
Join Decompositions for Efficient Synchronization of
CRDTs after a Network Partition

[Work in progress report]

Vitor Enes∗
FCT, Universidade Nova de Lisboa

Lisboa, Portugal

Carlos Baquero†, Paulo Sérgio Almeida†,
Ali Shoker†

HASLab / INESC TEC & Universidade do Minho
Braga, Portugal

ABSTRACT
State-based CRDTs allow updates on local replicas with-
out remote synchronization. Once these updates are propa-
gated, possible conflicts are resolved deterministically across
all replicas. δ-CRDTs bring significant advantages in terms
of the size of messages exchanged between replicas during
normal operation. However, when a replica joins the system
after a network partition, it needs to receive the updates it
missed and propagate the ones performed locally. Current
systems solve this by exchanging the full state bidirection-
ally or by storing additional metadata along the CRDT.
We introduce the concept of join-decomposition for state-
based CRDTs, a technique orthogonal and complementary
to delta-mutation, and propose two synchronization meth-
ods that reduce the amount of information exchanged, with
no need to modify current CRDT definitions.

CCS Concepts
•Theory of computation → Distributed algorithms;

Keywords
State Synchronization, Replication, CRDTs.

∗European Union Seventh Framework Program (FP7/2007-
2013) under grant agreement 609551, SyncFree project.
†Project ”TEC4Growth - Pervasive Intelligence, Enhancers
and Proofs of Concept with Industrial Impact/NORTE-01-
0145-FEDER-000020” is financed by the North Portugal Re-
gional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PMLDC ’16, July 17 2016, Rome, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4775-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2957319.2957374

1. INTRODUCTION
The concept of Conflict-free Replicated Data Type (CRDT)

was introduced in [7] and presents two flavors of CRDTs:
state-based and operation-based. A state-based CRDT can
be defined as a triple (S,v,t) where S is a join-semilattice,
v its partial order, and t is a binary join operator that
derives the least upper bound for every two elements of S.

With δ-CRDTs [1, 2], every time a replica performs an
update, it will only send the information needed to reflect
this update in other replicas, with the anti-entropy algo-
rithm keeping at each node metadata tracking which deltas
still need to be propagated to current peers. However, after
a long partition, such metadata is discarded. In this situ-
ation, when a replica goes online again, the other remote
replicas typically send their full state so this replica sees the
updates it missed.

The work presented in [6] introduces the concept of ∆-
CRDTs where replicas exchange metadata used to calculate
a ∆ that reflects the missed updates. As this metadata is
typically smaller than the full state, less is demanded from
the network. In this approach CRDTs need to be extended
to maintain the additional metadata for ∆ derivation, and if
this metadata needs to be garbage collected the mechanism
will fall-back to standard full state transmission.

In this paper we will present a mechanism that does not
add additional metadata to standard state-based CRDTs,
but instead is able to decompose the state into smaller states
than can be selected and grouped in a ∆ for efficient trans-
mission.

1.1 Problem Statement
Consider replica A with state a and replica B with state

b, which at some point stop disseminating updates but keep
updating their local state. When these replicas go online,
what should replica A send to replica B so that B sees the
updates performed on a since they stopped communicating?
We could try to find c such that:

a = b t c

but if both replicas performed updates while they were of-
fline, their states are concurrent, and there’s no such c. (We
say two states a and b are concurrent if a is not less than b
and b is not less than a in the partial order: a ‖ b ⇐⇒ a 6v
b∧b 6v a.) The trick is how to find c (∆ from now on) which
reflects the updates in the join of a and b still missing in b:

a t b = b t∆

The trivial example would be ∆ = a, but we would like to
send less information than the full state. So, how can replica
A calculate a smaller ∆ to be sent to replica B, reflecting
the missed updates?

1.2 Contributions
Firstly, we introduce the concept of join-decomposition

for state-based CRDTs, a technique orthogonal and com-
plementary to delta-mutation. Then, we propose two syn-
chronization techniques. State Driven: replica B sends its
full state b to replica A and replica A is able to derive ∆.
Digest Driven: replica B sends some information about its
state b, smaller than b itself, but enough to allow replica A
to compute ∆.

2. JOIN DECOMPOSITIONS
We now explain how the concept of join-decomposition [4]

can be applied to state-based CRDTs. Given state r ∈ S,
we say that D ∈ P(S) is a join-decomposition of r if:

⊔
D = r (i)

∀s ∈ D ·
⊔

(D \ {s}) < r (ii)

Property (i) states that the join of all elements in a join-
decomposition of r should be r. Property (ii) says that each
element in a join-decomposition is not redundant: joining
the remaining elements is not enough to produce r.

We are interested in decompositions made up of “basic”
irreducible elements. An element s is join-irreducible if it
cannot result from a join of two elements other than itself,
i.e.:

t t u = s⇒ t = s ∨ u = s

We say D is a join-irreducible decomposition if D is a
join-decomposition and:

∀s ∈ D · s is join-irreducible (iii)

States in common CRDTs typically have join-irreducible
decompositions, and we now present some examples of de-
composition functions, which take a state and return a join-
irreducible decomposition.

2.1 Example Decompositions
A GCounter is a simple replicated counter where its value

can only increase [2]. It is represented as a map from ids
to naturals, i.e., GCounter = I ↪→ N, and each replica can
only increase the value of the counter in its position of the
map. The value of the counter is the sum of all increments.
For example, p = {A 7→ 3, B 7→ 5} means replica A has
incremented the counter three times, replica B five times,
hence the value is eight. For each state s, a join-irreducible
decomposition can be obtained by function:

DGCounter(s) = {{i 7→ v} | (i, v) ∈ s}

The decomposition for the GCounter p above would be
{{A 7→ 3}, {B 7→ 5}}.

To allow both increments and decrements we can compose
two GCounter by pairing them [3] and we have a PNCounter =

(I ↪→ N)× (I ↪→ N). Join-irreducible decompositions can be
obtained through:

DPNCounter((p, n)) = {({i 7→ v}, {}) | (i, v) ∈ p}
∪ {({}, {i 7→ v}) | (i, v) ∈ n}

As a final example, an Add-Wins set has state AWSet =
(E ↪→ P(D))× P(D). This CRDT is a pair where the first
component is a map (from element, in E, to a set of sup-
porting dots (unique event identifiers), in P(D)) and the
second component is a causal context represented as a set
of dots P(D) [2]. When an element is added to the set, a
new entry in the map is created, if needed, mapping this
element to a new dot, and current dots for the element,
if any, are discarded. This new dot is also added to the
causal context. To remove an element, we remove its en-
try from the map. An example for this data type where
two elements (x and y) were added and another (initially
marked with unique dot a2) was removed is s = ({x 7→
{a1}, y 7→ {b1, c1}}, {a1, a2, b1, c1}). (The range function
rng returns all sets of supporting dots in the mapping.)
The join-irreducible decomposition of state (m, c) can be
obtained through function:

DAWSet((m, c)) = {({e 7→ {d}}, {d}) | (e, s) ∈ m, d ∈ s}

∪ {({}, {d}) | d ∈ c \
⋃

rngm}

The join-irreducible decomposition for the state s above
is:

{({x 7→ {a1}}, {a1}),
({y 7→ {b1}}, {b1}),
({y 7→ {c1}}, {c1}),
({}, {a2})}

3. EFFICIENT SYNCHRONIZATION

State Driven.
The State Driven approach can be applied to all state-

based CRDTs as long as we have a corresponding join-
decomposition. We define min∆ : S × S → S as a func-
tion that given two states (the local state a and the remote
replica state b) will produce a ∆. Join-irreducible decompo-
sitions will in general produce smaller ∆s. Let D : S → P(S)
be a function that produces a join-decomposition.

min∆(a, b) =
⊔
{s | s ∈ D(a) ∧ b < b t s}

This min∆ function joins all s in the local state join-
decomposition that strictly inflate the remote state. If the
local replica ships the resulting ∆, to be joined to the remote
replica, and joins the state received from the remote replica
to its local state, both these replicas will reach convergence
(if in the meantime no new update was performed).

Digest Driven.
With the Digest Driven approach we achieve the same

results of State Driven but by exchanging less information.
We re-define min∆ : S×M → S as a function that given the
local state a and some digest m related to the remote state
will produce a ∆.

min∆(a,m) =
⊔
{s | s ∈ D(a) ∧ inf(s,m)}

This digest will be data-type specific, which means that
min∆ will use a type-specific function inf(s,m) to check if s
inflates the remote state summarized by the received digest
m.

A digest extraction function digest : S → M and the
inflation test inf : S ×M → B for the causal AWSet CRDT
can be defined as:

digestAWSet((m, c)) = (
⋃

rngm, c)

infAWSet((e, {d}), (a, c)) =

{
T if d 6∈ c ∨ (e = {} ∧ d ∈ a)

F otherwise

The function digestAWSet returns a pair where the first com-
ponent is the set of active dots (the supporting dots of ele-
ments that were added and not yet removed) and the second
component is the full causal context. The inflation check
infAWSet will return T for s ∈ D(a) if the dot in s has not
been seen in the other replica or s represents a removed
element (i.e., ({}, {d})) that has been added and not yet
removed in the other replica (d is still in the active dots).

If the Digest Driven technique is performed bidirectionally
and no updates occurred, both replicas will converge (oth-
erwise, they can still be collected separately in a dedicated
buffer for further transmission).

4. FINAL REMARKS
We explain how the concept of join-decomposition can be

applied in two different synchronization techniques which do
not require extending current CRDTs implementations as
proposed by [6]. Further research is needed to understand
the trade-offs between both approaches in terms of storage
and network consumption.

Reference implementations of join-decompositions are pub-
licly available in GitHub [5].

5. REFERENCES
[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient

State-Based CRDTs by Delta-Mutation. In Networked
Systems - Third International Conference, NETYS
2015, Agadir, Morocco, May 13-15, 2015, pages 62–76.

[2] P. S. Almeida, A. Shoker, and C. Baquero. Delta State
Replicated Data Types. CoRR, abs/1603.01529, 2016.

[3] C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira.
Composition of State-based CRDTs. 2015.

[4] G. Birkhoff. Rings of sets. Duke Math. J., 3(3):443–454,
1937.

[5] Lasp. Types. URL http://github.com/lasp-lang/types.

[6] A. Linde, J. Leitão, and N. Preguiça. ∆-CRDTs:
Making δ-CRDTs Delta-Based. PaPoc 2016, 2016.

[7] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free Replicated Data Types. Technical Report
RR-7687, July 2011.

