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Summary

Transposable Elements (TE) are sequences of DNA that move and transpose within a

genome. TEs, as mutation agents, are quite important for their role in both genome al-

teration diseases and on species evolution. Several tools have been developed to discover

and annotate TEs but no single tool achieves good results on all different types of TEs.

In this paper we evaluate the performance of several TEs detection and annotation tools

and investigate if Machine Learning techniques can be used to improve their overall detec-

tion accuracy. The results of an in silico evaluation of TEs detection and annotation tools

indicate that their performance can be improved by using machine learning constructed

classifiers.

1 Introduction

Transposable Elements (TE), also known as transposons, are sequences of DNA that move and

transpose within a genome. TE’s role as mutation agents is quite important in both genome al-

teration diseases and in species evolution [1, 2, 3, 4, 5, 6]. Several methods have been developed

to discover and annotate Transposable Elements. In [7] we can find an extensive survey of TE

detection methods. These methods have been broadly classified in four main categories [7, 8]:

De novo; Structure-based; Comparative Genomic; and Homology-based. Although there are

different tools, based on the above mentioned methodologies, there is not any single tool achiev-

ing good results on different types of TEs. However the results of TE detection vary from tool

to tool. TE detection agreement between different tools is one of the main problems, since tools

may identify or not a given TE and even if identified they can disagree on its length and/or on

its end-point’s position within the genome.

*To whom correspondence should be addressed. Email: rcamacho@fe.up.pt
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On another perspective, according to [7] and [8], integration of multiple approaches will further

advance the computational analysis of this dynamic component. This means that integrating the

best of each relevant tool can improve the overall detection accuracy and provide researchers

better results in TE detection.

The aim of the work described in this paper is to assess the performance of existing TE detection

tools. We have used simulated data sets of DNA sequences that have TE sequences present in

a priori known positions. Using these data sets, several TE detection tools were evaluated by

comparing the inferred predictions to the known locations of the TEs in the simulated data sets.

Then, using the gathered data, machine learning (ML) techniques were used to create a model

that combines the different methodologies with the aim to increase the accuracy of the detection

and annotation of transposable elements.

The remainder of the paper is organized as follows. Section 2 provides a survey study and

characterization of the TE detection methodologies and tools. Section 3 explains the data gen-

eration process for evaluating the TEs detection tools. In Section 4 we present an empirical

evaluation of the TEs detection tools. In Section 5 we explain the ML experiments to improve

the performance of detecting TEs. Finally, in Section 6, we draw some conclusions.

2 Transposable Elements detection methodologies and tools

In this study we have adopted the TE classification proposed by Bergman and Quesneville [7]:

• De novo: this approach looks for similar sequences found at multiple positions within a

sequence;

• Homology-based: use known TEs to discover the TEs in a genomic sequence;

• Structure-based: this approach finds TEs using knowledge from their structure;

• Comparative genomics: compares genomes to find insertion regions which can be TEs

or caused by TEs.

We have considered in the evaluation only the tools that are: i) publicly available and open

source; ii) runnable from a command-line; and iii) supported by scientific studies. Table 1 lists

and summarizes the TE detection tools used in this study.

BLAT [9] is a mRNA/DNA alignment tool. It uses an index of all non-overlapping K-mers in

a given genome to find regions likely to be homologous to the query sequence. It performs an

alignment between homologous regions and stitches together these aligned regions into larger

alignments.

CENSOR [10] was designed to identify and eliminate fragments of DNA sequences homolo-

gous to any chosen reference sequences. It uses BLAST [14] (Basic Local Alignment Search

Tool), a software package for rapid searching of nucleotide and protein databases, to identify

matches between input sequences and a reference library of known repetitive sequences. The

length and number of gaps in both the query and library sequences are considered along with
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Table 1: Transposable Elements detection tools used in the study. The number of citations was

obtained from Google Scholar in 13/09/2013.

Name Type Operating URL Citations

System

BLAT[9] Homology

- based

Unix and

online

http://www.soe.ucsc.edu/ kent 3624

CENSOR[10] Homology

- based

Unix and

online

http://www.girinst.org/downloads/software/censor/ 329

LTR Finder[11] Structure -

based

Unix http://tlife.fudan.edu.cn/ltr finder/ 141

PILER[12] De novo Unix http://www.drive5.com/piler/ 164

RepeatMasker[13] Homology

- based

Unix and

online

http://www.repeatmasker.org/ 144

the length of the alignment in generating similarity scores. This tool reports the positions of the

matching regions of the query sequence along with their classification.

LTR Finder [11] predicts the location and structure of full-length LTR retrotransposons ac-

curately by considering common structural features. LTR Finder identifies full-length LTR

element models in genomic sequences. This program reports possible LTR retrotransposons

models at different confidence levels.

PILER [12] is a de novo TE detection tool that adopts a heuristic-based approach to repeat

annotation that exploits characteristic patterns of local alignments induced by certain classes

of repeats. The PILER algorithm is designed to analyze assembled genomic regions and to

find only repeat families whose structure is characteristic of known sub-classes of repetitive se-

quences. It works on the premise that the entire DNA sequence is assembled with a reasonably

low number of errors because the algorithm is completely dependent on the position of repeats

in the genome for all classification.

RepeatMasker [13] discovers repeats and removes them to prevent difficulties in downstream

analysis sequence assembly and gene characterization. Identification of repeats by Repeat-

Masker is based entirely upon the similarity between library repeat sequences and query se-

quences. The output of the program is a detailed annotation of the repeats that are present

in the query sequence as well as a modified version of the query sequence in which all the

annotated repeats have been masked.

3 In silico data

In order to evaluate the TE detection tools it is essential to have curated data sets (experimental

or simulated) of genome sequences with transposable elements. The curated data sets were

generated in silico. The aim of the simulation procedure was to obtain sequences with a random

number of TEs in random positions. The simulation parameters included: the length of the

sequence to be produced; the percentage of genes included in the sequence in relation to its

total length (genes %); the percentage of TEs included in the sequence in relation to its total

length (TEs %); the percentage of repetitive elements (no transposons included) included in the

sequence in relation to its total length (Repetitive elements %); and the number of mutations

(insertions, deletions and replacements) per 1000 nucleotides (mutations %).
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Table 2: Data used to produce simulated sequences.

Element type Number

Autonomous LTR Retrotransposons 2248

Non autonomous LTR Retrotransposons 379

DIRs 14

Non-LTR Retrotransposons 140

Autonomous non-LTR Retrotransposons 604

TEs Non autonomous non-LTR Retrotransposons 384

TIR 1247

DNA Transposons 628

Helitrons 139

Politrons 24

Genes 15458

Repetitive Elements 147

Producing sequences using different combinations of these parameters’ values allowed us to

generate a diverse set of DNA sequences. The output data of a simulation is a file with a set of

sequences, written in FASTA [15] format, and an annotation file containing all TEs and their

locations inside each sequence. A simulated sequence consists of genes, transposons and other

repetitive elements filled with random nucleotides in the gaps between them. The quantity of

TEs, genes and repetitive elements are defined by the parameters referred above.

Table 2 summarizes the data (namely TEs, genes, repetitive elements, etc) used to assemble

’artificial’ sequences. The set of ’real’ genes was obtained from FlyBase [16] (Drosophila

melanogaster). The ’real’ TEs were obtained from Repbase [17] and from Gydb [18]. Other

variables considered in the simulation were mutations, either point mutations or indel muta-

tions, the length, composition and abundance of TEs.

4 Evaluation of Transposon detection tools

In this section we first present the global results comparing the five tools under assessment

and then we present the results of a detailed study of sensitivity of the tool with best global

performance.

4.1 Global comparison

Each TE detection tool analyzes all sequences (of a given data set) and produces as a result the

annotations of the TEs. The general accuracy1 was computed based on the predicted location

of TEs and the “true” locations generated by the simulator.

1The evaluation measures used include: Accuracy= TP+TN

TP+FP+TN+FN
; Precision= TP

TP+FP
; and

Recall= TP

TP+FN
, where TP, FP, TN, FN are, respectively, the number of true positives, false positives, true

negatives and false negatives as predicted by the tool.
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Figure 1: Accuracy and precision of each tool on all data sets.

Figure 2: Precision and recall for all tools on all data sets.

Figure 1 and Figure 2 show the accuracy, precision and recall of all tools across all data sets.

The accuracy of each tool on the different types of TEs is shown in Table 3. LTR Finder had

poor results with an average accuracy bellow 1%. The higher accuracy of all the tools was

achieved by Censor with an average accuracy above 70%. RepeatMasker had also interesting

results, with an average accuracy of roughly 50%. The precision of RepeatMasker and Censor

is comparable to PILER. Overall, both Censor and RepeatMasker were the most accurate tools

in finding different types of TEs.
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4.2 Individual sensitivity results

We have made an extensive set of sensitivity studies on the Censor tool, the one with overall

best accuracy, precision and recall. The results of Censor assessment are summarized in Figure

3. It shows the accuracy of Censor segmented by the different input parameters used to generate

the simulated data sets, such as amount of TEs, genes, repetitive elements and mutations.

There are minor but not significant differences in Censor’s accuracy when analyzing sequences

with 0, 1 or 2 percent of indel and point mutations. The remaining three parameters, the amount

of genes, repetitive elements and TEs in the simulated sequences did not affect significantly the

accuracy of Censor.

Censor’s detection accuracy (Table 3) for all but Politron TEs is relatively good as it ranges

from more than 50% to over than 80% in DIRs, DNA transposons and non autonomous LTR

retrotransposons. Politron detection using this tool is much weaker than with the other classes

as the accuracy of this tool in this TE category is roughly above 20%.

Table 3: Accuracy (%) per TE type.
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BLAT 26.69 18.12 2.72 23.12 19.68 37.69 20.46 13.67 21.92 11.14 19.61

Censor 61.49 82.68 81.43 71.1 74.02 68.45 78.85 82.9 52.13 20.86 67.38

LTR Finder 0.17 0.22 0.1 0.02 0 0 0 0 0 0 0.05

PILER 0.51 38.05 36.33 37.46 46.6 10.24 28.27 25.63 41.94 23.56 28.66

Repeat Masker 51.66 58.1 31.1 43.88 51.71 55.63 57.66 57.14 42.23 4.62 45.28

5 Machine Learning to improve TEs detection tools

Based on the experimental results of the TEs detection tools evaluation (Section 4) we have

investigated if Machine Learning (ML) algorithms could improve TEs detection. We have used

a two step process for TEs detection using ML: i) determine if a certain item (sub-sequence) in

the sequence is or is not a TE (TE detection); and ii) if the item has been classified as a TE then

we determine its boundaries (TE annotation). The first step is concerned with the choice of the

best tools to identify a TE with some given characteristics. The second step aims at choosing

the classifier that minimizes the error of an inferred TE boundary.
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Figure 3: Censor’s accuracy for different parameters used in the generation of data sets: A) genes

(%); B) mutations (%) C) TEs (%); and D) repetitive elements (%).

The Rapidminer 2 software which uses Weka [19] algorithm implementations was used to build

the classifiers. The algorithms considered: Weka’s implementation of Neural networks; Bayes

Network; Random Forest classifier to build an ensemble of decision trees; Decision Trees based

on the C4.5 algorithm. Different values of the algorithms’s parameters were experimented and

the results reported were obtained with the combinations giving the best results. The classifiers

performance was estimated by measuring the accuracy in a 10 fold cross-validation procedure.

The classification of a potential TE candidate as a TE or not is a typical classification problem.

In these terms, we used a data set containing 325000 examples, equally distributed in terms of

TE types and in terms of being real TEs or false positives. The features used as the input for

the models were: i) discretized TE length (using Equal-depth Binning in 50 categories); ii) the

TE type; iii) the tool that made the prediction (FOUNDTOOL); and iv) a IS TE feature as the

2http://www.rapidminer.com/
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Table 4: TE detection: accuracy using different classification algorithms.

Algorithm Accuracy (%)

Neural Network 69.01

Naive Bayes Net 96.30

Random Forest 98.90

Decision Trees 98.92

class. The IS TE feature is a boolean feature which indicates whether a given example is or is

not a TE. Table 4 shows the results obtained for the different ML algorithms considered. The

best results were achieved with Decision Trees with an average accuracy of 98%, although the

difference to Random Forest is not significant.

The sensitivity of the tools for the level of mutations present in the sequences analyzed was

also a theme that we wanted to clarify. The results (not shown) suggest that BLAT and PILER

tools are influenced by mutations present in the DNA sequences. On the other hand, the perfor-

mance of Censor, LTR Finder and RepeatMasker were not affected significantly by the level of

mutations.

5.1 Finding the best TE annotation tool

Which tool minimizes the predicted location error for a given TE candidate? To answer this

question we used a set of 129 198 examples3 of TE elements equally distributed between the

different TE classes. “bestTool” is the class label and we have used the following features: TE

type; set of tools that have detected the TE in step1; number of such tools that have detected the

TE in step 1; and the class of the tools that have detected the TE in step 1. The bestTool feature

is the name of the tool with the minimum location error.

We tested different model generation algorithms, all subjected to a 10 fold cross-validation

process, to assess their performance. In Table 5 the results obtained with the different learner

algorithms are compared. Again, the model with highest accuracy was produced with Decision

Trees. Table 6 presents the confusion matrix of this model. This classifier has a high accu-

racy and can perform well with the tested artificial data. It is also worth to mention that the

LTR Finder tool was never used in this context as the location error performance of this tool is

considerably lower than the others.

Applying machine learning to construct classifiers in the TE detection scope can further im-

prove the accuracy of TE detection and annotation. In all the different problems, the approach

that produced best results was Decision Trees (W-J48 Weka implementation).

3Number of cases where the existence of a TE was correctly predicted.
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Table 5: TE annotation: Classification algorithms model comparison. ZeroR measures the major-

ity class percentage and is used as a base line value.

Algorithm Accuracy (%)

Ridor 96.43 (0.10)

Naive Bayes Net 96.37 (0.18)

Random Forest 96.56 (0.14)

Decision Trees 96.56 (0.14)

ZeroR 76.55

Table 6: TE annotation: confusion matrix for the Decision Trees model.

True True True True True Class

BLAT Censor LTR Finder PILER RepeatMasker Prediction

Predicted BLAT 98902 0 0 0 0 100.0 %

Predicted Censor 1911 23427 0 0 0 92.5 %

Predicted LTR Finder 1 0 0 0 4 0.0 %

Predicted PILER 140 71 0 0 85 0.0 %

Predicted RepeatMasker 834 1395 0 0 2428 52.1 %

Class Recall 97.2 % 94.1 % 0.0 % 0.0 % 96.6 %

6 Conclusions

In this paper we have assessed a set of computational tools for detecting Transposable Elements.

The results obtained suggest that both Censor and RepeatMasker are the most accurate tools

in detecting TEs. In a particular category, Politron TEs, the PILER tool obtained the best

results. The LTR Finder tool has achieved, by far, the worse results in this comparison with very

low accuracy in the detection of TE. BLAT and RepeatMasker had some problems detecting

DIR TEs. On the other hand, Censor scored exceptionally well in this TE category. Politron

TEs were also a problem for tools like RepeatMasker, Censor and BLAT. In this case, PILER

performed well, outscoring all the other tools.

In terms of inference of TE boundaries, except for the LTR Finder performance, all the tools

performed acceptably well. The biggest issues occurred on the detection of the boundaries of

Politron TEs and PILER had some trouble in detecting DIR TEs.

Using different TE tools’ predictions from simulated data sets, we generated two classifiers that

predict: i) if a given TE candidate is a TE or not, and ii) if it was a TE, predict which tool to

use to minimize the boundaries error of that TE.

All in all, we presented evidence that ML models can be used to boost the detection and anno-

tation of existing TE computational tools. Further research is needed to confirm the results in

real data.
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