
Real-Time Stereo Image Matching on FPGA

Carlos Resende
DEEC, FEUP

ee04022@fe.up.pt

João C. Ferreira
INESC Porto, FEUP

jcf@fe.up.pt

Abstract

Real-time stereo image matching is an important computer
vision task, with applications in robotics, driver assistance,
surveillance and other domains. The paper describes the
architecture and implementation of an FPGA-based stereo
image processor that can produce 25 dense depth maps
per second from pairs of 8-bit grayscale images. The sys-
tem uses a modification of a previously-reported variable-
window-size method to determine the best match for each
image pixel. The adaptation is empirically shown to have
negligible impact on the quality of the resulting depth map.
The degree of parallelism of the implementation can be
adapted to the available resources: increased parallelism
enables the processing of larger images at the same frame
rate (40ms per image). The architecture exploits the mem-
ory resources available in modern platform FPGAs. Two
prototype implementations have been produced and vali-
dated. The smaller one can handle pairs of images of size
208×480 (on a Virtex-4 LX60 at 100MHz); the larger one
works for images of size 640× 480 (on a Virtex-5 LX330
at 100MHz). These results improve on previously-reported
ASIC and FPGA-based designs.

1. Introduction

Acquisition of three-dimensional information from im-
ages has important applications in computer vision [1]
(including robotics [2], driver assistance [3] and surveil-
lance [4]). This information can be obtained from stereo
images in the form of dense disparity maps, which require
the reliable establishment of correspondences between the
images [5]. The computational effort of this task typically
precludes achieving real-time performance with general-
purpose processors. This has led to the development of
various dedicated hardware systems [6, 7, 8, 9, 10].

A general approach to the calculation of the correspon-
dences between the two images of a stereoscopic pair is
based on a horizontal scan of the second image to find a
matching position for each pixel of the first image. The
matching pixel is the one whose neighborhood differs the
least from the neighborhood of the pixel in the first image.
Various metrics have been proposed [11], but the one based
on the sum of absolute differences (SAD) of the neighbor-
hood pixels is often chosen for hardware implementations
due to its simplicity.

In the correspondence between stereo images using win-

dows, the size of the neighborhood (size of the correspon-
dence window) has a large influence on the quality of the
matching. If the window is too small, the quantity of neigh-
borhood information used is too small, producing errors of
correspondence in large areas where pixel intensity is con-
stant. On the other hand, if the window is too large, the
quantity of neighborhood information used is too high, pro-
ducing errors in the definition of object boundaries.

Since the quality of the matching depends so strongly on
the correct size of the neighborhood, an adaptive window
size should be used [12]. This approach has led to several
implementations in dedicated hardware [13, 14, 8]. The
more recent one [8] uses an Altera field-programmable gate
array (FPGA) to process 64× 64 pixel grayscale images
well in excess of the target frame rate of 30 fps (frames per
second).

We present a new FPGA-based implementation of the
same general approach, that achieves a frame rate of 25 fps
for grayscale images of 208× 480 pixels (on a Virtex-4
FPGA) and 640× 480 pixels (on a Virtex-5 FPGA). The
algorithm used is a variant of the one employed in Ref. [8].
The 208×480 version has been integrated in a system that
acquires images from two CMOS image sensors and dis-
plays the calculated disparity map on a VGA monitor in
real-time.

The paper is organized as follows. Section 2 describes
the correspondence algorithm used. Details of the hard-
ware implementation are presented in Section 3. A sec-
ond, expanded version of the hardware architecture with
increased parallelism and capable of processing larger im-
ages was also developed, and is presented in Section 4.
Section 5 analyzes the quality of the disparity maps ob-
tained and the amount of resources used. Finally, Section 6
concludes the paper.

2. The Correspondence Algorithm

The system described here extracts three-dimensional
information from images by calculating their disparity
maps using a variant of the algorithm proposed by [8]. This
modification reduces the quantity of neighborhood infor-
mation used, and enables a simplified hardware architec-
ture, with improved resource utilization and reduction of
processing time.

The steps that constitute the modified algorithm are:

1. [Initialization] The algorithm starts with a window of
size w = 8, as in the algorithm proposed by [8], where

it is stated that this value was empirically found to be
the best starting window size. The algorithm divides
the reference image in a grid and the candidate image
in sections. The former constitute the various refer-
ence windows (RW in Figure 1), and the latter are the
candidates considered during the search (CW in Fig-
ure 1).

Referring to Figure 1, the reference window repre-
sents the window (of the reference image) for which a
correspondence is sought, the candidate windows are
situated along a scan-line that covers the entire search
area, and MW is the matching window, i.e., the candi-
date window with lowest SAD score.

Figure 1. Set of reference and candidate windows
(according to [8]). RW represents the reference win-
dow, CW the candidate windows, and MW the match-
ing window with the lowest SAD (one of the CWs).
The search for correspondence is made along the full
scan-line.

2. [Select search area] Select the first section of eight
lines.

This step contains the largest difference between our
algorithm and the version of [8]. While our algorithm
applies the following steps to independent sections of
eight lines, restricting the quantity of neighborhood
information used to one section, the original one ap-
plies them to the entire image.

3. [Find best candidate] Calculate the matching between
the reference window and all the candidates, by apply-
ing equation 1 to the various candidates windows and
selecting the one that provides the lowest value (see
also Figure 1).

j=0

∑
w

i=0

∑
w
|Ir(Ur + i,Vr + j)− Ic(Uc + i,Vc + j)| (1)

The functions Ir(x,y) and Ic(x,y) represent the inten-
sity of pixels at position (x,y) in the reference and
candidate images, respectively. Points (Ur,Vr) and
(Uc,Vc) represent a reference pixel, which is used as
the anchor point for the calculation of disparities be-
tween the reference and candidate images.

4. [Calculate disparity] Determine the disparity between
the reference and the best candidate window from

the previous step. Given the points corresponding
to the best match (xr,yr) in the reference window
and (xm,ym) in the candidate window, the disparity is
given by d = |xr− xm|. (It is assumed throughout that
yr = ym, i.e., the reference and candidate cameras are
vertically aligned.)

Disparity can be interpreted as the inverse of depth:
pixels with larger disparities belong to objects that are
nearer to the cameras.

5. [Shrink window] If w 6= 1, the window size is reduced
by half horizontally and vertically.

The situation of the reference and candidate windows
is shown in Figure 2, where w = 8 and the new win-
dows RW (reference window), CW (candidate win-
dow) and MW (matching window) have an horizon-
tal and vertical size of 4. The refined search for
the matching window is restricted by considering the
neighborhood information of the previous step.

Figure 2 represents the following situation: the search
of correspondence for windows with w/2 is restricted
to the position where the two neighborhoods with
w = 8 have found the best correspondence (regions
represented by shifts of ±d around the MW and CW
windows, where ±d represents all the candidate win-
dows of size 4 inside the matching window of the
neighbors with size 8). In this way, the search is re-
stricted to those 2 regions, because that is the maxi-
mum number of windows with size 8 for each window
with w = 4. This happens because the sections under
consideration have a height of 8 lines, resulting in the
existence of neighbors only on the left and right sides
of each window. However, when w = 2 and w = 1,
the number of neighbors of each window increases to
4 (neighbors on the left, right, above and below), and
so does the amount of neighborhood information.

6. [Iterate] While w 6= 1, repeat from step 3.

7. [Proceed to next section] After calculating the corre-
spondence for all pixels of a section, select the next
one and repeat from step 3. If all sections have been
processed, terminate.

3. System Architecture

The disparity processor implemented for this work is in-
cluded in a system constituted by: a pair of CMOS cameras
used to capture the images; a VGA monitor used to display
the disparity maps and the reference and candidate images;
and an evaluation board with the FPGA used to implement
the processor and to establish the communication with the
peripheral devices (CMOS camera and VGA monitor).

Image capture is done using two OV7620 CMOS cam-
eras from OMNIVISION, which are controlled through an
I2C interface. The evaluation board includes a Virtex-4
LX60 FPGA from Xilinx and all the peripherals used to
communicate with the cameras and monitor. The interface

Figure 2. Set of reference and candidate windows
of size w/2. The candidate windows analyzed at the
lower window size must be inside the four regions that
are within distance d from the position where the best
correspondence for window size w was found.

with the VGA monitor, where the disparity maps are dis-
played, is made through an adapter card that takes care of
all the synchronization necessary to correctly communicate
with the VGA monitor.

3.1. Top-level Modules

The system implemented on FPGA is organized in the
three top modules shown in Figure 3: a) data acquisi-
tion and control; b) SAD tree; c) calculation of correspon-
dences. The last two modules together comprise the unit
for the calculation of disparities. Depth map construction
is done concurrently with image capture, and starts as soon
as sufficient image data is available (one image section as
described in Section 2).

Figure 3. General view of the correspondence pro-
cessor.

The module for data acquisition and control receives the
pixels from the cameras and saves them in memory (shift-
registers and Block-RAMs), controls of the size of the cor-
respondence window and keeps track of its position in the
image. This information allows the other modules to iden-
tify the current phase of the disparity calculation, and to
update the control signals of their state machines accord-
ingly.

The pixel intensity information and the control data con-
cerning the windows being analyzed are sent to the mod-
ule SAD trees, where the SAD metric (equation 1 of
the correspondence algorithm) is applied to the multiple
pairs of reference and candidate windows. Additionally,

this module calculates the disparity associated with each
one of these pairs.

The control data associated with the reference and can-
didate windows, and the associated disparity information
are sent to the module for calculation of correspondences,
which is responsible for defining the search area and for de-
termining the best match amongst the candidate windows.
The disparity for the matching window is stored in internal
memory (in block RAM).

The disparity values calculated for the various windows
are stored in block RAMs, whose depth and width depend
on the associated window sizes. When the disparity values
for all the pixels of a section have been calculated, they can
be sent to the VGA monitor, while at the same time calcu-
lating and storing, in the same block RAMs, the intermedi-
ate disparities (disparities for windows of size 8, 4 and 2) of
the next section. When the disparities for the windows of
size one of the new section start to be calculated, the block
RAMs used to store the disparities of windows of size one
of the previous section are already free (because the dispar-
ities have already been sent to the VGA monitor), and can
be used to store the new values.

Two different clock frequencies are used in the system:
12.5MHz for the acquisition of pixel data from the CMOS
cameras, and for sending the disparity information to the
VGA interface; and 100MHz for the core that processes
the stereo images and determines the disparity information.

For the implementation of these modules various re-
sources available on the FPGA are used: Block-RAM and
shift-registers are employed for the memory structures used
to save the pixels received from the cameras and the dispar-
ity information obtained for each window size; adders are
used for the implementation of the SAD modules; and a
DCM is used to generate the clock signals. A more exten-
sive analysis of each of these units follows.

3.2. Management of Image Data

The image acquisition module uses two types of mem-
ory structures: shift registers for the pixels of the candidate
image, and Block-RAM for the pixels of the reference im-
age. This difference is justified by the different behavior
of the two window types. Reference windows are shifted
at least by eight positions and can, therefore, be efficiently
implemented in Block-RAM. (The precise amount depends
on the quantity of parallelism used: for the implementation
being discussed they are shifted by 16 pixels, because the
correspondence is made for two reference windows simul-
taneously). Candidate windows are shifted by one pixel,
which is harder to implement in Block-RAM, but easily
implemented by shift registers. This is another difference
in comparison with the reference implementation, which
uses shift-registers for both images, resulting in a signifi-
cant increase in the number of logic blocks used.

Although the pixel rate is 12.5MHz for the two image
sources, both memory structures operate at 100MHz, since
the memory units must provide image data at this rate to
the disparity calculation modules.

In order to guarantee that the read and write accesses to

the memory modules are done without collisions, different
approaches are used for the two types of memory struc-
tures, as shown in Figure 4. In this figure the CE and WE
symbols represent the chip enable and write enable signals,
respectively, and the word ”section” always refers to the
section of eight lines mentioned in the algorithm descrip-
tion (Section 2).

(a) Shift-registers access.

(b) Block-RAM access.

Figure 4. Coordinating access to image data.

The memory organization for candidate images uses two
sets of shift registers: one set is used to store the section
of eight image lines being analyzed at the moment, while
another set is used to store the image lines being acquired
at the same time. This is why the number of shift registers
used in the implementation is 16. Figure 4(a) shows that the
odd sections of eight lines are saved in the first eight shift-
registers, and the even sections in the other eight. The depth
of the shift registers is equal to the width of the images.

Figure 4(a) shows that, for write operations, each shift
register is only active every eighth cycle of the 100MHz
clock. Read operations are done on every cycle, so that the
pixels of the new candidate windows are sent to the SAD
tree at the correct rate (100MHz).

For the block-RAM-based reference window, the data
for the section being currently processed and the section
being acquired share the same physical memory, so access
synchronization is more elaborate. As can be seen in Fig-
ure 4(b) each Block-RAM are divided in two halves: one
half is used to save the pixels of the section being analyzed
at each moment and the other half is used to save the pixels
of the section being received. The first half is used to save
the pixels of the odd sections of eight lines and the other
half to save the pixels of the even sections.

Read access is only permitted when no write signal is
active, as shown in Figure 4(b). This is done without de-
laying the calculation of disparities, since the write signal
is only active once every 16 cycles of the 12.5MHz clock.

For each write operation, 16 pixels are committed to one
memory position (Figure 4(b)). Thus, each memory posi-
tion will contain all the pixels of a line of two reference
windows.

The number of single-port block RAMs used for this ap-
proach (parameter n in Figure 4(b)) depends on the amount
of parallelism used in the calculation of correspondences.
In each cycle of the 100MHz clock, a number of pixels
equal to 8× 8× p (where p is the amount of parallelism
supported) must be read from memory. Since the width
of each block RAM is limited and it can only be accessed
one position at a time (two, in the case of a dual port block
RAM), it is necessary to use several block RAMs in paral-
lel, so that a single read access provides the number of pix-
els required to exploit a processing core with parallelism of
order p.

3.3. Calculation of Disparities

The unit responsible for the calculation of disparities
is organized in two levels (see Figure 5). The first level
contains the modules that calculate the SAD values (us-
ing a WPPP architecture with parallel processing of both
reference and candidate windows [8]) and the correspond-
ing disparity. The number n of SAD trees used determines
the amount of parallelism used in the implementation. The
second level determines the search area and calculates the
correspondence for each reference window.

Figure 5. Calculation of disparities.

Figure 6(c) shows the constitution of each SAD tree:
Ri, j and Ci, j represent the intensity of pixel (i, j) from the
reference and candidate windows, respectively; the block
IS j is the element that calculates SADs for windows of
size one (the absolute difference of two pixel values), as
shown in more detail in Figure 6(b); and the rest of the
SAD tree is composed of adders that combine the various
absolute differences according to the window size. The ex-
ample in the figure has an initial window size of four, but
the analysis is valid for any size that is a power of two.

Figure 6(a)(a) represents a general correspondence win-
dow (candidate or reference). Establishing a correspon-
dence between this window and the SAD tree of Figure 6(c)
it can be seen that, for the different sizes of their sub-
windows (w = 2 for sub-windows of size two, w = 1 for
sub-windows of size one) the pixels considered in the cal-
culations correspond to the pixels constituting each sub-
window. This happens because the operations on SAD cal-
culation are only additions and subtractions, allowing their

ordering on the SAD tree. With this, the pixels at each IS j
block are the same independently of the window size.

(a) Correspondence window. (b) Initial state.

(c) SAD tree.

Figure 6. General architecture used for the calculation
of SAD.

This direct connections between memory modules and
SAD units solve one of the major problems of this kind of
implementations, that is, the need for multiplexers between
memory modules and the processing units to allow a cor-
rect analysis of pixels when the window size is reduced.

Due to the block-RAM-based memory access scheme,
disparity values are not obtained at a constant rate, since
the speed of calculation depends on the number of cycles
spent waiting until a read access is granted. In this case,
the various registers keep their values until the pixels of
the new window are read and the calculation is restarted.
However, despite the variable data rate, a frame rate of 25
frames/second can be guaranteed.

The constant frame rate of 25 frames/second is guaran-
teed by the maximum processing time, which can obtained
from the following expression:

Tproc = Tstore +Li +Tcalc +L f , (2)

where:

1. Tproc

is the processing time (in seconds).

2. Tstore = 208×8
12.5×106

is the storage time for the pixels of a new section:
208× 8 is the size of each section and 12.5×106 is
the rate at which the pixels are received (in hertz).

3. Li = 7+8+3
108

is the latency before the calculation. The first seven
cycles of latency are due to the fact that pixels are re-
ceived at a rate of 12.5MHz, and the signal indicating
that all data has been received is only updated seven
cycles of the 100MHz clock after the reception of the
last pixel. The following eight cycles of latency rep-
resent the number of cycles required to store the first
pixel of the new section. The final three cycles of la-
tency are the time required to retrieve data from the
block RAM and to update the synchronization signals
for starting the the calculation of disparities.

4. Tcalc is the time taken by the disparity calculation
(in seconds). Due to the block RAM memory access
scheme this value is variable:

(a)

208× 208
16 ×4+ 208

16 ×1×4
108

is the minimum time necessary for calculating
disparities. 208× 208

16 ×4 is the number of shifts
required to cover the section in question, for
all window sizes; 208

16 × 1× 4 is the minimum
number of clock cycles (100MHz clock) for the
memory access that reads the pixels of a new
window (for a complete section).

(b)

208× 208
16 ×4+ 208

16 ×8×4
108

is the maximum time required for calculating
disparities. 208× 208

16 ×4 is the number of shifts
required to cover the section in question, for all
window sizes; 208

16 ×8×4 is the maximum num-
ber of clock cycles (100MHz clock) that may be
necessary to read the pixels of a new window due
to contention during block RAM access.

5. L f = 4+2
108

is the latency after the beginning of calculation. The
first four cycles of latency come from the delay be-
tween the beginning of the displacement of candidate
windows and the return of the first SAD. The follow-
ing two cycles of latency represents the number of
clock cycles between the return of the first SAD value
and the return of their disparity information (100MHz
clock).

This results in a minimum processing time of 0.242ms
and a maximum of 0.246ms. This processing time, to-
gether with the frame rate restriction of the external hard-
ware (CMOS cameras and VGA monitor) allows, as al-
ready stated, an image processing rate of 25 frames per
second.

4. Expansion of the Architecture

The size of the image processed is highly dependent on
the amount of resources available to implement the archi-
tecture presented in section 3.

There are three units that may limit the size of the im-
ages processed, due to lack of FPGA resources. They are:
the shift-registers used to store the pixels of the candidate
images; the adders used to implement the SAD tree; and
the logic path (number of slices) used to define the search
area. The last two units are fundamental to implement the
parallelism necessary to satisfy the real-time requirements
of the task.

Thus, to increase the image dimensions it is necessary to
have enough resources to: increase the depth of the shift-
registers used to save the pixels from the candidate image;
increase the quantity of parallelism used to calculate the
disparities; and increase the number of block RAMs used
to store the pixels from the reference image and the dispar-
ities calculated for the various window sizes. Although the
block RAMs are a fundamental unit of the correspondence
processor, they do not represent a limitation in the hard-
ware platform used, since their occupation is below 50%,
as can be seen on table 2.

An expansion of the architecture from the previous sec-
tion was implemented in a Virtex-5 LX330. The new
version is capable of handling images of size 640× 480.
The quantity of parallelism necessary to cope with the
larger image size, while keeping the frame rate of 25
frames/second was obtained from the following expression:

TA =
640× 640

Qpar
×4+ 640

Qpar
×8×4

108 =
640×8

12.5×106

where:

1. TA = 640×8
12.5×106

is the storage time for the pixels of one section;

2.
640× 640

Qpar ×4+ 640
Qpar ×8×4

108

is the maximum time for disparity calculation;

3. Qpar is the amount of parallelism, i.e., the width of
pixels analyzed concurrently. For example, with a par-
allelism of 2 windows, the width is 8×2 = 16 pixels.

Therefore, the amount of parallelism that must be sup-
ported is Qpar = 40.5. This corresponds to 40.5

8 = 5.06→ 6
windows analyzed in parallel.

Although a minimum of six windows is required, the
expanded architecture parallel uses eight. The reason is
that six is not a divisor of 640, so it would be necessary to
introduce additional circuitry to control the displacement of
the reference windows, making the implementation more
complicated.

Although the expanded architecture has been validated
for images with 640×480 pixels, it is able to process 1016-
pixel wide images. Only the depth of the shift-registers and
block RAMs needs to be increased appropriately (which is
feasible for the Virtex-5 LX330).

5. Results

5.1. Disparity maps

Using a simplified version of the reference algorithm, as
discussed in section 2, does not result in a serious impact
on the disparity map obtained. The confirmation of this re-
sult was done by comparing each pixel of the disparity map
obtained by the reference algorithm with the corresponding
pixel of the disparity map obtained by the simplified algo-
rithm. This evaluation was made using images from the
database presented in [15].

For both processors, the one implemented in the Virtex-
4 LX60 and the one implemented in Virtex-5 LX330, it
was necessary to cut the images available to the size pro-
cessed by each implementation. Since the images of the
database are in color, we converted the original images
from the PNG (Portable Network Graphics) format to the
PGM (portable gray map) format, which is easier to use.

We compared the results of our implementation of the
reference algorithm in Matlab with the outputs of the Ver-
ilog description of the matching processor as executed on
the Modelsim simulator. The disparity maps obtained from
the Verilog version were compared pixel by pixel with the
disparity maps produced by the Matlab version.

Results are shown in Figure 7 and in Table 1. The com-
parison does not include those pixels of the right region of
the reference image that are not presented in the candidate
image, since they do not have “correct” disparity values
in either case (since no corresponding object actually ex-
ists). Although the test was done for the Virtex-4 LX60
and Virtex-5 LX330 implementations, only the results for
the Virtex-4 LX60 study are shown, since the others are
similar.

Table 1. Mean of the absolute differences of dispari-
ties.

Mean (pixel distance)

Test image 1 3.201
Test image 2 2.49
Test image 3 1.343
Test image 4 1.16

Figure 7. Relative difference of disparities for test im-
age 4. The results for other images are similar.

Table 1 shows that for four different images the mean

absolute difference of disparities is very low, with a maxi-
mum value of three. “Pixel distance” is the difference of
pixel position determined by the implemented algorithm
and the one found by the original algorithm.

For most pixels (≥90%) the absolute difference of dis-
parities is less or equal to seven. Figure 7 represents the
relative error (difference between hardware disparity and
reference disparity as obtained by the original algorithm,
divided by the reference disparity) for test image 4. The
axes of Figure 7 labeled ”vertical position” and ”horizon-
tal position” represent the vertical and horizontal position
of each pixel. Similar results were obtained for all other
tests. Figure 7 shows that the ratio is always near to zero,
except for some sporadic peaks (the major one reaches a
value of 2.3), which are due to occlusion. Because of that
phenomenon, the disparity values for those regions are con-
siderably different in both versions, since they react differ-
ently in this case.

The occlusion phenomenon mentioned in the previous
paragraph occurs because of two reasons: some objects are
not represented in the candidate image, since they are oc-
cluded by an object closer to the cameras; objects located at
the right limit of the reference window are not represented
in the candidate image.

5.2. Resource Utilization

Table 2 summarizes the utilization of FPGA resources
for the two versions of the image matching processor.
Comparison of the slice utilization in the two processors
cannot be made directly, since slices in the Virtex-4 ar-
chitecture (two flip-flops and two 4-input look-up tables)
are different from slices in the Virtex-5 architecture (four
flip-flops and four 6-input look-up tables). The high-level
synthesis process was oriented towards maximizing clock
frequency at the expense of FPGA occupation.

Table 2. Resource utilization for baseline and ex-
panded processors.

Resources Utilization (number) Utilization (%)

Virtex-4 LX60 (208×480 pixels)

Slices 20101 75
Block-RAM 64 40

Virtex-5 LX330 (640×480 pixels)

Slices 50340 24
Block-RAM 168 58

Analyzing the occupation of the Virtex-4 LX60, the high
utilization of slices is mainly due to the shift registers used
for storage of two sections of 208× 8 pixels of the candi-
date image, and to the quantity of parallelism used in the
calculation of the disparities. The quantity of block RAM
used is due to the storage of the reference image and the
disparity values at each window size (for windows of size
one, two, four and eight).

For the larger implementation on the Virtex-5 LX330,

the number of slices used is determined by the shift regis-
ters, but also by the amount of parallelism used in this im-
plementation, which is 4 times higher than the implemen-
tation on the Virtex-4 LX60. The number of block RAMs
increases greatly for the same reason. This happens be-
cause the only way to increase the quantity of information
that is available at each instant is to instantiate more block
RAMs.

We can be concluded that the resource utilization de-
pends on the size of the images analyzed and on the
frame rate required. Images with larges dimensions re-
quire deeper shift-registers, in order to store the sections of
eight lines of the candidate image. Relatively to the frame
rate, higher frame rates require higher parallelism, which
implies: the use of more block RAMs, needed to save all
the reference windows analyzed at each instant; and the in-
crease of slice utilization to implement the SAD and all the
logic necessary to achieve the required parallelism.

The comparison between the implemented processor
and the reference implementation, relatively to resources
utilization, needs to be done carefully, since the types of
FPGA used are different. However, the reference imple-
mentation [8] presents higher resource utilization, since it
uses 42,508 logic elements of an APEX20KE from Altera
(each consisting of a 4-input look-up table and one flip-
flop), while the smaller of our implementations uses 19,978
slices of a Virtex-4 (two 4-input look-up tables and two
flip-flops), for a total of 31,880 look-up tables and 16,951
flip-flops).

The lower resource usage of the proposed architecture is
due mainly to the reduction of neighborhood information
processed, and to the use of block RAM for storing the
pixels of the reference image (instead of shift-registers).

5.3. Comparison with Other Approaches

This subsection presents a comparison between the im-
plementation described in this paper with previously re-
ported results, relatively to the dimensions of the images
analyzed and the velocity of the processor. Table 3 sum-
marizes the data. Column “time” represents the time spent
to process one frame. For both implementations proposed
in this paper, the one on Virtex-4 (Impl. 1 (V4)) and the
one on Virtex-5 (Impl. 2 (V5)), the processing time is
40ms, since both have a frame rate of 25 frames per second
(1

25 = 40ms). Both are faster than the previously reported
ASIC implementations [13, 14], but support a smaller max-
imum window size. Comparing with the FPGA implemen-
tation of Ref. [8], our implementations are able to process
much larger images, while still satisfying real-time require-
ments.

6. Conclusion

This paper describes a hardware architecture for the cal-
culation of dense depth maps from a pair of stereo images.
The architecture is based on a modification of a previously
reported variable-window-size method. Empirical tests in-
dicate that the simplification introduced does not degrade

Table 3. Comparison between the proposed implementations and previous systems reported in the literature.

System Image size Max. window size Freq. (MHz) Time (ms)

Ref.[13] 512×512 25×25 200 60
Ref.[14] 320×240 15×15 125 100
Ref.[8] 64×64 8×8 86 0.19

Impl. 1 (V4) 208×480 8×8 100 MHz 40
Impl. 2 (V5) 640×480 8×8 100 MHz 40

The first two systems are implemented with CMOS ASICs: 0.5µm and 0.18µm technologies, respectively.
Implementation [8] uses an FPGA from Altera (APEX20KE). The last two lines summarize the implementations
described in this paper. All systems process 8-bit grayscale images.

the quality of the resulting depth maps. The proposed ar-
chitecture admits implementations with a variable degree
of parallelism, depending on the resources available. The
architecture exploits the resources of modern platform FP-
GAs. In particular, the management of image data uses
different memory resources for the reference and the can-
didate image, in order to take advantage of the different
access patterns.

Two versions of the architecture with different resource
requirements were implemented. Both produce dense
depth maps in real-time (25 maps per second). The smaller
implementations targets a Virtex-4 LX40 device and han-
dles 208× 480 images, while the larger one may use a
Virtex-5 LV330 device (less than 60% of resource occu-
pation) and handles 640× 480 images. Additionally both
are capable of finding a maximum disparity of 255.

Relatively to the velocity of the processor and the di-
mension of the images analyzed, the new implementations
are faster than the previously reported ASIC implemen-
tations [13, 14], but support a smaller maximum window
size. They are able to process much larger images than
the FPGA implementation of Ref. [8], while still satisfying
real-time requirements, as presented in Table 3.

References

[1] M. Z. Brown, D. Burschka and G. D. Hager, Advances in
computational stereo, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol.25, no.8, pp. 993-1008, Aug.
2003.

[2] D. Murray and J.J. Little, Using Real-Time Stereo Vision for
Mobile Robot Navigation, Autonomous Robots, vol. 8, Abr.
2000, pp. 161-171.

[3] U. Franke and S. Heinrich, Fast obstacle detection for ur-
ban traffic situations, IEEE Transactions on Intelligent Trans-
portation Systems, vol.3, no.3 (2002), pp. 173-181, 2002.

[4] J. M. Manendez. L. Salgado, E. Rendon and N. Garcia, Mo-
torway surveillance through stereo computer vision, IEEE
33rd Annual 1999 International Carnahan Conference on Se-
curity Technology, pp.197-202, 1999.

[5] D. Scharstein and R. Szeliski, A Taxonomy and Evaluation
of Dense Two-Frame Stereo Correspondence Algorithms, In-
ternational Journal of Computer Vision, vol. 47, Abr. 2002,
pp. 7-42.

[6] M. Kuhn, S. Moser, O. Isler, F. Gurkaynak, A. Burg, N.
Felber, H. Kaeslin and W. Fichtner, Efficient ASIC imple-
mentation of a real-time depth mapping stereo vision sys-

tem, Proceedings IEEE International Symposium on Micro-
NanoMechatronics and Human Science,vol. 3, 2003, pp.
1478-1481.

[7] J. Woodfill, G. Gordon and R. Buck, Tyzx DeepSea High
Speed Stereo Vision System, Computer Vision and Pattern
Recognition Workshop CVPRW ’04, 2004, p. 41.

[8] M. Hariyama and Y. Kobayashi and H. Sasaki and M.
Kameyama , FPGA implementation of a stereo matching pro-
cessor based on window-parallel-and-pixel-parallel architec-
ture, IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E88-A (2005) 3516–3522.

[9] S. Lee, J. Yi and J. Kim, Real-Time Stereo Vision on a Re-
configurable System, Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, 2005, pp. 299-307.

[10] L. Mingxiang and J. Yunde, Stereo Vision System on
Programmable Chip (SVSoC) for Small Robot Navigation,
IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2006, pp. 1359-1365.

[11] R. Porter and N. Bergmann, A generic implementation
framework for FPGA based stereo matching, Proceedings of
the IEEE Region 10 Annual Conference on Speech and Image
Technologies for Computing and Telecommunications, vol. 2,
1997, pp. 461-464.

[12] T. Kanade and M. Okutomi, A stereo matching algorithm
with an adaptive window: theory and experiment, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, 1994, pp. 920-932.

[13] M. Hariyama, T. Takeuchi and M. Kameyama, VLSI proces-
sor for reliable stereo matching based on adaptive window-
size selection, Proceedings IEEE International Conference
on Robotics and Automation, vol. 2, 2001, pp. 1168-1173.

[14] M. Hariyama and M. Kameyama, VLSI processor for re-
liable stereo matching based on window-parallel logic-in-
memory architecture, Digest of Technical Papers Symposium
on VLSI Circuits, 2004, pp. 166-169.

[15] D. Scharstein and R. Szeliski, Middlebury Stereo Vi-
sion, June 2009, http://vision.middlebury.edu/
stereo/data/

