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Optimizing the participation of a large number of prosumers in the electricity markets is a challenging problem,
especially for portfolios with thousands or millions of flexible resources. To address this problem, this paper
proposes a cluster-based optimization approach to support an aggregator in the definition of demand and supply
bids for the day-ahead energy market. This approach consists of two steps. In the first step, the aggregated
flexibility of the entire portfolio is computed by a centroid-based clustering algorithm. In the second step, the
supply and demand bids are defined by an optimization model that can assume the form of a deterministic or a

two-stage stochastic problem. A case study of 10,000 prosumers from the Iberian market is used to evaluate and
compare the performance of the bidding optimization models with and without pre-clustering. The numerical
results show that the optimized bidding strategies outperform an inflexible strategy by more than 20% of cost
savings. The centroid-based clustering algorithm reduces effectively the execution times of the bidding opti-
mization problems, without affecting the quality of the energy bids.

1. Introduction
1.1. Motivation

The current electricity system does not consider the active partici-
pation of small consumers. The consumers are passive elements of the
system. However, the recent developments in smart home technologies
promise to transform passive consumers into active prosumers. The
smart home technologies include smart appliances, sensors, photo-
voltaic (PV) systems, home energy management systems (HEMSs)
equipped with communication, monitoring and control functionalities.
These functionalities empower the prosumers and turn them into active
and flexible elements of the system. The smart home technologies can
render financial benefits to the prosumers since they create an oppor-
tunity for aggregators trading the prosumers’ flexibility in the elec-
tricity markets. However, they also bring new challenges for the ag-
gregators. One of the challenges is to transform the automation
functionalities of the smart home technologies into products that can be
traded in the electricity markets. Another challenge is to manage a large
number of flexible resources in an effective and timely way since typical
portfolios can reach thousands or millions of resources. This paper
proposes a solution to these two new challenges.

1.2. Related work

The aggregator is a service provider that gathers small prosumers to
trade their flexibility in the electricity markets [1,2]. Depending on the
requirements of each electricity market, the aggregator may participate in
the energy and/or reserve markets. The focus of this paper is the day-ahead
(DA) energy market. The related work in this topic covers decision-aid
methodologies to support aggregators in the definition of DA energy bids.
The optimization of flexible resources, such as electric vehicles (EVs),
thermostatically controlled loads (TCLs) and shiftable loads (SLs) is well
documented in the literature. For instance, Alahiivala et al. [3] formulated
a deterministic model to optimize demand bids taking into account the
flexibility of the TCLs. Chen et al. [4] included the uncertainty of the DA
energy prices in the optimization of the demand bids. In the electric mo-
bility context, Bessa and Matos [5,6] proposed two deterministic optimi-
zation models to define demand bids. One of the optimization models
considers the aggregated information of the EVs, while the second com-
prises the individual information of the EVs. Both optimization models
adopt point forecasts of DA energy prices and driving patterns to optimize
the charging consumption of the EVs. Vagropoulos and Bakirtzis [7] pro-
posed a two-stage stochastic model that incorporates the uncertainties of
mobility patterns and electricity prices. These three works did not consider
vehicle-to-grid (V2G), which was considered by Momber et al. [8].
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Nomenclature

Abbreviations

DA Day-ahead

EV Electric vehicle

HEMS Home energy management system
IL Inflexible load

MIBEL  Iberian electricity market

PV Photovoltaic

RT Real-time

SL Shiftable load

TCL Thermostatically controlled load
AR Arrival of the electric vehicle
DE Departure of the electric vehicle
HE Heating

Cco Cooling

CU Curtailment

" Point forecast

AV Discharging, charging

+ ,— Positive, negative imbalances

Indices and sets

JjEeJ Scenarios

t, we T Time interval

Y Type of load and generator {EV, TCL, SL, IL, PV}
iel” Loads

keKkK Clusters

ne N,  Objects N = {Ny,...,Ni}

T C T Sub-set of time intervals

OcC Set of time intervals of active occupancy

TSt c TSE c T Availability to start, complete a program (sets)

Parameters

C Thermal capacitance (kWh/°C)

COP Coefficient of cooling performance

EER Coefficient of heating performance

D Number of time intervals of a program

P Maximum electric power (kW)

Pr Power profile (kW)

SOC, SOCMaximum, minimum state-of-charge (kWh)
R Thermal resistance (°C/kW)

x Object

A Price (€/kWh)

4 Probability of occurrence of the scenarios
7 Efficiency

I3 Weight of the representative flexible loads
9 Heat gains and losses not modeled explicitly (°C)
At Duration of time interval ¢ (1h)

6, 6 Maximum, minimum temperatures (°C)

o° Outdoor temperature (°C)

Variables

E Energy (kWh)

AE Imbalance (kWh)

p Electric Power (kW)

Soc State-of-charge (kWh)

0 Temperature (°C)

174 Sets the beginning of a program (binary)
u Centroid

Mohsenian-Rad [9] extended the portfolio of the EV aggregator to other
SLs, such as dishwashers and washers. Iria et al. [2,10] added generation
units to the aggregator’s portfolio, in order to exploit synergies between
demand and generation resources. The management of generation and
demand resources enables the participation of the aggregator in the de-
mand and supply sides of the DA energy market. In the scope of local
energy markets, the authors of Refs. [11-13] proposed peer-to-peer ap-
proaches to promote energy trading between prosumers. The trading me-
chanisms rely on the generation surplus of the prosumers to enable the
exchange of services between them.

The above mentioned bidding optimization models [2-9] consider
the aggregation of a few hundreds of flexible resources. The optimiza-
tion of a small group of flexible resources does not present a compu-
tational problem. On the other hand, optimizing a very large number of
individual flexible resources is challenging since it may add millions of
variables and constraints to the optimization problems, making them
hard to solve or even computationally intractable [14,15]. Various
approaches have been proposed to reduce the size of the optimization
problems by representing the flexibility of the aggregated resources
through generalized batteries [15-17] and polytopes [14,18,19].
Nonetheless, none of these aggregation approaches has been success-
fully integrated into bidding optimization problems.

1.3. Contributions

This paper proposes a novel cluster-based optimization approach to
support an aggregator of prosumers in the definition of demand and
supply bids for the DA energy market. This approach consists of two steps.
In the first step, the aggregated flexibility of the TCLs, EVs, and SLs is
computed by a centroid-based clustering algorithm. In the second step, the
supply and demand bids are defined by an optimization model that can

assume the form of a deterministic or a two-stage stochastic problem. The
differences between the optimization approaches are how the information
of the prosumers is modeled and the number of market stages considered
in the optimization process. The two-stage stochastic model optimizes the
participation of the aggregator in the DA and real-time (RT) market stages
and models the uncertainties of the prosumers through a set of scenarios.
The deterministic model considers point forecasted information and op-
timizes the participation of the aggregator in the DA market. The two
bidding optimization models are compared and evaluated.

The proposed cluster-based approach differs from works [2-10] by
considering different sources of flexibility (PVs, TCLs, SLs, and EVs) in
the joint optimization of energy bids. It also extends the bidding range
of the aggregator to the supply and demand sides of the energy market,
empowering the aggregator with two bidding options. The bidding
strategies allow the prosumers to value their flexibility by transforming
it into market products under the form of energy bids. These strategies
may also prevent prosumers from investing in dedicated storage devices
to store excess of renewable generation. Furthermore, the cluster-based
optimization approach transforms the flexibility of thousands of re-
sources into market products without relying on decentralized ap-
proaches. The centroid-based clustering algorithm reduces the size of
the bidding optimization problems, both in terms of variables and
constraints, making them tractable and fast for a large number of
flexible resources. It preserves the original representation of the flexible
resources and their main properties, contrarily to other works that
adopt generalized battery models [15-17] and polytopes [14,18,19].

1.4. Paper organization

The remaining paper is organized as follows. Section 2 describes the
electricity market and aggregator frameworks. Section 3 presents the
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deterministic optimization and two-stage stochastic optimization
models. Section 4 presents the centroid-based clustering algorithm.
Sections 5 and 6 describe the case study and results. Finally, Section 7
presents the conclusions.

2. Problem description
2.1. Framework of the energy market

The participation of the aggregator in the electricity market follows
the rules of the Iberian market (MIBEL). The MIBEL is a sequential
market, where energy is traded first and reserves are contracted after-
ward. It covers the Portuguese and Spanish control areas.

The DA energy market of MIBEL is a single-price and double-sided
auction, where market agents submit supply and demand hourly bids
that cover the 24 h of the next day. The price (€/MWh) and volume of
energy (MWh) of each hour are set by the EUPHEMIA algorithm
(European DA market solver [20]). The gate closure is at the 12th hour
and the clearing prices are published at the 13th hour. Before the 14th
hour, the physical bilateral contracts are added to the cleared offers of
the DA energy market. Afterward, the transmission system operator
(TSO) performs congestion management and then proceeds to the
generation of viable energy schedules. In case of being detected net-
work problems, the TSO may use technical or market-based methods.
Technical-based methods include adjusting network topology or other
network elements, such as transformer taps. Market-based methods
include countertrade and market splitting.

Days after delivery, the energy transitions are settled. The ag-
gregator pays the energy bought and charges the energy sold in the day-
ahead energy market. The deviations between DA market commitments
and RT realizations are settled at imbalance prices. Portugal and Spain
use the two-price system to value energy imbalances. The positive and
negative imbalance prices result from a complex function of energy and
reserve prices, as described in Ref. [22]. Fig. 1 shows the timeline of the
DA energy market.

2.2. Participation of the aggregator in the day-ahead energy market

The aggregator assumes the role of retailer and supplier since it sells
and buys energy. The aggregator acts as a price taker by submitting
non-priced demand and supply bids to the DA energy market. This
means that supply bids are presented at floor price (0 €/MWh), while
demand bids are submitted at market cap price (180 €/MWh).

Fig. 1 shows the sequence of the aggregator’s tasks. Before the 12th
hour, the aggregator defines and submits the demand and supply bids.
A cluster-based optimization approach generates the energy bids. Sec-
tions 3 and 4 describe the bidding optimization models and the cen-
troid-based clustering algorithm.

2.3. Flow of information in the day-ahead stage

Fig. 2 describes the flow of information between the aggregator,
prosumers, TSO, and electricity market during the DA stage. Six DA
actions are identified, as follows:

1. communication of the prosumers information. The prosumers in-
formation includes parameters and state-of-operation of the appli-
ances, prosumer’s preferences, end-user engagement information,
generation, consumption, etc.;

2. definition of demand and supply bids for the DA energy market. The
aggregator defines the bids through one of the bidding optimization
models described in Section 3;

3. submission of the energy bids (MWh and €/MWh);

4. energy market clearing performed by the EUPHEMIA platform. The
market operator participates in this process;

5. the TSO performs congestion management. The exchange of
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information includes cleared bids (from the EUPHEMIA platform)
and viable energy schedules (from the TSO);

. communication of the viable energy schedules (MWh) and clearing
prices (€/MWh);

It is important to stress that only the optimization of the energy bids
is covered in this work. The RT operation is outside of the scope of this
paper. Examples of algorithms to manage the operation of flexible re-
sources in RT can be found in Refs. [2,5,6].

2.4. Interface between the aggregator and prosumer

The aggregator interfaces with the prosumer through a HEMS. In
the DA stage, the HEMS collects and communicates prosumers in-
formation, as described in Fig. 3. In this framework, the HEMS has the
following functionalities: metering the consumption and generation of
appliances; monitoring and acquiring the state-of-operation of appli-
ances; enabling the exchange of information between the prosumer and
aggregator; engaging the prosumer into cost-efficiency behaviors and
services; and controlling flexible resources according to set-points
communicated by the aggregator during the RT phase. The prosumer
can interface with the HEMS through a smartphone application.

This paper considers four sources of flexibility: TCLs, EVs, SLs, and
PVs. The EVs are sources of demand and generation flexibilities (V2G),
while the TCLs and SLs are only sources of demand flexibility and the
PV units are only sources of generation flexibility. Being a source of
demand flexibility means that the resource is capable of increasing,
decreasing or shifting consumption. On the other hand, a source of
generation flexibility is capable of increasing and decreasing genera-
tion. The aggregator transforms the load and generation flexibilities of
the prosumers into energy bids with high economic value, as demon-
strated in the results section.

2.5. Remuneration and rewarding mechanisms

The aggregator signs a contract with the prosumers to automate and
exploit their load and generation flexibilities in the electricity market.
In exchange, the aggregator may offer attractive financial rewards, such
as cheaper retailing prices and discounts on the monthly bill. Not all the
prosumers are motivated by financial rewards. Financial motivations
depend mainly on the socioeconomic status of the prosumers. However,
the prosumer can be motivated by social and environmental incentives
[23]. The environmental incentives promote “green” values, such as
positive feelings towards the use of renewable energy sources or the
reduction of CO, emissions. The social incentives promote fun and
personal satisfaction.

Therefore, the rewarding mechanism adopted by the aggregator

Day-ahead market Cluster-based optimization approach

Oh
Definition of the demand | > Centroid-based clustering
and supply bids algorithm
Submission of the demand H
1on1 and supply bids Bidding optimization
K . models:
Energy market clearing - Deterministic
13h - Two-stage stochastic
14h
Congestion management
16h+
Oh+ (CET) [0 Aggregator’s tasks [] Market sessions
v

Fig. 1. The sequence of the aggregator’s tasks and relevant market sessions of
MIBEL.
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Fig. 2. Flow of information between the aggregator, prosumers, TSO, and
electricity market during the DA stage.
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| y
© |
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|

Aggregator

Fig. 3. Interface between the aggregator and prosumer.

should be “tailor-made”, i.e. adapted to the characteristics and pre-
ferences of the prosumers. The definition of the rewarding mechanism
is outside the topic of this work. This paper is focused on the analysis of
the possible economic advantages for the prosumers from actively
participating in the wholesale market through an aggregator.

3. Day-ahead bidding optimization models
3.1. Two-stage stochastic model

The two-stage stochastic optimization model (1)-(16) defines de-
mand and supply bids for the DA energy market. The main character-

istics of the optimization model are described below:

1. two-stage: the optimization model defines energy bids for the DA
energy market, taking into account multiple possible RT outcomes

Electric Power Systems Research 168 (2019) 324-335

3.1.1. Objective function

The two-stage stochastic optimization model is formulated as a
minimization problem. The aim is to minimize the net cost of the ag-
gregator buying and selling energy in both DA and RT market stages.

The objective function (1) has two terms:

1. the first term is the net cost of selling and buying energy EP* at
forecasted price itE in the DA energy market. Negative values of E>4
are selling bids and positive values are buying bids;

. the second term defines the expected imbalance cost, due to de-
viations between RT realizations and DA market commitments. A
negative imbalance AE;,(kWh) is a surplus of demand or a shortage

of generation. A positive imbalance AE}, is a shortage of demand or

a surplus of generatlon Energy 1mbalar1ces are valued at negative

A, or positive /I forecasted imbalance prices;

Min Y, |4 EPY+ Y m(, AE;,

teT

-1 AE+ P)
jer @

The uncertainties are modeled through a set of scenarios j € J with a
probability of occurrence s;. The optimization horizon is define by a set

of time intervals t € T of duration 1 h At (h).

3.1.2. Energy balance and market trading constraints

The market trading Constraint (2) sets the energy imbalances.
Constraint (3) sets the expected net load in RT equal to the sum of the
IL, PV generation, and flexible net load. The parameter £ weighs the
flexible loads i € I'. The weight £ and set I” are outputs of the centroid-
based clustering algorithm. The electric power P;;./P;, (kW) is positive
for demand and negative for generation.

AET,

AE;, — AE}, =Eff —EP, Vjel teT )

Bl = 3 (

ve{EV,TCL,SL}

& j"”AtJ +(PE+PI)AL VjeT teT

iel”

3

3.1.3. Thermostatically controlled load constraints

The TCL consists of a split heat pump with heating and cooling
capacities. The optimization requires four constraints. Constraints (4)
and (5) set the ranges of the electric power in heating H,E,(kW) and
cooling Py, modes. The electric power is defined by P77 = P/ + P.
Constraint (6) sets the temperature inside the room 6;;;., (°C). Con-
straint (7) ensures that the thermal comfort of the prosumer is satisfied
in the hours of house occupancy 0; ;. The thermal comfort is defined by
the temperature range [ 8;, 6;].

of generation and consumption. The DA market is the first-stage and 0< PﬁE[ <PFE, VjeJ,iel™, teT 4
the RT phase is the second-stage. The optimization models the net
cost of trading energy in both DA and RT market stages; 0< Pclol <P Vjeliel™ teT 5)
2. stochastic: the uncertainties of the prosumers are incorporated in
e - . HE
the optlmlz.atlon model through a set of sc'enarlos. The s.cenarlos 6011 = BGjic + (1 — B)I6Y, + Ri(COP-PIE — EER,P o)
model possible RT outcomes of PV generation, consumption, out- .
. . i ; TCL
door temperature and behaviors and preferences of the prosumers + 9ie vjel,iel'™teT
(e.g., house occupancy and plug-in availability of the EV). 6)
Table 1
Variable parameters and sets of the thermostatically controlled load.
Symbol  Unit Name Description
0 °C Outdoor temperature ~ The aggregator signs a contract with a weather service provider to acquire forecasts/scenarios of outdoor temperatures.
(0] - House occupancy The HEMS uses sensors to collect house occupancy information. Based on this information, the aggregator computes scenarios through a
seasonal naive forecasting algorithm.
9 °C Heat gains and losses  The heat gains and losses result from human activity, solar radiation and other loads. They can be estimated by the aggregator using least

squares optimization [24].
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ﬁ,- < 6]-,,-“1 < éi, V] el,ie ITCL, te Oj,i (2]

The TCL parameters can be variable or fixed. The variable para-
meters assume the form of scenarios and are computed on a daily basis.
The variable and fixed parameters are described in Tables 1 and 2.

3.1.4. Electric vehicle constraints

The optimization of the EV requires six constraints. Constraints (8)
and (9) set the ranges of the charging power P};,(kW) and discharging
power Pf;,. This formulation does not require the adoption of binary
variables to avoid simultaneous charging and discharging due to the
price structure of the objective function. Nonetheless, the binary vari-
ables can be added to Constraints (8) and (9), if necessary [2,25,26].
The electric power is defined by Pf}; = P};, — P} . Constraints (10) and
(11) set the SOC (kWh) within its limits[SOC;, SOC;]. Constraint (12)
defines the target SOC at departure time tfiE . The aim is to ensure the

preferences of the prosumers 7 and SOC}F.

JAES

0= Joint =

P, Vjel iel™, teTy )

0<P,, <P Vjeliel™ teTy ©

S0C;;,1+1 = SOCj ;i + (n,-VPYi,t

Vo= Phn/)AL Vel iel®, re T

(10
SOC; < SOC;;1+1 < 80C;, Vjel iel?, teTy an
SO pr 2 SOCF, Vjel iel™ 12)

The EV parameters can be variable or fixed. The variable parameters
assume the form of scenarios and are computed on a daily basis by the
aggregator. The aggregator uses a seasonal naive forecasting algorithm
to generate the scenarios. The fixed and variable parameters are de-
scribed in Tables 3 and 4.

3.1.5. Shiftable load constraints

The SL can be a dishwasher or a washing machine. The scheduling
of the SL requires two constraints. Constraint (13) sets the electric
power Pﬁﬁ (kW). The binary variable y; ; , schedules the beginning of the
program. Constraint (14) ensures that only one program is started at

each availability period T 7.

Djvi—l
P, = Z Prifui .y Viel i€l te T}

w=0 13)
Y Gu=1 Viesier
tert 14

The SL parameters are variable and assume the form of scenarios.
The aggregator computes the scenarios using a seasonal naive fore-
casting algorithm. The variable parameters are described in Table 5.

3.1.6. Photovoltaic generation constraints
The optimization of the PV generation requires two constraints.
Constraint (15) sets the PV generation P}f [V (kW). Constraint (16) defines

Electric Power Systems Research 168 (2019) 324-335

the range of the curtailment of PV generation PJC,U . Note that curtailing
generation can make sense in energy markets with negative prices. The
uncertainty of the PV generation is modeled through a set of scenarios

{Priv, v j, i}.
Pl =Py — > Prll, VjelteT
ierfV (15)
0<PY< > PV, VjelteT
ier?V (16)

3.1.7. Inflexible load
The uncertainty of the IL is modeled through a set of scenarios of
power profiles {Pr]{Li, Vj,i}. The inflexible power is given by

Pli=% (@rfi).

it =
ier’t

3.2. Deterministic model

The deterministic optimization model (4)-(18) defines demand and
supply bids. The main characteristics of the optimization model are
described below:

1. single-stage: the optimization models the net cost of trading energy
in the DA market stage;

. deterministic: the prosumers information is modeled through point
forecasts instead of probabilistic information under the form of
scenarios.

3.2.1. Objective function

The deterministic model is formulated as a minimization problem.
The aim is to minimize the net cost of buying and selling energy in the
DA energy market. The objective function is given by:

Min Y i°EPA

teT

a7

3.2.2. Constraints
Constraint (18) sets the energy bids equal to the sum of the IL, PV
generation, and flexible net load.

2|

ve{EV,TCL,SL}

EPA = > gngftAt] +@PE+PV)AL, VEET

ier”

a8

The constraints of the flexible resources are given by Eq. (4)—(16).

4. Centroid-based clustering algorithm

The k-means [27] is the centroid-based clustering algorithm used to
compute the aggregated flexibility of the TCLs, EVs, and SLs. The k-
means finds the centroid p and assigns the objects x to the nearest
cluster, such that the squared distances from the cluster are minimized.
The objective function of k-means assumes the following form:

Table 2
Fixed parameters of the thermostatically controlled load.
Symbol Unit Name Description
C kWh/°C  Thermal capacitance C and R can be computed by the aggregator using estimation techniques based on least squares optimization
R °C/kW Thermal resistance [23].
B - Thermal constant
B= e_cél[e
0/6 °C Min./max. temperatures of comfort 9/6 are set by the prosumer.
COP/EER - Coefficients of cooling/heating performance = COP/EER are provided by the manufacturing companies.
PCO/PHE kW Maximum electric power for cooling/heating ~ pCO/pHE are provided by the manufacturing companies.

328



J. Iria and F. Soares

Table 3
Fixed parameters of the electric vehicle.

Electric Power Systems Research 168 (2019) 324-335

Symbol Unit Name Description
7 - Charging and discharging efficiency All the fixed parameters are provided by the manufacturing companies.
PEV kw Charging and discharging power rate
soc kwWh Minimum state-of-charge
sSoC kWh Maximum state-of-charge
Table 4 EV TCL SL
Variable parameters and sets of the electric vehicle. 7 EER; - ﬁifo g
; i . BHE avg(X,, Pt
Symbol  Unit Name Description Physical parameters SOC COP; - P jg( w ""W)
' RiG;
(DE - Departure time P is set by the prosumer. a\_/g(SOC}-‘fliR) %0 a‘_’g(’l_}%—l — Z‘ISILO)
(AR - Arrival time - Behavioral parameters |’ (6.-86) |’
DE _ 4AR i~y
TEV - Availability period TV is defined by the period between the ayg(tj.i — G ) a}’g(Dj ,i)
arrival and departure times [t4R, ..., tPF],
SOCAR  kWh  SOC at arrival time - Fig. 4. Inputs of the k-means per type of flexible load.
SOCPE  kWh  SOC at departure SOC* is set by the prosumer.
time
information can assume the form of point forecasts or scenarios de-
pending on the bidding optimization adopted. The two-stage stochastic
LS model uses scenarios, while the deterministic model uses point fore-
i 2
argmin Z Z X — Wy casts.
N k=1 x€&Ng (19)

In this case, the k-means selects the TCLs, EVs, and SLs capable of
emulating the flexibility of the entire portfolio. The k-means algorithm
is applied to each type of flexible load. The inputs of the k-means al-
gorithm are the number of clusters K and parameters. The parameters
are divided into technical and behavioral, as shown in Fig. 4. The
technical parameters correspond to the physical properties of the ap-
pliances. The behavioral parameters represent the end-users’ pre-
ferences. The outputs of the k-means algorithm are a set of re-
presentative flexible loads i € I' and the respective weight &".

Fig. 5 shows the application of the k-means algorithm to a portfolio
of 7 EVs. Two EVs are selected to emulate the flexibility of the entire
portfolio. The selected EVs correspond to the centroids of the cluster.
The weights of the selected red and grey EVs are 4 and 3. The weight is
given by the size of the cluster.

5. Case study
5.1. Main description

The aggregator of prosumers participates in the DA energy market
of MIBEL during the first week of December 2015 (from November 30th
to December 6th). The aggregator manages 10,000 prosumers from
Porto (Portugal), each one has 1 PV system, 1 TCL, 1 SL, and 1 EV.
5.2. Prosumers information

Five types of prosumers information are considered: TCL para-

meters; EV parameters; SL parameters; inflexible load; and PV genera-
tion. The prosumers information can be fixed or variable. The variable

5.2.1. Parameters of the thermostatically controlled loads
5.2.1.1. Fixed parameters. The fixe parameters include the physical
characteristics of the rooms, temperature ranges, technical parameters
of the TCLs. Fig. 6 shows the distribution of the rooms’ characteristics of
10,000 prosumers (each TCL heats one room).

The technical parameters of the split inverter heat pumps adopted in
this paper are described in Table 6. Four temperature ranges were
considered: [19,24]; [20,22]; [20,23]; [19,22] °C.

5.2.1.2. Variable parameters. The variable parameters include scenarios
of outdoor temperatures, house occupancy, and heat gains and losses.
The scenarios of outdoor temperature were computed by a Gaussian
copula method [28] using numerical weather predictions collected
from the MeteoGalicia website [29]. Fig. 7 shows twenty scenarios of
outdoor temperature.

The scenarios and point forecasts of house occupancy were com-
puted by a seasonal naive forecasting algorithm. The historical data
includes annual time series of house occupancy of Portuguese house-
holds. Fig. 8 shows twenty scenarios of house occupancy.

A Gaussian white noise process was used to generate scenarios and
point forecasts of heat gains and losses 8 ~ N (0, 1 x 10-6)°Cs~1/2,

5.2.2. Parameters of the electric vehicles

5.2.2.1. Fixed parameters. The maximum charging and discharging
electric power was selected by choosing one of two values: 3.7 or
7 kW [30]. The battery capacity was defined according to a truncated
normal distribution described in Table 7.

5.2.2.2. Variable parameters. The scenarios and point forecasts of plug-

Table 5
Variable parameters and sets of the shiftable load.
Symbol  Unit Name Description
pSL kw Load profile The load profile depends on the program selected by the prosumer.
D - Duration of the program -
TSL - Availability to complete the program 5L js set by the prosumer.
TSL - Availability to start the program

T8 = TSI(TSE, YV w = —D,...,—1}
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Fig. 5. Application of the k-means algorithm to a portfolio of 7 electric vehicles.

in availability, state-of-charge at departure and arrival times were
generated by a seasonal naive forecasting algorithm [3]. The historical
data includes annual synthetic time series of EV mobility patterns [31].
Figs. 9 and 10 show twenty scenarios of plug-in availability, state-of-
charge at arrival and departure times. The state-of-charge at departure
time is equal to the battery capacity of the EV.

5.2.3. Parameters of the shiftable loads
5.2.3.1. Variable parameters. The scenarios and point forecasts of load
profile, duration, availability to start and complete the program were
generated by a seasonal naive forecasting algorithm. The historical data
includes annual synthetic time series of SL usage patterns [2].
Examples of scenarios are described in Fig. 11. The duration and
load profiles are adjusted to the time unit of the energy market (i.e.,
1h). The availability to start a program is computed based on the
availability to complete the program and duration of the program.

5.2.4. Inflexible load and photovoltaic generation

The inflexible load and PV generation can assume the form of sce-
narios and point forecasts, as described in Figs. 12 and 13. The point
forecasts were computed by the gradient boosting algorithm [32] from
the python package “scikit-learn” [33]. The scenarios were generated
by the Gaussian copula method. The historical data of inflexible load
consists of hourly load profiles of low-voltage consumers from Portugal
for the period of two years (2014-2015). The input data used to forecast
PV generation includes hourly measurements of PV generation and
numerical weather predictions collected from the MeteoGalicia website
for the period of one year (2015).

5.3. Electricity prices

The energy, positive and negative imbalance prices were forecasted
by the gradient boosting algorithm. The input data was collected from
the ENTSO-E transparency platform for the period of one year (2015)
[2,34]. The data includes electricity prices, timestamp, forecasted de-
mand, forecasted wind generation and forecasted solar generation of
Portugal and Spain.

Table 8 presents the performance metrics for the forecasted

electricity prices. The mean absolute error (MAE) measures the accu-
racy of the forecasted prices and the Spearman’s rank correlation
measures the prices ranking quality [35]. The forecasting performance
of the energy price is good. The imbalance prices present a low per-
formance. There is room for improving the forecasting of the imbalance
prices. One of the possible paths is to use better forecasts of load, wind
and solar generation, as explanatory variables.

6. Results

The results are divided into four main sections. Section 6.1 com-
pares the three bidding strategies without considering pre-clustering.
The three bidding strategies are the two-stage stochastic optimization,
deterministic optimization and inflexible. The inflexible strategy con-
siders that the load and generation of the prosumers are inflexible.
Section 6.2 discusses the results of the centroid-based clustering algo-
rithm. Section 6.3 discusses the impact of the centroid-based clustering
algorithm in the bidding optimization strategies. Finally, Section 6.4
presents and discusses the computation performance of the bidding
approaches with and without pre-clustering for portfolio sizes.

6.1. Comparison between the day-ahead bidding strategies without
considering pre-clustering

6.1.1. Visual comparison

Fig. 14 shows the demand and supply bids of deterministic opti-
mization, two-stage stochastic optimization and inflexible strategy for
December 1st (Tuesday). Positive values are demand bids and negative
values are supply bids.

The inflexible strategy places the demand bids in the periods of high
energy prices. The optimized strategies (i.e., deterministic and two-
stage stochastic optimizations) place most of the demand bids in the
periods of low energy prices and the supply bids in the periods of high
energy prices. The supply bids during the night period result from the
V2G functionality.

The two-stage stochastic optimization introduces one additional
term in the objective function compared to the deterministic optimi-
zation, the sensitivity to imbalance prices. The additional term affects

Fig. 6. Physical characteristics of the rooms.
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Table 6
Parameters of split inverter heat pumps.
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Model 1 2

3 4 5 6 7 8

Cop 4.4 4.6 4.7 4.9 4.3 4.4 4.4 3.9
EER 4.3 4.4 4.5 5.0 3.8 3.9 4.1 3.4
PHE (kw) 0.9 0.9 0.9 1.1 1.3 1.3 1.5 1.5
PCO (kw) 0.7 0.7 0.7 0.7 1.0 1.0 1.0 1.5

A (m?) [20,30( [20,30([ [30,40([ [30,40([ [40,50([ [40,50[ [50,60([ [50,60([
5 28 Availability to complete the program i Load profile
< 24 4

;20 A =

%16- III  EEEEREN] 58

+— i S

5 2] II lIIlIlIIl g4
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Fig. 7. Outdoor temperatures for the first week of December (20 scenarios,
point forecasts, and actual values).
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Fig. 8. Twenty scenarios of house occupancy for one day. A bar means that the
household is occupied.

Table 7
Technical parameters of the electric vehicles.

I/ P(kW) SOC (kWh) SOC (kWh)
0.93 3.7o0r7 0.1-SO0C SOC ~ N(33.3,146.5)15 < SOC < 70.4
EEE
EE
TRl
=-ss=212
N

14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Hours

| I | [ I | LI B u ] m m mScenarios

Fig. 9. Twenty scenarios of availability. A bar means that the EV is available
and plugged-in.

30
§20
10
0
>LH'—F\IM<PV\\OI\OOG\OHNMWW\OI\OOO\O
T~ P I T T TR v |
Scenarios

H SOC at arrival time B SOC at departure time

Fig. 10. Twenty scenarios of state-of-charge at arrival and departure times (20
scenarios, point forecasts [PF] and actual values [AV]).

the definition of the energy bids since it weighs the expected cost of the
load and generation uncertainties. In addition, the two-stage stochastic
optimization models the uncertainties of the prosumers through a set of
scenarios, while the deterministic optimization considers point

Fig. 11. Twenty scenarios of load profiles, duration, and availability to com-
plete the program (a bar means that the SL is available).
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Fig. 12. Inflexible load of one prosumer in the first week of December 2015 (20
scenarios, point forecasts, and actual values).
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Fig. 13. Photovoltaic generation of a PV unit of 1 kWp for the first week of
December (25 scenarios, point forecasts, and actual values).

Table 8
Performance metrics of the forecasted energy and imbalance prices.

Energy Positive imbalance  Negative imbalance
MAE (€/MWh) 3.0 8.7 8.6
Spearman’s rank corr. (0-1)  0.91 0.55 0.44

forecasted information. These differences between the stochastic and
deterministic models lead to the placement of different quantities of
energy bids. For instance, the deterministic optimization in the 3rd
hour places 57.6 MWh, while the two-stage stochastic optimization
places 53.8 MWh

6.1.2. Cumulative bidding results

Table 9 compares the cumulative bidding results of the three bid-
ding strategies for the first week of December 2015. The two-stage
stochastic optimization presents the lowest bidding net cost (57.0 k€)
followed by deterministic optimization (58.0 k€) and inflexible strategy
(73.2 k€). The two-stage stochastic optimization places lower quantities
of demand and supply bids than the deterministic optimization due to
its conservative behavior. The inflexible strategy places low quantities
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Fig. 14. Energy bids for December 1st. Positive values are demand bids and
negative values are supply bids.

Table 9
Cumulative bidding results for the first week of December 2015.
Two-stage stochastic ~ Deterministic  Inflexible

Demand bids (MWh) 1635 1754 1244
Supply bids (MWh) 400 460 36
Expected imbalances (MWh) —4 0 0
Expected net load (MWh) 1231 1293 1208
Energy cost (k€) 82.1 87.6 75.4
Energy revenue (k€) 25.8 29.6 2.3
Expected imbalance cost (k€) 0.7 0.0 0.0
Total net cost (k€) 57.0 58.0 73.2

of supply bids since it does not exploit the flexibility of the EVs to
perform energy arbitrage. The charging and discharging cycles of the
EVs generate energy losses that increase the expected net load of the
optimized approaches compared to the inflexible strategy. The differ-
ence in expected net load between the optimized approaches is due to
the consideration of different types of input data. As previously re-
ferred, the two-stage stochastic optimization considers stochastic sce-
narios, while the deterministic approach considers point forecasted
information.

The optimized bidding models outperform the inflexible strategy by
more than 20% of cost savings. The two-stage stochastic optimization
computes more robust solutions than the deterministic option since it
models the uncertainty of the prosumers information through a set of
scenarios. The performance of both approaches is similar. However, the
complete performance of the optimization strategies can only be ef-
fectively evaluated in RT due to the uncertainties of the prices, gen-
eration, and consumption. Therefore, the stochastic approach should be
adopted by conservative aggregators and in scenarios of high un-
certainty. The deterministic option may present a better performance in
scenarios of low uncertainty.

6.1.3. Distribution of the bidding net cost of the aggregator by the prosumers

Fig. 15 presents the distribution of the bidding net cost of the ag-
gregator by the prosumers for the first week of December 2015. The
two-stage stochastic optimization presents the lowest median 5.6 €
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followed by deterministic optimization 5.7 € and inflexible strategy
7.2€. This proves that the optimized strategies reduce the dis-
aggregated and aggregated net costs.

As mentioned before, the remuneration and engagement mechan-
isms are outside the scope of this paper. However, Fig. 14 suggests that
the participation of the prosumers in this flexibility service may con-
tribute to significantly reduce their electricity costs. For example, if the
inflexible strategy is compared to the two-stage stochastic optimization,
the average savings per prosumer is 1.6 €/week (21% reduction).

6.2. Centroid-based clustering algorithm

The centroid-based clustering algorithm includes two phases. The
first phase consists in selecting the number of clusters. The second
phase consists in defining the representative flexible loads and their
respective weights. The centroid-based clustering algorithm is run
every day before the definition of the DA energy bids.

6.2.1. Number of clusters

One of the inputs of the k-means algorithm is the number of clusters
per type of flexible load. The number of clusters is selected by a two-
step heuristic. The first step consists in running the k-means algorithm
for a series of number of clusters. The second step consists in selecting
the number of clusters based on the silhouette score [36]. The silhou-
ette score measures how similar an object (i.e., flexible load) is to its
own cluster compared to other clusters. A high score suggests cluster
cohesion, while a low score indicates cluster separation.

The silhouette scores were computed for a series of clusters from 50
to 500. Fig. 16 shows the silhouette scores for December 1st. The best
maximum numbers of clusters for the TCLs, EVs, and SLs are 400, 450
and 350 since they present the highest silhouette scores.

Table 10 presents the best numbers of clusters and respective sil-
houette scores for all the days of the week. The most frequent numbers
of clusters are 450 for TCLs and EVs, and 500 for SLs. These numbers of
clusters present the highest silhouette scores, i.e. the highest cohesion.

6.2.2. Representative flexible loads and weights

The representative flexible loads i € L* and their respective weights
&’ are computed by the k-means algorithm based on the number of
clusters previously selected. The representative flexible load corre-
sponds to the center of the cluster. The weight of the representative
flexible load is defined by the size of the cluster. Fig. 17 presents the
number of clusters per size for December 1st. The initial 30,000 flexible
loads were reduced to 1,200 representative flexible loads. Most of the
clusters present a size between 1 and 40 flexible loads. The largest
cluster has a size of 140 SLs.

6.3. Impact of pre-clustering in the day-ahead bidding strategies

6.3.1. Visual comparison

The energy bids computed by both optimization models with and
without pre-clustering present similar bidding behaviors, as shown in
Fig. 18. The results show that the 1176 representative flexible loads
emulate effectively the aggregated flexibility of the 30,000 loads. The
MAEs are 0.21 and 0.22 MWh for deterministic optimization and two-

15
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0 T T
Two-stage stochastic ~ Deterministic Inflexible

Fig. 15.
mers.

Distribution of the cumulative costs of the aggregator by the prosu-
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Table 10

Best numbers of clusters and silhouette scores for the first week of December
2015.

30th Nov. 1st Dec. 2nd Dec. 3rd Dec. 4th Dec. 5th Dec. 6th Dec.
TCL 350 400 450 400 450 450 500
EV 500 450 450 450 400 450 450
SL 500 350 450 400 400 500 500
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Fig. 17. Number of clusters per size for December 1st.
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Fig. 18. Comparison of the energy bids with and without pre-clustering for
December 1st. Positive values are demand bids and negative values are supply
bids.

stage stochastic optimization, respectively. The deviations are small
compared to the average bid size of 13 MWh.

6.3.2. Cumulative bidding results

Table 11 displays the metrics used to compare the bids computed
with and without pre-clustering for one week. Both optimizations pre-
sent an almost perfect Spearman’s rank correlation (i.e., +1) and a low
MAE. The two-stage stochastic optimization presents better metrics due
to its conservative nature. The weekly costs considering k-means are
57.5 k€ and 58.6 k€ for the two-stage stochastic optimization and de-
terministic optimization. The cost deviations are very small, around 1%
when the results with and without pre-clustering are compared. These
results demonstrate that pre-aggregation based on clustering is applic-
able to deterministic and stochastic approaches without significant loss
of detail.
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6.4. Computational performance

The flexible loads were clustered by the k-means algorithm from the
Python package “scikit-learn” [33]. The optimization problems were
implemented in Python and solved by the mixed-integer linear pro-
gramming library from the IBM CPLEX 12.7 solver on a machine with
256 GB RAM and an Intel(R) Xeon(R) CPU E7-4820 CPU clocked at
2.0 GHz.

Table 12 shows that clustering flexible loads through k-means re-
duces the size of the optimization problems, both in terms of variables
and constraints, and consequently the execution times without com-
promising the quality of the energy bids. Although the analyzed case
study, with 40,000 flexible resources, resulted on tractable optimization
problems, a significant increase of flexible resources, e.g. to 1,000,000,
increases the complexity of the problems and makes them computa-
tionally intractable, as shown in Table 13. An effective way of making
the optimization problems computationally tractable is through pre-
clustering, as the results in Table 13 demonstrate.

The flexible loads of the portfolios of 10,000 and 250,000 prosu-
mers are clustered based on the same number of clusters (see Table 10).
However, the k-means selects different representative flexible loads
since the portfolios have different characteristics. This generates dif-
ferent optimization problems, both in terms of variables and con-
straints, and consequently different execution times, as shown in Tables
12 and 13. Nonetheless, the size of the optimization problems and ex-
ecution times are very similar. For instance, the difference between the
execution times of the deterministic optimizations with k-means for the
two portfolios is around 0.1 s.

7. Conclusion

The foreseen transformation of passive consumers into active pro-
sumers creates a business opportunity for aggregators trading the pro-
sumers’ flexibility in the electricity markets. Two new challenges arise
from this new paradigm: (1) how to transform the load and generation
flexibilities of the prosumers into market products; (2) how to manage
and optimize thousands or millions of flexible resources in a timely and
effective way. This paper proposes a two-step approach to support an
aggregator in the definition of demand and supply bids for the DA
energy market. In the first step, a clustering algorithm based on k-
means was presented to compute the aggregated flexibility of the ag-
gregator’s portfolio. The aim was to reduce the size of the bidding op-
timization problems making them tractable and fast to solve. In the
second step, the energy bids were defined by an optimization model
that can assume the form of a deterministic or a two-stage stochastic
problem.

The numerical results show that the optimized bidding strategies
based on deterministic and stochastic models outperform an inflexible
strategy by more than 20% of cost savings for the presented case study
(different case studies are likely to produce different results). The sto-
chastic approach slightly outperforms the deterministic model by 2%.
The stochastic approach should be adopted by conservative aggregators
in scenarios of high uncertainty. The deterministic option may present a
better performance in scenarios of low uncertainty. The disaggregation
results suggest that prosumers can reduce the electricity costs by 1.6 €/
week with the two-stage stochastic optimization. This demonstrates
that transforming prosumers’ flexibility into demand and supply bids
contributes to reducing the bidding cost of the aggregator and the

Table 11
Performance metrics of the energy bids for one week.

Deterministic Two-stage stochastic
MAE (MWh) 0.35 0.28
Spearman’s rank correlation 0.99 0.99
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Table 12
Average size of the optimization problems and execution times for a portfolio of
40,000 flexible resources (10,000 prosumers).

Deterministic Two-stage stochastic

No clustering k-means No clustering k-means
Continuous variables 1,175,836 48,388 22,980,482 950,075
Binary variables 25,666 923 517,231 19,098
Constraints 1,074,720 44,126 15,948,574 653,980
Execution time 41s 0.5s 7.8h 2 min

Table 13
Average size of the optimization problems and execution times for a portfolio of
1,000,000 flexible resources (250,000 prosumers).

Deterministic Two-stage stochastic

No clustering k-means No clustering k-means
Continuous variables 29,341,094 48,530 572,746,075 950,102
Binary variables 641,111 952 12,957,750 19,035
Constraints 27,129,286 44,181 404,320,058 655,187
Execution time intractable 0.6s intractable 1.9 min

electricity costs of its clients.

The results achieved proved that the consideration of pre-clustering
reduces the size of the optimization problems, both in terms of variables
and constraints, and consequently the execution times without com-
promising the quality of the energy bids. In addition, it keeps the op-
timization problems tractable for millions of flexible resources. This
demonstrates that reducing the information of the flexible resources via
centroid-based clustering enables the optimization of millions of re-
sources.

Future work will focus on studying different business models based
on incentive mechanisms and innovative engagement techniques, such
as gamification [37,38]. The mid-term (months or seasons) and long-
term (one or more years) economic performances of the bidding stra-
tegies will also be addressed in future work.
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