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Abstract

The nesting problem, also known as irregular packing problem, belongs to the generic class
of cutting and packing (C&P) problems. It di↵ers from other 2-D C&P problems in the irregular
shape of the pieces. This paper proposes a new mixed-integer model in which binary decision
variables are associated with each discrete point of the board (a dot) and with each piece
type. It is much more flexible than previously proposed formulations and solves to optimality
larger instances of the nesting problem, at the cost of having its precision dependent on board
discretization. To date no results have been published concerning optimal solutions for nesting
problems with more than 7 pieces. We ran computational experiments on 45 problem instances
with the new model, solving to optimality 34 instances with a total number of pieces ranging
from 16 to 56, depending on the number of piece types, grid resolution and the size of the
board. A strong advantage of the model is its insensitivity to piece and board geometry, making
it easy to extend to more complex problems such as non-convex boards, possibly with defects.
Additionally, the number of binary variables does not depend on the total number of pieces
but on the number of piece types, making the model particularly suitable for problems with
few piece types. The discrete nature of the model requires a trade-o↵ between grid resolution
and problem size, as the number of binary variables grows with the square of the selected grid
resolution and with board size.

Keywords: cutting and packing, nesting, irregular packing, mixed-integer programming models.

1 Introduction

1.1 The Nesting Problem

The nesting problem, also known as irregular packing problem, belongs to the more generic class of
cutting and packing (C&P) problems. As in all C&P problems, one or more big objects have to be
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divided into smaller items or pieces so that (1) unused regions of the big object, usually designated
as waste, are minimized — input minimization problems, according to Wäscher typology, or (2)
the value of the pieces cut from the big object is maximized — output maximization problem,
according to the same typology [Wäscher et al., 2007]. The problem addressed in this paper is a
two-dimensional (2D) C&P problem, i.e. only two of the dimensions of the objects are relevant, as
the third dimension is equal for all objects and pieces. Moreover, the goal is to minimize the used
length of a big rectangular object (the board), of unbound length, making it a 2D Open Dimension
Problem. It is often called irregular strip packing.

The nesting problem di↵ers from other 2D C&P problems in the irregular shape of the pieces. Ir-
regular shapes are those that involve non-trivial handling of the geometry [Bennell and Oliveira, 2008].
This leaves out of our scope rectangles and circles, in which the evaluation of the distance between
two pieces can be performed by simple coordinate comparison. The most common representation,
in the literature, for the irregular shape of a piece is the polygon, and although geometric operations
with polygons are not trivial, we will also assume that all pieces are represented by polygons. No
additional constraints are imposed on the polygon characteristics, so we deal with the harder to
tackle class of non-convex polygons.

Nesting problems are not only a scientific challenge, as they add the geometry handling com-
plexity to the combinatorial optimization nature of C&P problems, but they are also most relevant
in real-world applications. Indeed they arise in a wide variety of industrial production processes, in-
cluding textile, garment, metalware, furniture and shoe industries. In all cases saving raw-materials
represents an important contribution to the economic and environmental performance of companies.

1.2 State of the Art on the Resolution of Nesting Problems

Nesting problems have been addressed by many authors. However, given the problem complexity,
to the best of the authors’ knowledge there is no published exact mathematical programming based
method to solve it, reaching guaranteed optimal solutions for the problem. Although a thorough
tutorial on the nesting problem resolution is available [Bennell and Oliveira, 2009], the approaches
that more closely relate to the work reported in this paper will be briefly highlighted.

Not surprisingly, heuristic and metaheuristic algorithms are the basis of the overwhelming
majority of the published approaches. Among these, the most recent approaches with best perfor-
mance are from Gomes and Oliveira, Egeblad et al, Imamichi et al, Bennell and Song and Leung et
al, [Gomes and Oliveira, 2006, Egeblad et al., 2007, Imamichi et al., 2009, Bennell and Song, 2010,
Leung et al., 2012]. A pioneering work on the exact resolution of non-convex nesting problems
[Carravilla et al., 2003] used constraint logic programming as resolution method and has solved to
optimality problems with up to 7 pieces. All the other approaches deal with approximations or
simpler forms of the nesting problem.

The first approximation is geometric and consists in considering only rectangular shapes. The
first exact solution procedure for the constrained (i.e. with an upper bound on the number of
pieces of each type to cut or pack) 2D non-guillotine rectangular problem was proposed by John
Beasley [Beasley, 1985] and was based on a binary integer programming formulation. The author
assumes that all rectangle’s lengths and widths are integers, leading to a discrete model, as pieces
can only be placed on a set of discrete points of the board. More recent work on exact approaches
to the rectangular strip packing problem (e.g. [Martello et al., 2003, Alvarez-Valdes et al., 2009])
resort to branch-and-bound algorithms but do not build on mathematical programming models.
An approach based on the resolution of a mixed-integer linear programming model was recently

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

proposed. One of the dimensions of the strip is discretized and the other one is kept continuous,
in what constitutes a semi-discrete model [Castro and Oliveira, 2011].

Mathematical programming models have been used in the resolution of nesting problems, but
in the context of solving simpler sub-problems. Particularly relevant is the compaction problem in
which, given a feasible solution of the nesting problem, a (non-integer) linear programming model
is used to locally optimize the solution [Li and Milenkovic, 1995]. A set of coordinated continuous
motions is applied to the pieces, aiming to minimize the board’s length that is e↵ectively used to
pack them. While the relative positions of all pairs of pieces are kept, the absolute position of
each piece may become substantially di↵erent. The non-integer property of the model allows the
continuous motion of each piece. The compaction problem has been quite successfully hybridized
with other resolution methods, such as simulated annealing [Gomes and Oliveira, 2006] or tabu
search [Bennell and Dowsland, 2001], which take care of the generation of alternative initial solu-
tions for the compaction model. It has also been used on its own, as a multi-start algorithm (e.g.
[Stoyan et al., 1996]). It should be noticed that this compaction model has the potential to be
extended to address the complete nesting problem, with the inclusion of binary variables. However,
given the very small size of the instances that can be solved with it, it has never been proposed in
the literature for that purpose.

Until now two research directions have been proposed concerning mathematical programming
models for nesting problems. The first one was suggested by Beasley as an extension of his binary
integer programming formulation for rectangles [Beasley, 1985]. However, as the extension of the
non-overlapping constraints is not straightforward, the suggestion was never followed. This would
be a discrete model, with each decision variable standing for a given piece being placed or not in a
given (x, y) positioning point. The other modeling approach uses continuous decision variables (x, y)
that are the placement coordinates of each piece, but the non-overlapping constraints require the
use of auxiliary binary variables [Carravilla and Ribeiro, 2005, Gomes and Oliveira, 2006]. This is
a continuous model which reduces to the previously discussed compaction model when the binary
variables are fixed. This paper proposes a new mixed-integer discrete model in which binary
decision variables are associated to each discrete point of the board (a dot) and each piece type;
the variable is equal to one in case a piece of the corresponding type is positioned at that dot.
This formulation is much more flexible than others previously proposed in the literature and allows
solving to optimality larger instances of the nesting problem, at the cost of having its precision
dependent on the board discretization step. It should be pointed out that although optimal solutions
for this model, associated with a given discretization step, are achieved, these may not be optimal
solutions for the original nesting problem when defined over continuous domains.

1.3 Organization of the paper

The paper is organized as follows. In Section 2 we present the data required to define an instance of
the nesting problem, its geometric features and the required data pre-processing. In Section 3 the
Dotted-Board Model, the new mathematical programming formulation for the nesting problem is
presented. Section 4 describes the valid inequalities, the lower bounds and the initial solutions used
to improve the resolution of the Dotted-Board Model. The computational experiments designed to
test the model and the discussion of their results are presented in Section 5. In the last section,
we draw some conclusions both the research lines opened by the new model and its limitations.
Section 6 also includes several pointers to future research on this subject.
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1 2
3 4

Figure 1: Piece types of the 4-piece instance.

1

4

3

2

Figure 2: A feasible solution for the 4-piece instance.

2 Problem Representation and Geometric Features

To solve the nesting problems it is necessary to deal with several geometrical constraints involving
the pieces and the board. In order to illustrate the representation of an instance of the nesting
problem and the data pre-processing required to build the problem constraints, we will base our
description, on a 4-piece instance (Figure 1) where piece types 1, 2 and 3 are convex and piece type
4 is non-convex. The instance has just one piece of each type. The small circle over one vertex of
a piece type highlights the piece’s reference point. The board is rectangular with a width of 7 and,
given the pieces to be positioned, an upper bound on the length is 9. A feasible solution for the
4-piece instance is illustrated in Figure 2. A solution is completely described by the positions of
the reference points of the pieces on the board.

2.1 Representation of the board

The board is rectangular, has a width W and, considering the set of pieces that must be positioned,
it is possible to compute an upper bound L on the length. By placing a grid of appropriate resolution
over the board, it can be represented by a set of dots (Figure 3).

• W – board width;

• L – upper bound on the board length;

• g

x

– grid resolution in the x-dimension;

• g

y

– grid resolution in the y-dimension;

• C =
j
L

g

x

k
+ 1 – number of columns;
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Figure 3: A dotted board.

• R =
j
W

g

y

k
+ 1 – number of rows;

• D = C ⇥R – total number of board dots.

2.2 Indices

• t, u 2 T ; T = {1, . . . , T} – t, u are piece types;

• c 2 C; C = {0, . . . , C � 1} – c is a board column;

• r 2 R; R = {0, . . . , R� 1} – r is a board row;

• d 2 D; D = {1, . . . , D} – d is a board dot. A board dot can also be represented by a pair of

values (c, r) 2 C⇥R, in which c =
j
d

R

k
and r = d�

j
d

R

k
⇥R�1. Reciprocally, d = c⇥R+r+1.

2.3 Representation of the piece types

Each piece type t is represented by one polygon, defined by a set of vertices whose coordinates are
relative to a reference point.

• (0, 0) – reference point of piece type t (t 2 T );

• h(x1
t

, y

1
t

), (x2
t

, y

2
t

), . . . , (xvt
t

, y

v

t

t

)i – list of vertices of piece type t, given in the clockwise sense
(t 2 T );

• x

m

t

, x

M

t

, y

m

t

, y

M

t

– limits of the rectangular envelope of piece type t, (t 2 T ), where:

x

m

t

= min
i2{1,...,v

t

}
{xi

t

}; x

M

t

= max
i2{1,...,v

t

}
{xi

t

}; y

m

t

= min
i2{1,...,v

t

}
{yi

t

}; y

M

t

= max
i2{1,...,v

t

}
{yi

t

};

• q

t

– number of pieces of type t that have to be positioned (t 2 T ).
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3

33

3

33

3 3

Figure 4: IFP3 and IFP3 between piece type 3 and a rectangular board (W = 7 and L = 9).

2.4 Relation between the board and the piece types: the inner-fit polygon

A geometric constraint of the nesting problem is that each piece must be totally placed inside
the board. To guarantee that the solutions verify these constraints, we used the inner-fit polygon
concept (IFP ) [Gomes and Oliveira, 2002]. Given a piece type t and a board, the inner-fit polygon
of a piece type t relative to the board is the locus of all the admissible positioning points for the
reference point of piece type t, those that guarantee that the piece is totally over the board. When
the board is rectangular, the IFP is also a rectangle.

• IFP

t

– inner-fit polygon between piece type t and the board (t 2 T ).

If the board is represented by a set of D dots, the inner-fit polygon of a piece type t relative to
the board is discrete and determines the set of dots where the reference point of the piece type t

can be positioned, such that the piece is totally over the board.

• IFP
t

– is the maximum subset of D such that a piece type t having its reference point at
d 2 IFP

t

is totally over the board.

In Figure 4, the grey rectangle at the top is IFP3, the locus of all the admissible positioning
points for the reference point of piece type 3, and the set of dots is IFP3.

2.5 Relation between pairs of piece types: the nofit polygon

Another important type of constraint guarantees that the pieces do not overlap. This is enforced
for each pair of pieces by the nofit polygon concept (NFP ) (e.g. [Bennell and Dowsland, 2001,
Bennell and Oliveira, 2008]).

• NFP

t,u

– nofit polygon between piece type t and piece type u (t, u 2 T ), is the locus of the
points such that, if the reference point of piece type u is inside NFP

t,u

the pieces overlap, if
the reference point of piece type u is over the edges of NFP

t,u

the pieces touch each other,
and if the reference point of piece type u is outside NFP

t,u

, the pieces do not touch.

NFP3,4, the NFP between piece 3 and piece 4 is the white area with a thick grey contour in
Figure 5.

• NFPd

t,u

– if the board is represented by a set of D dots, NFPd

t,u

is the maximum subset of D
such that when the reference point of piece type t is positioned at dot d, if piece type u has
its reference point at any point of NFPd

t,u

, then pieces u and t overlap (t, u 2 T ; d 2 IFP
t

).
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Figure 5: The nofit polygon between piece type 3 and piece type 4, NFP3,4.
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Figure 6: Set of dots in NFP24
3,1.
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The set of dots of the NFP24
3,1 is marked with an X in Figure 6.

Both the nofit polygon and the inner-fit polygon are very powerful tools to deal with the geo-
metric constraints of the nesting problem. Their main advantage is the possibility of precalculation,
becoming a fixed cost in terms of computational times. However, computing these polygons is not
straightforward and requires complex algorithms, mainly when dealing with non-convex pieces.
The e�ciency of all known algorithms decreases with the number of edges in each piece and with
the number of concave components. One of the best approaches, which includes the capacity to
deal with unconnected nofit polygons (nofit polygons composed by two or more simple polygons)
was published by [Bennell and Song, 2008] and is based on the mathematical concept of Minkowski
sum. The computational time required to compute the nofit polygons is therefore very dependent
on the complexity of the geometry of the pieces, but in the computational experiments presented in
this paper, for a set of 7 pieces (4 convex and 3 non-convex) with between 3 and 8 edges, computing
28 nofit polygons takes 0.057 seconds, i.e. a neglectable time when compared against the overall
running times (section 5). However, for more complex geometries these times may increase by
several orders of magnitude, which may be relevant if very fast algorithms are sought.

3 Dotted-Board Model

In this section, we propose a new mathematical programming model for the nesting problem. As
in many other approaches proposed in the literature, we will assume that piece rotation is not
allowed. The idea is to represent the board by a set of dots defined by placing a grid of appropriate
resolution over the board (see Figure 3) and by considering the dots, instead of the coordinates
of the positioning points of the pieces, as the decision variables of the problem. Henceforth, our
model is called the Dotted-Board Model.

After defining the resolution of the grid, a binary decision variable �

d

t

is defined for each pair
(dot, piece type) such that d 2 IFP

t

.

�

d

t

=

(
1 if the reference point of a piece of type t is positioned on dot d;
0 otherwise.

Figure 7 illustrates a feasible solution for the 4-piece instance using a rectangular board with
a grid with 10 columns (C = 10) and 8 rows (R = 8), is illustrated. In the example, the reference
point of piece 1 is placed on dot d = 6, reference points of pieces 2 and 3 are placed on dot d = 44
and reference point of piece 4 is placed on dot d = 24. It is worth noting that the reference points
of two pieces of di↵erent types can be positioned on the same dot (see pieces 2 and 3) if they do
not overlap.

One of the major advantages of the Dotted-Board Model is that convex and non-convex pieces
can be dealt with in the same way. In Figure 7 pieces 1, 2 and 3 are convex and piece 4 is non-convex.

The number of decision variables of the Dotted-Board Model is proportional to the number of
piece types times the product of the dimensions of the board (C ⇥R); if we consider a fixed width,
the length is expected to vary linearly with the number of pieces (you need a longer board for more
pieces).
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Figure 7: A feasible solution for the 4-piece example.

3.1 Model Constraints

The number of binary variables (�d
t

) of the model is equal to T ⇥ D, where T is the number of
piece types and D is the number of board dots according to the grid resolution. For the 4-piece
instance in Figure 7, T = 4 and D = 10⇥ 8 = 80, therefore the number of binary variables is equal
to 4⇥ 80 = 320.

As detailed above, the nesting problem has three basic sets of constraints:

1. Each piece needs to be positioned entirely inside the board;

2. All the pieces need to be positioned;

3. The pieces may not overlap.

The first type of constraints are enforced by defining the variables �d
t

only for d 2 IFP
t

.
As for the second type of constraints, if q

t

is the number of pieces of type t that need to be
positioned, the following constraints ensure that all the pieces are positioned over the board:

X

d2IFP
t

�

d

t

= q

t

8t 2 T .

The constraints that guarantee that each pair of piece types does not overlap are based on the
nofit polygon concept, described in detail in Section 2, and can be written as:

�

e

u

+ �

d

t

 1 8e 2 NFPd

t,u

, 8t, u 2 T , 8d 2 IFP
t

.

3.2 Objective Function

A feasible solution for the nesting problem is obtained by placing all the pieces on the rectangular
board. The objective is to find a feasible solution that minimizes the used length of the board.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The solution’s length is given by the x-coordinate of the rightmost vertex of all positioned pieces.
This represents the minimum length that the board has to have to allow cutting all pieces placed in
that solution. As seen in Section 2, each piece is represented by a polygon with a reference point.
Considering the dot where the piece was positioned, the minimum length of the board needed for
the piece can be obtained. For example, in Figure 7, for piece 1, whose reference point is placed
on dot d = 6, the minimum length of the board is 3. For pieces 2, 3 and 4, the minimum length of
the board is respectively 9, 7 and 6. Therefore, the minimum length of the board for this solution
is equal to 9 = max{3, 9, 7, 6}.

For each piece type t, the horizontal distance from its reference point to the end of the piece
is given by x

M

t

. Considering that the grid resolution in x is g
x

, and that the piece is positioned in
dot (c, r), the board length needed for piece type t is c ⇥ g

x

+ x

M

t

. For example, considering the
layout represented in Figure 7, piece 2, which has an x

M

t

of 4 and is placed on dot (5,3), will define
a board length of 5⇥ 1 + 4 = 9, and this is the maximum value for this solution.

The minimum length of the board for the problem must be su�cient to include all the pieces
and is given by:

minimizemax{(c⇥ g

x

+ x

M

t

)⇥ �

d

t

} 8d 2 IFP
t

, 8t 2 T .

3.3 The complete model

Using the constraints and the objective function defined above, the Dotted-Board Model of the
nesting problem can be written as:

minimize z (1)

Subject to:

(c⇥ g

x

+ x

M

t

)⇥ �

d

t

 z 8d 2 IFP
t

, 8t 2 T ; (2)
X

d2IFP
t

�

d

t

= q

t

8t 2 T ; (3)

�

e

u

+ �

d

t

 1 8e 2 NFPd

t,u

, 8t, u 2 T , 8d 2 IFP
t

; (4)

�

d

t

2 {0, 1} 8d 2 IFP
t

, 8t 2 T ; (5)

z � 0. (6)

The objective function (1) minimizes the length of the board. The board length z is defined as
shown in constraints (2). Constraints (3) guarantee that all the pieces are positioned. Constraints
(4) guarantee that the pieces do not overlap. Constraints (5) define the decision variables only for
positions where the pieces are inside the board. The domain of variable z is defined by constraint
(6).

4 Improving the Dotted-Board Model

4.1 Valid Inequalities

Two types of valid inequalities were added to the model. One of them concerns the number of
reference points of piece types that can be positioned on the same dot. The other type of valid
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Figure 8: Maximum number of pieces of the same type that can be positioned in one column.

inequality is obtained by computing the maximum number of pieces of the same type that can fit
along the width of the board.

In the Dotted-Board Model it is possible to have more than one reference point in one dot.
Given an instance it is however possible to verify if there are pieces that cannot be positioned on
the same dot. If piece types t and u, t 6= u, cannot be positioned on the same dot, then they belong
to the set of incompatible pairs of piece types I, and therefore:

�

d

t

+ �

d

u

 1 8t, u 2 T : (t, u) 2 I; t 6= u; 8d 2 D.

The other type of valid inequality relates one piece type and the width of the board. Given
an instance with a board of width W and given the piece types that have to be positioned, it is
possible to calculate, for each piece type, the maximum number of pieces of that type that can be
positioned on dots of the same column (Figure 8):

X

r2R
�

d

t


$

W

y

M

t

� y

m

t

%

8t 2 T ; 8c 2 C; d = c⇥R+ r + 1.

4.2 Lower Bounds

Good lower bounds are very important tools to e�ciently solve integer programming problems,
especially when considering branch and bound methods. The Dotted-Board Model is basically
defined by binary variables. Therefore, as expected, the value of the lower bound obtained by the
solution of its linear relaxation is a weak bound. One simple lower bound for the nesting problem
is based on the area of the pieces. This lower bound is obtained by the sum of area of the pieces
divided by the width of the board. Another lower bound is based on the length of the longest
piece. We compute both lower bounds and use the maximum value to incorporate in the model,
improving the quality of the gaps.

4.3 Upper Bounds

For the Dotted-Board Model, the number of binary variables is quadratic on the dimensions of the
board. The board width is known, but its length needs to be determined. Therefore, it is very
important to obtain a suitable estimate for the length of the board. To this end, for each instance
we first run the model for a limited amount of time, with a board length long enough to contain all
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Figure 9: Piece types of the RCO instances.

pieces. If a feasible solution is generated we have an upper bound for the board length. Afterwards,
the model is rerun but now with a smaller number of variables as the board length has already
been reduced.

5 Computational experiments

In this section, we present the instances used and the results obtained in the computational experi-
ments with the Dotted-Board Model. The instances were solved by the mixed-integer programming
solver CPLEX 12.3. We used the default parameters of CPLEX except for the MIP tolerance that
was set to 0.9 as the resolution of the grid is always 1 unit. Experiments were carried out on a
HP Z800 workstation with two six-core Intel Xeon X5690 at 3.47 GHz with 48 GB RAM, running
Linux. In all experiments, a time limit of 18 000 seconds was considered.

The computational experiments involved a total of six groups of instances, taken from the
literature, that are fully described in section 5.1. For these instances we were able to solve until
optimality problems with a total number of pieces ranging from 16 to 56, depending on the number
of piece types, on the grid resolution and on the size of the board.

5.1 Instances

Six groups of instances were used to evaluate the performance of the model. Two groups of instances
are closely related to each other, one called BLAZEWICZ, with non-convex pieces, and another
one, RCO, where the pieces are the convex hull of the BLAZEWICZ pieces. Three other groups
consist of di↵erent subsets of BLAZEWICZ’s piece types.

The RCO instance group [Ribeiro et al., 1999] is based on a set of seven convex piece types, as
represented in Figure 9. Within this group, the instances di↵er on the number of pieces of each
piece type. RCOn stands for an instance where n pieces of each one of the 7 piece types have to
be placed on the board, with n ranging from 1 to 5. The rectangular board has a width W = 15.

The BLAZEWICZ instance group [Oliveira et al., 2000] is composed by a set of seven piece
types, as represented in Figure 10. Once again, the instances di↵er on the number of pieces of
each piece type, and BLAZEWICZn stands for an instance where n pieces of each one of the 7
piece types have to be placed on the board, with n ranging from 1 to 5. The instance that usually
appears in the literature is the one corresponding to n = 4. The rectangular board has a width
W = 15.

The SHAPES instance group [Oliveira et al., 2000] is based on a set of four piece types, as
represented in Figure 11. The 6 instances of this group vary on the number of pieces of each one
of the 4 piece types, as shown on Table 1. These figures were chosen so that the total number of
pieces was similar to the BLAZEWICZ and RCO groups, allowing us to draw some conclusions on
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Figure 10: Piece types of the BLAZEWICZ instances.

Table 1: Number of pieces of each piece type for the SHAPESn group of instances.

Instance Piece type 1 Piece type 2 Piece type 3 Piece type 4 Total number of pieces
SHAPES2 2 2 2 2 8
SHAPES4 4 4 4 4 16
SHAPES5 5 5 5 5 20
SHAPES7 7 7 7 7 28
SHAPES9 9 7 9 9 34
SHAPES15 15 7 9 12 43

the impact of characteristics, other than the piece number, on the model’s behavior. The instance
that usually appears in the literature is SHAPES15. The rectangular board has a width W = 40.

The other three instance groups are based on subsets of BLAZEWICZ’s piece types. They were
designed to analise the variations of the model with instance characteristics and model parameter-
ization.

Group BLAZP2 n considers only piece type 2 of BLAZEWICZ, with number of pieces n, n 2
{7, 14, 21, 28, 35}. The value of n was chosen so that the total number of pieces remains constant
when compared with the BLAZEWICZ group. Group BLAZP4 n is similar to BLAZP2 n but it
uses only piece type 4 from BLAZEWICZ. Finally, BLAZP2P4 m n includes piece types 2 and 4,
with

(m,n) 2 {(4, 3); (7, 7); (11, 10); (14, 14); (18, 17); (21, 21); (28, 28); (35, 35)}

pieces of each type. This group includes the instances with the largest number of pieces and was
designed to test the limitations of the model. For all these groups the rectangular board has a
width W = 15 and a length L, large enough to fit all the pieces of the largest instance. Therefore,
for these groups of instances, no upper bound di↵erent from the board length was used: L = 60

Figure 11: Piece types of the SHAPES instances.
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Table 2: Computational results of the first phase of the computational experiments.

Instance Total Number Number Upper Objective Gap Solution
number of dots of binary Bound function (%) Time
of pieces variables (sec.)

RCO1 7 144 1008 8 8 0 0.62
RCO2 14 256 1792 15 15 0 6.28
RCO3 21 368 2576 22 22 0 2393.42
RCO4 28 480 3360 29 29 3.5 TL
RCO5 35 608 4256 37 37 8.1 TL
BLAZEWICZ1 7 144 1008 8 8 0 0.69
BLAZEWICZ2 14 240 1680 15 14 0 15.98
BLAZEWICZ3 21 352 2464 22 20 0 5583.82
BLAZEWICZ4 28 480 3360 28 28 10.7 TL
BLAZEWICZ5 35 640 4480 37 35 14.3 TL
SHAPES2 8 615 2460 14 14 0 0.45
SHAPES4 16 1148 4592 27 25 0 17951.33
SHAPES5 20 1353 5412 32 30 13.3 TL
SHAPES7 28 2009 8036 48 45 39.4 TL
SHAPES9 34 2255 9020 54 54 40.4 TL
SHAPES15 43 2788 11152 67 67 40.8 TL

for all instances, except for instances BLAZP2P4 28 28 and BLAZP2P4 35 35 for which a length
L = 100 was used was used, as a board of 15⇥ 60 would be too small to place all the pieces.

5.2 Computational Results – Phase 1

In the first phase of the computational experiments the 16 instances of groups RCOn, BLAZEWICZn
and SHAPESn were solved, and the results are presented on Table 2. The instance name and the
total number of pieces are in the first two columns. The third and fourth columns show the size
of the model in terms of number of dots and number of binary variables. The values in the fifth
column are the upper bounds as described in section 4.3. The remainder of the table concerns the
results of each run. The value of the objective function is given in the sixth column, while in the
seventh column the optimality gap is given, which is meaningful when the time limit is reached.
That can be be seen in the eighth column where the execution time is presented (TL stands for
time limit).

We were able to solve until proven optimality 8 instances: 3 from the RCO group, with a
maximum of 21 pieces, 3 from the BLAZEWICZ group, also with a maximum of 21 pieces, and
2 from the SHAPES group, with a maximum of 16 pieces. For the other instances the resolution
stopped after reaching the time limit. In those cases the optimality gap ranges from 3.5% to 40.8%.
The optimal layouts for instances RCO3, BLAZEWICZ3 and SHAPES4 are presented in Figures
12, 13 and 14.

Within the same group of instances, the model’s performance degrades as the number of pieces
increases. Although the number of variables does not directly depend on the total number of pieces,
more pieces need a larger board, increasing the number of dots and consequently the number of
binary variables. For that same reason the SHAPES group was also more di�cult to solve than
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Figure 12: Optimal layout for instance RCO3.

Figure 13: Optimal layout for instance BLAZEWICZ3.
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Figure 14: Optimal layout for instance SHAPES4.
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Table 3: Computational results of the second phase of the computational experiments.

Instance Total Upper Objective Gap Solution
number Bound function (%) Time
of pieces (sec.)

BLAZP2 7 7 60 12 0 0.19
BLAZP2 14 14 60 20 0 0.17
BLAZP2 21 21 60 28 0 0.16
BLAZP2 28 28 60 40 0 0.16
BLAZP2 35 35 60 48 0 0.15
BLAZP4 7 7 60 10 0 0.26
BLAZP4 14 14 60 19 0 0.44
BLAZP4 21 21 60 28 0 1.76
BLAZP4 28 28 60 37 0 7.90
BLAZP4 35 35 60 45 0 8.33
BLAZP2P4 4 3 7 60 11 0 0.84
BLAZP2P4 7 7 14 60 19 0 1.56
BLAZP2P4 11 10 21 60 28 0 2.97
BLAZP2P4 14 14 28 60 38 0 27.21
BLAZP2P4 18 17 35 60 47 0 100.36
BLAZP2P4 21 21 42 60 56 0 489.43
BLAZP2P4 28 28 56 100 74 0 6525.54
BLAZP2P4 35 35 70 100 93 7.5 TL

the other two groups. Although the number of piece types is smaller (4 against 7), which leads to
less binary variables, the size of the pieces is larger and therefore more dots are used to discretize
the board and more binary variables induced. The latter e↵ect clearly dominates, and the overall
result is that this group of instances is much harder to solve.

An important feature of the Dotted-Board Model, which we have anticipated in Section 3 and
that is highlighted with the computational results, is that the lack of convexity has no impact on
the model’s performance. Groups RCO and BLAZEWICZ di↵er only on the pieces’ convexity and
the similarities on their performance support this conclusion.

5.3 Computational Results – Phase 2

In the previous section we claimed that the model’s performance was not dependent on the total
number of pieces (for the same board size), but only on the number of piece types. To verify
this claim and to test the model to its limits, the instances of groups BLAZP2 n, BLAZP4 n and
BLAZP2P4 m n were run. In this second set of experiments the upper bound L was arbitrarily
large. The results of this second phase of tests are presented on Table 3.

These results show that when considering just 1 or 2 piece types we are able to solve problems
up to 56 pieces, while for the same kind of problem, BLAZEWICZ groups of instances with 7 piece
types, the largest problem solved to optimality had 21 pieces. The instance with 70 pieces of two
di↵erent types was not solved to optimality within the time limit and its resolution ended with a
gap of 7.5%. By comparing the results of group BLAZP2 n (a group with an extremely good per-
formance) or group BLAZP4 n (which has an intermediate performance) against BLAZP2P4 n m
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Table 4: Computational results with a refined grid.

Instance Total Upper Objective Gap Solution
number Bound function (%) Time
of pieces (sec.)

BLAZP2 7 7 120 11.0 0 49.06
BLAZP2 14 14 120 18.0 0 13.18
BLAZP2 21 21 120 25.0 0 19.87
BLAZP2 28 28 120 35.5 0 499.76
BLAZP2 35 35 120 42.5 0 74.58
BLAZP4 7 7 120 10.0 0 46.05
BLAZP4 14 14 120 18.5 0 375.66
BLAZP4 21 21 120 28.0 19.64 18017.18
BLAZP2P4 4 3 7 120 10.5 0 129.48
BLAZP2P4 7 7 14 120 18.0 0 414.62
BLAZP2P4 11 10 21 120 27.0 14.81 18004.38

it can also be noticed that for the same total number of pieces, doubling the number of piece types
multiplies the resolution time by a factor that varies from around 4 to 670.

Finally, the performance of the Dotted-Board Model is clearly dependent on the grid resolution.
To experimentally verify this dependence an additional set of tests was run considering again the
group of instances BLAZP2 n, BLAZP4 n and BLAZP2P4 n m, and refining the grid by dou-
bling its resolution. This corresponds to approximately 4 times the previous number of dots and,
consequently, 4 times the number of binary variables.

With this refined grid we were only able to solve until optimality all the instances of group
BLAZP2 n, the instances BLAZP4 7 and BLAZP4 14 and the instances BLAZP2P4 4 3 and
BLAZP2P4 7 7. These results are in Table 4 and the optimal layouts for instance BLAZP4 14,
with the initial grid and the refined grid, are presented in Figure 15.

To further explore the impact of grid resolution on the overall performance of the model, and
to give an indication of the balance between solution quality and computation time that must
be made when using this method, the 8 instances that were solved to optimality with both grid
resolutions, were run again but now halving the resolution. For each instance, the values for the
objective function and the solution time were normalized, dividing each by the maximum value
when considering the 3 grid resolutions. The average is plotted on Figure 16. It becomes clear
the need for adequate choice of the grid resolution in order to get good quality solutions within
reasonable computational times.

6 Conclusions and further work

In this paper we present a new discrete model for the nesting problem, the Dotted-Board Model. This
model builds on the discretization of the board, generating a grid of dots that become the feasible
positioning points for the pieces. A binary decision variable is associated to each ‘dot’/‘piece
type’ pair. To guarantee the geometric feasibility of the layouts—no overlap among pieces and
containment inside the board, we resort to the nofit polygon and inner-fit polygon concepts. So far
there are no results published in the literature concerning optimal solutions for nesting problems
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Figure 15: Optimal layouts for the instance BLAZP4 14, with the initial grid and the refined grid.
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Figure 16: Evolution of the objective function and solution time values with grid resolution.

with more then 7 pieces. With this model we were able to solve until optimality problems with a
total number of pieces ranging from 16 to 56, depending on the number of piece types, on the grid
resolution and on the size of the board.

The strong points of this model are, first and foremost, its robustness with respect to the
pieces and board geometries. From a conceptual analysis of the model it is clear that convexity
does not play a role here, and the computational experiments support this conclusion. The model
can, therefore, be quite easily applied to geometrically more complex instances such as non-convex
boards, with holes or other defects, as represented in Figure 17. Another important advantage of
the model is that the number of binary variables does not depend on the total number of pieces,
but just on the number of piece types. This makes this model particularly suited for problems
where there are few piece types.

The weaknesses of the Dotted-Board Model come from its discrete nature, due to the board
discretization. The number of binary variables varies with the square of the grid resolution chosen
to discretize the board and is also dependent on the size of the board itself. The computational
experiments have also proven this dependence, as the SHAPES group of instances is harder to solve
than the BLAZEWICZ group and the model’s performance decreases when the grid resolution is
doubled, for the BLAZP2 and BLAZP4 groups of instances.

As the length of the board is unknown and the model’s performance depends on the size of
the board, the use of good upper bounds can dramatically improve the model e�ciency. These
upper bounds on the length of the board can be generated by a first, short-time run of the model,
as we have done in the computational experiments reported here, or can be provided by heuristic
methods as long as they preserve the discrete characteristic of the solutions. For instance, a bottom-
left heuristic using as feasible positioning points the dots would be a possible approach to generate
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Figure 17: A non-convex board with a hole.

upper bounds.
As in all integer programming models, the availability of good lower bounds makes a di↵erence.

However, the linear relaxation of this model gives a poor lower bound, and the area lower bound
and the longest piece lower bound are also not particularly good. This can be seen in the extremely
large optimality gaps whenever the optimal solution is not reached. Following the evolution of
the resolution process for some of the instances, even when optimal solutions were obtained it was
common to have large gaps that suddenly converged to zero, a clear evidence of the poor quality of
the lower bound. Further research should be carried on the development of tighter lower bounds.

Future research work will also address the generation of the dot pattern. In the current work
the dots were provided by superimposing a regular grid over the board. However, the model itself
imposes no constraint on the positions of the dots. There can be di↵erent grid resolutions along the
x and the y axes, or di↵erent dot densities in di↵erent regions, allowing for a higher refinement on
more complicated regions (e.g. holes, curves, narrow parts of the board). The additional complexity
of a more sophisticated dot generation strategy puts an extra burden on the pre-processing phase
only (model generation) and has no impact on the resolution.

In this work we have explored the modeling point of view where decisions are on the occupancy
of (discretized) regions of the “container”, rather than on the positioning point for each item. This
approach can be successfully generalized to other cutting and packing problems. It is particularly
adequate when accurately discretizing the placement region is not expensive (this is the case for
items with a few congruent sizes) and when the assortment of items is very homogeneous (few
piece types but many pieces in total). But this approach shows all its strength and flexibility
when the placement region has complex placement constraints, as it happens in two-dimensional
rectangular cutting problems with irregular non-convex boards and defects. This situation also
arises in three-dimensional packing problems with obstructions, such as packing objects in satellites,
where complex obstructed regions have to be taken into account, and packing boxes inside trucks,
where boxes may be pre-positioned because of stability and weight balance constraints. For these
reasons it is the authors’ belief that the Dotted-Board Model represents a rather flexible framework
to deal with cutting and packing problems that include complex geometric features which have
been hard to address by existing approaches.
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