so. The aplicational advantages are clear: the discovery of regions

hich have a seasonal (des)interest – instead of a permanent one –

ue to a particular event (e.g. a big congress or a large-scale road

ork). The most difficult issue on doing it so is to reflect such spa-

ial merges/splits along the remaining links of the dimensional chain

et in each O-D pair. The histograms, due to their additivity, are nat-

ral solutions for this problem. The main issue that arise is on the

plits, where the histograms are basically split into two equal masses

or each bin. The result of this would be the same of assuming that

oth feature subspaces discovered by such split will follow a proba-

ility distribution of similar shapes – which is not necessarily true.

owever, the arrival of more samples on a (sufficiently) fast rate will

asily enforce a convergence to the true distribution – as fast as such

amples arrive.

Offline Regression is a problem formulation commonly applied to

olve any mobility modeling problem – such as TTE. In this paper,

e compared two different types of these methods against our own

pproach: RF and SVM. The main difference between these two algo-

ithms and our own approach lies on their goal: despite they shared

im, our framework is still an unfinished learning framework – as it

equires some type of induction algorithm to be operate over the mul-

iple summarizations provided by the distinct histograms. On this pa-

er, we used a very simplistic approach (Eq. 12) to this issue- our goal

as to highlight the predictive power of the incremental approxima-

ions established through the distinct feature dimensions by using

very simple method of point forecasting. Hence, other predictive

rameworks can be built upon this framework. These possible over-

aps are discussed along this subsection.

SVMs (or, more precisely, SVR - Support Vector Regression for this

articular application) differ largely than our approach. The typical

ersion of SVR (i.e. offline) aims to find an ε-based function which

escribes the data behavior by guaranteeing that it has, at most, a

esidual of ε for all the examples in the training set while keeping

he function as flat as possible. However, the issues of this particular

pplications is about allowing distinct approximations/solutions for
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different contexts/feature subspaces. The optimality of SVR main en-

force it to ignore samples that deviate largely from the remaining

ones – which may represent the majority. Moreover, it requires the

apriori selection of a kernel – which the typical techniques may

lead to overfit the training data, especially in problems with non-

stationary distributions like our own (Jebara, 2004). On the other

hand, solutions for incremental Support Vector Learning are still

not that popular among practitioners. One of the most known bot-

tlenecks on computing the support vectors incrementally lies on

the matrix-based operations (Laskov, Gehl, Krüger, & Müller, 2006).

Moreover, the most common solutions for this problems still requires

the storage of the entire support vectors in memory during the learn-

ing stage – which may be unaffordable for our aplicational case. A

possible solution would be to use our discretization trees as model

trees (Landwehr, Hall, & Frank, 2005) – where SVMs could be locally

trained for finite training sets. However, this hypothesis would re-

quire further experiments to be validated.

RF are an approach more similar to our own as they also produce

trees trained in feature subspaces. However, these samples subsets

are randomly selected – which may enforce that trees trained from

samples that explain other non-relevant contexts (e.g. peak-hours

versus late evening trips) can have a superior weight on the final deci-

sion output. On this way, our tree could be used to set distinct weights

of the trees output regarding the context where they are operating,

given the estimated apriori probability distributions. Moreover, the

main advantage of Random Forests is that the learning process can

be easily turned into an incremental one (Gama et al., 2004). Hence,

its main drawback facing our own approach is the necessity of having

the feature dimensions set beforehand - consequently, novel dimen-

sions cannot be added up during training stage. Again, model trees

could be a solution to this problem by enforcing different trees from

distinct dimensional chains and subsets, in a meta-learning fashion

solution. However, such hypothesis also require some experimental

validation before being considered.

Another way of turning any offline model on an online one is by

modeling the noise produced by their output. At this level, there were

multiple well-known successful applications to the TTE using the

popular state-based model Kalman Filter to do it so (Chen et al., 2004;

Yu, Yang, Chen, & Yu, 2010; Zaki, Ashour, Zorkany, & Hesham, 2013).

However, the Kalman filter bounds the noise to a Gaussian Distribu-

tion. Despite it handles most of the typical drifts functional forms, it

may be faced as a major limitation as well for this aplicational sce-

nario, where drifts may appear with a very high slope (e.g. car acci-

dent). Bayesian Inference is also used to accommodate both histori-

cal and real-time samples into a single learning framework (typically,

from different sources). Indeed, Bayesian statistics can be a good start

point to leverage our framework’s predictive power by the possibil-

ities that it has on estimating probabilities departing from a certain

belief (i.e. probability distribution). The author’s believe that such the-

ory can provide advances to this framework by merging the resulting

estimations on the probability distributions with other type of learn-

ers. Yet, this is an open research topic.

8.3. Limitations

Despite its contributions to the estimation of urban dynamics

and related problems, the proposed methodology also presents three

drawbacks: the aforementioned need to launch the layer-off
from time to time, the need of have a learning component added

on its lose end and the large amount of parameters. A sensitivity

analysis was carried out on the most sensible subset of parameters,

which strengthens its values. It is claimed that most parameters only

have an impact on the granularity or reactiveness of the model. How-

ever, the truth is that its setting, even considering some apriori pa-

rameter fitting methodology, requires some previous experience on

this problem. As learning component, we considered simply a point
orecasting method based on weighted mean of each bin’s mass.

owever, different applications may require different type of learn-

rs. This is still a topic totally open to further research.

It is also important to sustain that this framework does not ad-

ress the presence of constraints (i.e. the river). This may cause clus-

ers containing the two unconnected river margins to be formed.

ig. 4 exemplifies this undesirable effect, especially for ROI down-

own. However, its effects are minimal in this specific study, which

appens due to the high number of bridges in these regions (four),

nd due to their high density levels. To learn more about this topic,

o to (Tung, Han, Lakshmanan, & Ng, 2001).

.4. Overview

This experimental setup considered only probe car data stan-

alone. However, it could consider several data types which could be

efined in multiple different dimensions in additional to the typical

patiotemporal ones. To do it so, it just requires to extend the cardi-

ality of Z to accommodate such dimensions. As the split criterion on

he multidimensional discretization is related mainly with the num-

er of samples available in each feature subspace, we do not need

o constrain the usage of any type of samples depending on their

riginal source. Moreover, we can leverage on such dimensions to

chieve context-aware estimations, thus modeling an artificial con-

ept of neighborhood. This characteristic is key to increase the relia-

ility of our framework regarding the existing state-of-the-art on this

opic.

This framework is applicable and/or adjustable to any urban anal-

sis problem. Yet, it may not present a meaningful contribution to

roblems where the expected sample rate is large enough to employ

atch learning models. Hence, this is not the case of real-time deci-

ion support systems, such as the recommendation models. Typically,

heir ability to produce accurate recommendations for the passenger

nding problem depends on the production of reliable predictions on

ome dependent variables, such as the spatiotemporal distribution of

he demand (Moreira-Matias et al., 2013b) and the regions’ profitabil-

ty (Yuan, Zheng, Zhang, Xie, & Sun, 2011). The authors want to claim

his work as a straightforward contribution to maintain statistics of

nterest and/or induction models about the decision variables of real-

ime recommendation models on this topic, regardless of their target

ariable.

. Final remarks

This application paper proposes a novel technique to maintain

tatistics regarding the relationships between Regions of Interest

ROI) in a urban area. Its final aim is to approximate scenario-oriented

robability distributions through the incremental construction of his-

ograms on multiple and distinct dimensional chains – which corre-

pond to different discretization levels. This methodology presents

hree straightforward contributions regarding the existing state-of-

he-art: (1) it presents an incremental approach to the ROI selec-

ion problem through a merge/split schema which is able to prop-

gate itself adequately along the multiple dimensional hierarchies

hile the state-of-the-art is mainly based on offline clustering meth-

ds defined over static timespans; (2) it is able to do the approxi-

ation of probability distributions using a fully nonparametric ap-

roach. This increases its reactivability and its capacity of forgetting

utdated information to provide concepts which are adequately ap-

roximate to those who are about to happen in a short-term horizon

ithin each given O-D pair. Such ability is an advance over the two

ommon approaches to this problem: (2-i) basic (parametric) Kalman

ilters, which assume that the noise within follows a Gaussian distri-

ution, and (2-ii) Bayesian Inference, which assume a prior belief, in-

ependently on how reliable it maybe on the present context. Finally,

t is able to (3) accommodate samples from multiple heterogeneous
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ources arriving with a very high rate. The most remarkable charac-

eristic is that these samples may be defined on distinct dimensions

nd still, they can be considered on the learning process without dis-

arding any of the relevant information that any of those dimensions

ay contain. This ability is key to guarantee that any type of suit-

ble induction algorithm that built upon this framework will output

alues approximate to the real ones. Consequently, this framework

resents a solid advance to any Expert and Intelligent system devel-

ped to mine urban mobility patterns, independently on its final goal

r scope. Experiments conducted in a real-world case study validated

ts contributions in different aspects of this problem. Its incremen-

ality represents a relevant contribution for those interested in infer-

ing the future values of urban dynamic variables in real-time using

igh-speed GPS data streams.

As many other incremental frameworks (Moreira-Matias et al.,

013a), the error introduced by the continuous approximations per-

ormed by the different discretization levels make it necessary to

aintain an offline operator which may be triggered from time to

ime to reduce the error. The most relevant aspect of the error intro-

uced is the absence of an online density refinement of the mass-

ased clusters obtained through split/merge operations. Density-

ased spatial clustering algorithms are seen as promising approaches

o address this issue. However, it is not possible to confirm if they

re directly applicable to this specific context. This framework may

lso be considered alongside a predictive schema using the state-of-

he-art Bayesian Inference, by using the context-aware histograms

o model reliable apriori beliefs through probability distributions for

ime periods where, given any criteria (i.e. a given state such a ob-

tructed lane), a stationary distribution is assumed to be in place

which is unknown and not necessarily similar to the apriori one).

hese problems comprise open research questions.
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