
Chapter 20
A Dynamic Programming Approach for
Integrating Dynamic Pricing and Capacity
Decisions in a Rental Context

Beatriz B. Oliveira, Maria Antónia Carravilla and José Fernando Oliveira

Abstract Car rental companies have the ability and potential to integrate their
dynamic pricing decisions with their capacity decisions. Pricing has a significant
impact on demand, while capacity, which translates fleet size, acquisition planning
and fleet deployment throughout the network, can be used tomeet this price-sensitive
demand. Dynamic programming has been often used to tackle dynamic pricing prob-
lems and also to deal with similar integrated problems, yet with some significant dif-
ferences as far as the inventory depletion and replenishment are considered. The goal
of this work is to understand what makes the car rental problem different and hinders
the application ofmore commonmethods. To do so, a discrete dynamic programming
framework is proposed, with two different approaches to calculate the optimal-value
function: one based on aMixed Integer Non Linear Program (MINLP) and one based
on a Constraint Programming (CP) model. These two approaches are analyzed and
relevant insights are derived regarding the (in)ability of discrete dynamic program-
ming to effectively tackle this problem within a rental context when realistically
sized instances are considered.

Keywords Car rental · Dynamic programming · Dynamic pricing · Fleet
deployment · Optimization model · Constraint programming

20.1 Introduction

This work deals with the integration of dynamic pricing decisions with resource
capacity, deployment and consumption decisions within the car rental context. The
goal is to decide, for the time horizon of a specific selling season:

B. B. Oliveira (B) · M. A. Carravilla · J. F. Oliveira
INESC TEC and Faculty of Engineering, University of Porto, Porto, Portugal
e-mail: beatriz.oliveira@fe.up.pt

M. A. Carravilla
e-mail: mac@fe.up.pt

J. F. Oliveira
e-mail: jfo@fe.up.pt

© Springer International Publishing AG 2018
A. I. F. Vaz et al. (eds.), Operational Research, Springer Proceedings
in Mathematics & Statistics 223, https://doi.org/10.1007/978-3-319-71583-4_20

297

298 B. B. Oliveira et al.

• How many cars to have in the fleet,
• When to acquire them,
• How to deploy them among rental stations throughout the time horizon,
• How to assign them to rentals (that start and end throughout the time horizon and
rental stations),

• How to price these rentals.

Car rental companies face a significantly price-sensitive demand. Since online sale
channels have allowed companies to change their prices virtually instantaneously
and with no cost, dynamic pricing is becoming a critical demand-management tool,
not only in this sector but also in airlines, hotels and other businesses that rely on
revenue management techniques (including pricing) to seize price-sensitivity and
other demand segmentation characteristics.

In car rental, unlike the above-mentioned (more traditionally studied) sectors, the
fleet is highly flexible and mobile, since the vehicles (resources) are easy(ier) to
transfer, deploy and acquire. However, there is a myriad of products—the rentals—
that share the same fleet capacity. The rentals are broadly characterized by their
start and end date and location. Other elements (such as vehicle group required, for
example) may characterize a type of rental. Nonetheless, for the sake of simplicity
and clarity, throughout this work the fleet is assumed to be homogeneous and the
pricing decisions, made for each rental type on its broader definition, can be consid-
ered as “reference prices” to which others are indexed (e.g. variations according to
antecedence of purchase or extra conditions required). For a more detailed review
on car rental fleet and revenue management works, the reader may refer to [5].

Recently, some interesting works have been dealing with the integration of
dynamic pricing with capacity and inventory decisions [1, 7]. This integration has
been becoming relevant for companies that can change and update their pricing poli-
cies and inventory and capacity decisions in an increasingly easier way, due to the
improvement of the above-mentioned technological systems. The methodological
approach applied often involves dynamic programming due to its affinity with the
problem. Also, for the stochastic problem, other non-parametric approaches such
as robust optimization have been developed. For a thorough and relevant review
regarding dynamic pricing, especially when learning processes regarding demand
are considered, the reader should refer to [2].

The work herein presented aims to tackle a similar problem, which differs on the
type of capacity/inventory decisions made. In previously studied cases, the capac-
ity/inventory was decided and considered to be available at the start of the horizon
(or at multiple points throughout the horizon, through multiple capacity decisions)
and then depleted by the demand until the end of the horizon. In the car rental (actu-
ally any rental) context, the capacity is not only affected by these decisions but also
by “returning” (re-usable) resources. That is to say, the resource is not depleted by
demand but only temporarily occupied and it will become available capacity again,
possibly at a different location. This difference has a significant impact on the struc-
ture of the problem and motivated the research presented in this paper.

20 A Dynamic Programming Approach for Integrating … 299

The goal of this work is to study the possibility to develop a solution method
based on one of the most applied methodologies in the similar problem presented
above—dynamic programming—and understand its advantages, limitations and
drawbacks in this context. Besides its common application within the dynamic pric-
ing and revenue management setting, dynamic programming has also been used on
works that deal with car rental operational and fleet management problems, such as
fleet size and deployment [4].

In this work, a general discrete dynamic programming framework is developed
as well as two approaches to calculate the value of the decisions at each stage and
state, which are presented in Sect. 20.2. Then, in Sect. 20.3, some illustrative numeric
examples are used to analyze the limitations and advantages of the method. Finally,
in Sect. 20.4, some conclusions are drawn.

20.2 Discrete Dynamic Programming Formulation

One important characteristic of this problem is that most decisions are intrinsically
integer, such as the number of vehicles to acquire and deploy or the number of fulfilled
rentals. Due to the detail considered for rental types, which aggregate rentals that start
and end at specific locations and times, the order of magnitude of these decisions
is relatively small and an approximate result obtained by relaxing the integrality
constraints might be significantly impaired. Therefore, a discrete formulation was
developed.

Dynamic programming provides a general framework to solve different problems,
where a multistage structure is latent and can be used to decompose a complex
problem into simpler sub-problems. Within this context, a stage represents a point
where decisions are made. The goal is to formulate the problem so that at any stage
the only information needed to make decisions is summarized on one or more state
variables. The state at a specific stage is fully defined (on the deterministic case
herein considered) by the state and decisions of the previous state, translated on a
state transition function. At each stage, an optimal-value function can be defined,
dependent on the current state and on the decisions made. Dynamic programming is
then based on the recursive computation of the optimal-value function [3].

In this section, the stages, state variables and spaces, and transition functions will
be defined. Also, two approaches to calculate the optimal-value function will be
presented.

The notation for indexes and sets used throughout this paper is as follows:

n Index for stage;
e Index for state;
r Index for type of rental;
s, c Indexes for rental station;
p Index for price level;
E n Set of states possible to achieve in stage n;

300 B. B. Oliveira et al.

S Set of rental stations;
R Set of types of rental;
Rstart

n Set of types of rentals that start at stage n;
Rstart

n,s Set of types rentals that start at station s at stage n;
P Set of possible price levels.

Also, the following parameters will be considered:

T Number of time periods on the time horizon;
HCn Holding cost for the fleet of vehicles existent at stage n (cost per vehicle);
T Tsc Empty transfer time between station s ∈ S and station c ∈ S ;
TCscn Cost of initiating an empty transfer from station s ∈ S to station c ∈ S at

stage n (cost per vehicle);
DEMr (qr) Demand for type of rental r ∈ R, dependent on the price qr that is

charged for this type of rental;
DEMrp Demand for type of rental r ∈ R if price level p ∈ P is charged for this

type of rental (alternative notation);
PRIp Monetary value associated with price level p ∈ P .

20.2.1 Stages

In the car rental context, the start and end dates that characterize the rental types can
be aggregated in e.g. weeks. The same unit can be used for the capacity decisions
due to the flexibility of some vehicle acquisition modes, such as leasing. These time
units mark the decision points throughout the time horizon and are themost notorious
element that contributes to the multistage structure of the problem.

The computation will follow the backward induction method, as it will start at
the last time period and end at the first. That is to say, the calculation will start at
n = 0, where n defines the number of stages missing to end the time period, and end
at n = T .

The decisions made at each stage n are represented by the following variables:

unr Number of rentals of type r ∈ Rstart
n fulfilled at stage n;

qn
r Price charged for rentals of type r ∈ Rstart

n ;
wn
s Number of vehicles acquired to be available in rental station s ∈ S at stage n;

ynsc Number of vehicles to deploy from station s ∈ S to station c ∈ S by an empty
transfer that starts at stage n.

20.2.2 State Variables, Transition Function and State Spaces

At any stage, the state variables should provide all the information required to make
the previously mentioned decisions. Dynamic formulations for inventory problems

20 A Dynamic Programming Approach for Integrating … 301

and integrated pricing and capacity problems use the stock or inventory available at
each stage as the state variables.

In this case, in order to decide on number of rentals fulfilled (u-type decision),
two types of information are required: the amount of demand for this type of rental,
which is solely dependent on the pricing decision made at the same stage, and the
stock of vehicles of each rental type available at the starting station, which depends
on decisions from previous periods and should thus be summarized on the state
variables.

At each station s ∈ S and stage n, this stock depends on the previous stock,
the vehicles that leave the station (either occupied by rentals or transfers) and the
vehicles that arrive (either at the end of rentals or transfers or by their acquisition)
and can be computed by the following equation:

stockns = stockn+1
s − rentals that leavens − transfers that leavens

+ rentals that arrivens + transfers that arrivens + vehicles aquiredns (20.1)

As previously discussed, since the state variables fully define the state, the transi-
tion function should only depend on the previous state. However, since the rentals and
empty transfers may last for more than one time period, Eq.20.1 requires information
from stages other than the immediately subsequent.

Therefore, an artifact was developed and a second type of state variable introduced
to represent the capacity occupied by current rentals or transfers that will be available
in a later period. Figures20.1 and 20.2 present an example to better explain these
variables. As exemplified with the solid arrow, if there is a rental type that starts in
t = 1 (station B) and ends in t = 3 (station A), the arrival of these rentals will affect
the stock of vehicles available at stationA in t = 3 (Fig. 20.1). However, this decision
occurs on a stage other than the immediately consequent. With an additional stock
variable, it is possible to memorize, for any stage, how many vehicles are currently
occupied and will be available in a certain station in a certain number of time periods.
In the example presented, as shown by the dashed arrows in Fig. 20.2, in t = 2, rentals
of this typewill increase the stock of vehicles currently occupied thatwill be available
in station A in the next period. Then, in t = 3, the stock in station Awill be increased
by these units.

t = 1 (n =
3)

t = 2 (n =
2)

t = 3 (n =
1)

End of
horizon
(n= 0)

Station A

Station B

Fig. 20.1 Space-time network of an explanatory example, with 2 rental stations and 3 time periods.
The arrow represents a rental type that starts in station B in t = 1 and ends in station A in t = 3

302 B. B. Oliveira et al.

Fig. 20.2 Space-time
network of Fig. 20.1,
extended to include the
representation of the
additional state variables.
The solid arrow is now
decomposed in two dashed
arrows using the additional
state variable so that the state
transition depends solely on
the previous period

. . .

t = 1 (n =
3)

t = 2 (n =
2)

t = 3 (n =
1)

End of
horizon
(n= 0)

Station A

Station B

Station A in t ′ =
t+(m= 0)+1

Station B in t ′ =
t+(m= 0)+1

Stations in t ′ = t+
m+1

For each stage, the state variables can thus be defined as:

xns Number of vehicles available in station s ∈ S (stock), at stage n;
onsm Number of vehicles that are currently occupied and will be available in station

s ∈ S , at stage n + m + 1.

Thus, at each stage n, the state transition function tn takes the following form:

staten−1 = tn(unr , q
n
r ,w

n
s , y

n
sc, state

n) (20.2)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn−1
s = xns −

∑

r∈Rstart
s,n

unr −
∑

c∈S
ynsc + ons0 + wn

s , ∀s ∈ S

on−1
sm = ons,m+1 +

∑

r∈Rstart
n ∩Rend

n+m+1,s

unr +
∑

c:c∈S ,T Tcs=m+2

yncs,

∀s ∈ S ,m = {0, . . . , n − 2}

State Space:
As for the state space, it was assumed that at the beginning of the time horizon
(n = T), the state variables will be null (meaning that there are no vehicles occupied
or in stock). For the remaining stages, an upper bound XMAX must be defined for
the x-type stock variables and another OMAX for the o-type occupation variables.
Each state is a combination of the possible values of these state variables. Therefore,
the following equation defines the number of possible states NS, per stage n < T :

NS = max[1, (OMAX + 1)|S |(n−1)] × (XMAX + 1)|S | (20.3)

Therefore, there are NS × |S | x-type state variables per stage n and NS ×
|S |(n − 1) o-type state variables per stage n > 1.

20 A Dynamic Programming Approach for Integrating … 303

20.2.3 Optimal-Value Calculation

At each stage n and state sn , the maximum possible return over the n missing stages
is given by the optimal-value function vn . As previously discussed, this function vn
is defined recursively, based on the return f of this stage, which depends on the
current decisions and state, and on the optimal-value function of the previous stage.
Since the overall goal is to optimize the profit, the recursive optimization problem is
broadly given by:

vn(staten) = max
{
f n(unr , q

n
r ,w

n
s , y

n
sc, state

n) + vn−1
(
tn(unr , q

n
r ,w

n
s , y

n
sc, state

n)
)}

s.t. Constraints on decisions
(20.4)

The return function f , in this case the profit obtained, is given by the difference
between the revenue obtained from the price charged for each of the fulfilled rentals
and the costs of holding the fleet of vehicles existent at this stage and the cost of
initiating empty transfers:

f n =
∑

r∈Rstart
n

unr × qn
r − zn × HCn −

∑

s∈S

∑

c∈S
ynsc × TCscn (20.5)

The auxiliary decision variable z summarizes the total fleet and is defined, at each
stage, by the sum of the vehicles acquired (decision variable), the vehicles in stock
(state variable) and the vehicles occupied on rentals or transfers (state variable):

zn =
∑

s∈S

(

wn
s + xns +

n−1∑

m=0

onsm

)

(20.6)

The constraints on decisions are as follows:

• The price-dependent demand (DEMr (qr)) is an upper bound on the number of
rentals that can be fulfilled:

unr ≤ DEMr (qr), ∀r ∈ Rstart
n (20.7)

• The overall capacity in a station limits the rentals fulfilled and the empty transfers
leaving the station:

∑

r∈Rstart
n,s

unr +
∑

c∈S
ynsc ≤ xns + wn

s , ∀s ∈ S (20.8)

• Also, an auxiliary constraint ensures that no empty transfers start and end in the
same station:

yss = 0, ∀s ∈ S (20.9)

304 B. B. Oliveira et al.

• All decisions should lead to integer values.
• Additionally, the resulting state must be possible to achieve (i.e. be defined).

Two relevant characteristics of this optimization problem are the integrality of
the decision variables and the non-linearity of the objective function. Therefore, two
adequate optimization models and consequent resolution strategies were applied: a
Mixed Integer Non Linear Program (MINLP) and a Constraint Programming (CP)
model.

For each stage and state, the MINLP model proposed is a straightforward adap-
tation of the optimization problem summarized in (20.4) and (20.5). The main dif-
ference is related with the price decision variable q that is transformed into a binary
variable qrp that indicates whether or not a specific price level p from a previously
defined setP , which is associated with a monetary value PRIp, is chosen for rental
type r . This causes minor adaptations in the objective function and on the demand
constraint (20.7). Also, binary variables ste are added, to indicate whether or not the
state achieved on the consequent stage from the decisionsmadewill be state e ∈ E n−1

or not. This requires additional constraints to associate the binary variables with the
consequent states and to ensure that at least one possible state is achieved. The model
is thus as follows1:

max f n + vn−1 =
⎡

⎢
⎣

∑

r∈Rstart
n

unr ×
∑

p∈P

(
qnrp × PRIp

)
− zn × HCn −

∑

s∈S

∑

c∈S
ynsc × TCscn

⎤

⎥
⎦

+
⎡

⎣
∑

e∈E n−1

ste × vn−1(ste)

⎤

⎦

s.t. (20.6), (20.8), (20.9)

unr ≤ DEMrp + M(1 − qrp), ∀r ∈ Rstart
n , p ∈ P

[xn−1
s]tn ≤ [xn−1

s]e + M(1 − ste), ∀e ∈ E n−1, s ∈ S

[xn−1
s]tn ≥ [xn−1

s]e − M(1 − ste), ∀e ∈ E n−1, s ∈ S

[on−1
sm]tn ≤ [on−1

sm]e + M(1 − ste), ∀e ∈ E n−1, s ∈ S ,m ∈ {0, ..., n − 2}
[on−1
sm]tn ≥ [on−1

sm]e − M(1 − ste), ∀e ∈ E n−1, s ∈ S ,m ∈ {0, ..., n − 2}
∑

e∈E n−1

ste ≥ 1

unr ∈ Z +
0 ,∀r ∈ Rstart

n ; zn ∈ Z +
0 ; ynsc ∈ Z +

0 , ∀s, c ∈ S

qnrp ∈ {0, 1},∀r ∈ Rstart
n , p ∈ P; ste ∈ {0, 1},∀e ∈ E n−1 (20.10)

The second approach is based on Constraint Programming (CP), which aims to
solve combinatorial problems by combining search and constraint solving, following

1The symbol [state]tn indicates that the state expression was calculated based on the transition
function and thus involves decision variables, while the symbol [state]e refers to an input/parameter:
the state variables associated with state e.

20 A Dynamic Programming Approach for Integrating … 305

the basis of logic programming [6]. This modeling and solving approach is suitable
for integer, finite domain decision variables that are related by a set of constraints.Due
to the characteristics of its associated search procedures, non-linearity presents no
issue for CP models. Also, logic constraints such as “if-then-else” and implication
statements can be implemented, which simplifies the model when compared with
(20.10). For the sake of comparison between approaches, the price decision variable
also refers to price levels, yet in this case it indicates directly the level, instead of
having a binary variable per level. A similar reasoning is applied to the decision
variable indicating the consequent state. The variable domains were considered as
follows:

ur = {0, . . . , DUBs:startr }, ∀r ∈ Rstart
n

qr ∈ P, ∀r ∈ Rstart
n

ws = {0, . . . , DUBs}, ∀s ∈ S
ysc = {0, . . . , xns }, ∀s, c ∈ S
z = {0, . . . ,∑s∈S DUBs}
st ∈ E n−1, ∀e ∈ E n−1

The demand upperbound per station DUBs was calculated by:

DUBs =
∑

r∈Rstart
n,s

(
max
p∈P

DEMrp

)
(20.11)

The CP model is then similar to the previous one:

max f n + vn−1 =
⎡

⎣
∑

r∈Rstart
n

unr × qnr × PRIp − zn × HCn −
∑

s∈S

∑

c∈S
ynsc × TCscn

⎤

⎦ +
[
vn−1(st)

]

s.t. (20.6), (20.8), (20.9)

unr ≤ DEMrqr , ∀r ∈ Rstart
n

[xn−1
s]tn = [xn−1

s]e ⇒ st = e, ∀e ∈ E n−1, s ∈ S

[on−1
sm]tn = [on−1

sm]e ⇒ st = e, ∀e ∈ E n−1, s ∈ S ,m ∈ {0, . . . , n − 2} (20.12)

Base Case:
To start the recursive calculation, it is important to define the base case for n = 0.
Since in this problem it represents the end of the horizon, when no more rentals or
vehicles are considered, it was assumed that v0 = 0.

306 B. B. Oliveira et al.

20.3 Illustrative Numeric Examples

Scope

The goal of this section is to provide some numerical examples that illustrate the
drawbacks and limitations of this method in order to support the discussion on its
adequacy. The main characteristics of the problem that influence will be identified
to understand the potential and limits of its application.

From the discussion on the number of states and state variables, it was possible to
verify that four main characteristics of the problem could significantly influence the
effectiveness of the method proposed: the upper bound on the number of vehicles in
stock in each station XMAX , the upper bound on the number of vehicles currently
occupied to be available in a specific future period of time and station OMAX , the
number of stations S and the number of time periods (i.e. stages).

From Eq. (20.3) it is possible to observe that the number of states in a stage easily
explodes. Therefore, as an example, considering two rental stations and three periods
of time: for XMAX = 10 and OMAX = 5,2 the maximum number of states in a
stage goes above 4.300, which leads to more than 17.000 state variables. If these
numbers are doubled (XMAX = 20, OMAX = 10), the number of states becomes
bigger than 53.000, with over 213.000 state variables.

The main issue is that this makes the effectiveness of the model highly dependent
on two characteristics that are not intrinsic to the problem (although the maximum
stock could have a clear parallel with the number of parking spaces available), and
indirectly on the scale of the problem.

Data

Instances:
These numeric experiments are based on three cases that were adapted from instances
provided for the Capacity-Pricing Problem in car rental,3 which present a “photo-
graph” of the rental system at a certain time, showing the demand for each type of
rental, aswell as the remaining parameters. The instances chosenwere the oneswhere
the number of rental types was (i) the smallest, (ii) the biggest and (iii) the median
value. It is important to analyze how the approach performs varying this indicator
since the number of rentals is one of the most relevant drivers of complexity to solve
each sub-problem and, at the same time, it has virtually no impact on the number of
states and stages, i.e. on the number of sub-problems to solve.

Experiment Environment:
The algorithms and MINLP and CP models were developed in C++/IBM ILOG
Concert Technology and were run on a workstation computer with 48 Gigabyte of
RAM memory, with 2 CPUs (Intel(R) Xeon(R) X5690 @ 3.46 GHz), with a 64-bit

2It is reasonable to assume that OMAX ≤ XMAX .
3Capacity-Pricing Model: car rental instances, 2017, available at doi:http://dx.doi.org/10.17632/
g49smv7nh8.1.

http://dx.doi.org/10.17632/g49smv7nh8.1
http://dx.doi.org/10.17632/g49smv7nh8.1

20 A Dynamic Programming Approach for Integrating … 307

Operating System. The MINLP Solver used was CPLEX 12.6.1 and the CP solver
used was CPLEX CP Optimizer 12.6.1.

Due to the number of stages and states, a time limit was set for calculating the
optimal-value function. This makes it possible that the value obtained is not the
optimum, yet it was considered as a mandatory control of the overall run time, since
the MINLP or CP solver could experience difficulties in finding the optimum value
or proving its optimality. The time limit chosen was 3s. Preliminary experiments
indicated that within this limit both solvers would often reach and prove the optimal
result and that increasing it to 5 or 10s would not significantly impact the results
obtained. Nevertheless, it was considered that the possibility of no solution being
found for a few specific stages and states was significant and impactful and therefore
a “back-up” mechanism was developed so that in this case the time limit was slightly
increased. Moreover, in the last stage (corresponding to the first time period), since
only one state is possible, the time limit for its calculation was increased to 60s in
order to improve the probability of achieving and proving the optimum.

Results and Discussion

Figure20.3 presents the best value obtained for each instance, with different combi-
nations of the parameters XMAX and OMAX . These numeric examples illustrate
the potential and limitations of the approach proposed since they represent small
configurations of the problem and already embody significant insights.

Firstly, if one compares the overall values obtained by both approaches, the one
that uses the Constraint Programming model to calculate the optimal-value function
(henceforward referred to as “CP approach” for the sake of brevity) obtains better

CP

MINLP

819

451

767

443

593

563

Best value obtained

XMAX/OMAX : 10/5 8/4 5/3

(a) Smallest instance (| | =
428)

480

216

501

216

495

441

Best value obtained

(b) Median instance (| | =
865)

456

488

596

432

354

270

Best value obtained

(c) Largest instance (| | =
2369)

Fig. 20.3 Best profit values obtained by each approach, for each instance, with different combina-
tions of XMAX/OMAX parameters

308 B. B. Oliveira et al.

results than the one that uses the Mixed Integer Non Linear Program (“MINLP
approach”), especially for smaller instances.4

An interesting analysis can bemade regarding the effect of the parameters XMAX
and OMAX (directly connected with the number of states). It could be expected that
an increase of these parameterswould lead to higher values being obtained, since they
represent a constraint on the “original problem” and their increase can be compared
to a gradual relaxation of this constraint. Nevertheless, for the MINLP approach,
this only happens for the biggest instance. In the remaining instances, increasing
these parameters leads to a lower value. This might be explained by the effect of
the time limitation imposed to each sub-problem. Due to this limit, the solver may
not reach the optimum solution. Increasing the parameters makes the problem more
complex to solve and thusmakes the optimummore difficult to achieve. In fact, when
the parameters are increased, the number of states increases and the sub-problems
(which have decision variables and constraints dependent on the number of states)
get more complex to solve.

As for the CP approach, a similar tendency is not as visible and it becomes difficult
to draw conclusions regarding the relative strength of each of the two contradictory
effects of increasing the parameters XMAX and OMAX : (1) the “original problem”
is more relaxed and thus better solutions could be achieved, and (2) the problems
become more complex and, due to the time limit, the optimum value is more difficult
to achieve.

From this analysis rises an interest in observing the actual run times to understand
if the hypothesis related with the optimum being reached more easily is supported.
Two bounds on expected time to solve can be drawn. The first is based on the number
of optimization problems to solve and the time limit to solve them, not considering
the previously mentioned extra-time rules. The second is the actual upper bound on
time that considers all the extra-time rules. In order to reach the latter, the extra time
would have to be used to its maximum for all optimization problems. Figure20.4
presents the time to solve these numeric examples and reach the values presented in
Fig. 20.3.

As expected, with an increase in instance size, there is a trend to increase the time
to solve. Also, as it can be easily observed, theMINLP approach is consistently faster
than the CP approach. In fact, the former is consistently below the expected bound
(not considering extra time) while for the latter this only happens for the smallest
instance. This means that the MINLP approach was often able to prove optimality
in less than the time limit imposed, while the CP approach often used the extra time
allowed. This does not fit in a straightforward way with the results previously dis-
cussed when comparing the best values obtained by each approach. In fact, the inte-
grated analysis of Figs. 20.3 and 20.4 supports the claim that the CP approach quickly
finds good solutions yet takes longer to reach the optimum (or prove optimality)

4Throughout this discussion, the notion of instance size will be associated with the intrinsic para-
meter being analyzed: the number of rental types. It thus especially related with the complexity of
the optimization problems solved for each stage and state (not the number of stages and states per
se).

20 A Dynamic Programming Approach for Integrating … 309

(a) XMAX = 10,OMAX = 5 (b) XMAX = 8,OMAX = 4 (c) XMAX = 5,OMAX = 3

0 1,000 2,000
0

100

200

300

400

Expected without extra time

Upper bound

| |

T
im

e
to

so
lv
e
(m

in
)

CP MINLP

0 1,000 2,000

| |
0 1,000 2,000

| |

Fig. 20.4 Time to solve the numeric examples using the two approaches to calculate the optimal-
value function, plotting the instances by the number of rental types |R|, for three possible combi-
nations of the parameters XMAX and OMAX

Table 20.1 Comparison of key results and differences

CP approach MINLP approach

Overall best profit values Generally higher Generally lower

Effect of increasing
size-influencing parameters

No significant effect on profit Lower profit values

Time to solve Significantly slower Significantly faster

Conclusions Quickly finds good solutions
yet has difficulty proving
optimality, increasing
significantly the time to solve

Achieving/proving optimality
ranges from extremely fast to
impossible within time limit,
making it difficult to obtain
better solution values

and that the ability and speed to prove optimality varies significantly more in the
MINLP approach: from extremely fast to prove optimality to returning a feasible
solution with a high gap. This seems reasonable considering the characteristics of
each solution method and the fact that the complexity of the optimization problems
varies significantly among stages (within the same instance).

Table20.1 summarizes and compares the key differences and results from the
two approaches. Overall, it is possible to conclude that the time limit imposed has
a significant impact. Nevertheless, although it can lead to poorer overall results, if a
time limit is not imposed the time to solve could make both approaches nonviable.

310 B. B. Oliveira et al.

20.4 Conclusions

In this work, a dynamic programming approach was developed to deal with the
integrated dynamic pricing and capacity problem in the car rental business. This
methodology has been successfully applied to similar problems and from the multi-
stage structure of the problem (and the consequent “stock available” type of control)
can be seen as an adequate method. Nevertheless, the fact that the capacity is “re-
usable” in the rental context raises significant applicability issues that were analyzed.

The first drawback of applying dynamic programming to this context is that the
number of states and state variables easily explodes.Alreadywith these small numeric
examples (in terms of number of time periods and rental stations, and considering
deterministic demand) this method shows computational limitations. This is mainly
due to the fact that the problem is related with a rental context—and this is why car
rental is not like any other pricing and capacity/inventorymodel: the number of states
explodes because stock can “return” after being depleted and that makes it necessary
to keep track of occupied vehicles, which relates with decisions from time periods
other than the immediately previous one.

An additional limitation is that the number of states is based on parameters that
are not derived from the original problem, although they may have a close parallel to
actual operational constraints, such as the stock of vehicles in a station being limited
by the available parking spots. Although it was possible to observe that increasing
the maximum number of vehicles in stock and occupied (and thus increasing the
number of states) may hinder getting a better solution due to time limitations, not
increasing these parameters for a real-world application of the methodology is not
a viable option. In fact, the values herein proposed fail to fully reflect the reality of
the problem. Ideally, these parameters should have no impact on the optimum value.
Nevertheless, from a quick analysis of the order of magnitude of the demand values,
it is easily established that in these numeric examples they have had impact.

These conclusions do not support the claim that dynamic programming is an
adequate method to tackle this problem. Nevertheless, this discussion was able to
bring some insights related with the problem structure as well as the potential and
limitations of CP and MINLP when embedded in a discrete dynamic programming
approach.

As future work, other methodologies will be applied to this rental context, espe-
cially considering the case of uncertain demand and realistically sized problems.

Acknowledgements The first author was supported by grant SFRH/BD/103362/2014 from
FCT—Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technol-
ogy). This work was also partially financed by the ERDF—European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation—COMPETE
2020 Programme within project “POCI-01-0145-FEDER-006961”, and by National Funds through
the FCT—Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technol-
ogy) as part of project UID/EEA/50014/2013.

20 A Dynamic Programming Approach for Integrating … 311

References

1. E. Adida, G. Perakis, Dynamic pricing and inventory control: robust vs. stochastic uncertainty
models-a computational study. Ann. Op. Res. 181(1), 125–157 (2010). ISSN 02545330, https://
doi.org/10.1007/s10479-010-0706-1

2. A.V. den Boer, Dynamic pricing and learning: historical origins, current research, and new
directions. Surveys in Ope. Res. Manag. Sci. 20 (1), 1–18 (2015). ISSN 18767354, https://doi.
org/10.1016/j.sorms.2015.03.001

3. A.Hax, S.Bradley,Dynamic programming (chapter 11), inAppliedMathematicalProgramming,
vol. 26 (1977), pp. 320 – 362, https://doi.org/10.2307/2550876

4. Z. Li, F. Tao, On determining optimal fleet size and vehicle transfer policy for a car rental
company. Comput. Op. Res. 37(2), 341–350 (2010). ISSN 03050548, https://doi.org/10.1016/
j.cor.2009.05.010

5. B.B. Oliveira, M.A. Carravilla, J.F. Oliveira, Fleet and revenue management in car rental com-
panies: a literature review and an integrated conceptual framework. Omega 71, 11–26 (2017).
ISSN 03050483, https://doi.org/10.1016/j.omega.2016.08.011

6. F. Rossi, P. Van Beek, T. Walsh, Handbook of Constraint Programming (Elsevier, 2006). ISBN
0444527265

7. D. Simchi-Levi, X. Chen, J. Bramel, Integration of inventory and pricing (chapter 10), in The
logic of Logistics: Theory, Algorithms, and Applications for Logistics Management, 3rd edn.
(Springer Science+Business Media, Berlin, 2014), pp. 177–209

https://doi.org/10.1007/s10479-010-0706-1
https://doi.org/10.1007/s10479-010-0706-1
https://doi.org/10.1016/j.sorms.2015.03.001
https://doi.org/10.1016/j.sorms.2015.03.001
https://doi.org/10.2307/2550876
https://doi.org/10.1016/j.cor.2009.05.010
https://doi.org/10.1016/j.cor.2009.05.010
https://doi.org/10.1016/j.omega.2016.08.011

	20 A Dynamic Programming Approach for Integrating Dynamic Pricing and Capacity Decisions in a Rental Context
	20.1 Introduction
	20.2 Discrete Dynamic Programming Formulation
	20.2.1 Stages
	20.2.2 State Variables, Transition Function and State Spaces
	20.2.3 Optimal-Value Calculation

	20.3 Illustrative Numeric Examples
	20.4 Conclusions
	References

