FPGA-based Real-Time Disparity Computation and
Object Location

Pedro Miguel Santos
DEEC, Faculdade de Engenharia
Universidade do Porto
Porto, Portugal
Email: pedro.miguel.santos @fe.up.pt

Abstract—This paper describes an FPGA-based system capable
of computing the distance of objects in a scene to two stereo
cameras, and use that information to isolate objects in the
foreground. For this purpose, four disparity maps are generated
in real time, according to different similarity metrics and sweep
directions, and then merged into a single foreground-versus-
background bitmap. Our main contribution is a custom-built
hardware architecture for the disparity map calculation, and
an optional post-processing stage that coarsens the output to
improve resilience against spurious results. The system was
described in Verilog, and a prototype implemented on a Xilinx
Virtex-II Pro FPGA proved capable of processing 640x480
black-and-white images at a maximum frame rate of 40 fps, using
3x3 matching windows and detecting disparities of up to 135
pixels.

I. INTRODUCTION

The extraction of disparity maps from a stereo camera
in real-time is a great contender as a practical method for
determining the distance of all physical points in a scene to
the camera. It is also a powerful tool to segment a scene
into objects, by aggregating areas of points that are at similar
distance from the cameras. Abundant use can be found in the
automotive industry, robotics and video surveillance.

The FingerMouse [1] system operates under this premise.
The system is composed of a device with two cameras that the
user wears on his chest. Under the assumption that the user’s
hand is the closest object to the cameras, it computes four
disparity maps in real-time, extracts the closest object in the
scene, and determines the coordinates of its center. Its goal is
to have your own hand replace conventional pointing devices.

To handle the computationally demanding disparity maps,
the authors have designed a dedicated ASIC, described in [1].
Inspired by that work, we have made our own implementation
of the concept on FPGA. Our main contributions are an
alternative hardware architecture to compute the disparity
maps, and an innovative post-processing stage, which can be
of interest for many applications.

Our system was dimensioned to process pairs of 640 x 480
images (8-bit pixels) at a rate of 40 frames per second (fps) and
detect a maximum disparity of 135 pixels. The implementation
was verified to work in real-time at 25 fps, the maximum
image rate of the available image sensors. Comparing to the
FingerMouse ASIC implementation [1], our system handles

978-1-4244-8973-2/10/$26.00 (©2010 IEEE

Joao Canas Ferreira
INESC Porto, Faculdade de Engenharia
Universidade do Porto
Porto, Portugal
Email: jcf@fe.up.pt

larger images (640x480 vs. 320x480), a larger disparity range
(135 vs. 47) and a higher image data rate (24.5 Mpixels/s vs.
5 MPixels/s).

The remainder of paper is organized as follows. Section II
presents background information and describes previous work.
The overall architecture of the system is described in Sec-
tion III. The internal structure and operation of the main parts
of the system are detailed in Section IV. Section V summarizes
the overall outputs, and Section VI presents the conclusions.

II. BACKGROUND AND RELATED WORK

In a stereoscopic setup, two cameras are set side by side,
capturing a scene from two slightly different angles. Assuming
that both cameras are horizontally aligned, images of the
same object on the two cameras will exhibit an horizontal
displacement relative to each other. The displacement is called
disparity, and is proportional to the object’s closeness to the
cameras. Computing the disparity of all pixels yields a dense
disparity map.

An extensive overview on methods for producing dense
disparity maps is given in [2]. A subclass of such methods,
of reduced mathematical complexity but computationally in-
tensive, and therefore well-suited for parallel hardware imple-
mentation, is the area-match algorithms.

Area-match algorithms try to find a correspondence for all
pixels of one image in the other image of the same stereo pair.
First, one of the images is chosen as the reference image. For
every pixel in the reference image, the algorithm extracts the
matrix of pixels around it and searches the other image - the
candidate image - for the matrix of pixels that most resembles
it. The candidate matrix that is most similar to the reference
one is assumed to indicate the position of that area on the
candidate image. The difference of the horizontal coordinates
of the matrices yields the central pixel’s disparity.

If both stereo images have the same horizontal baseline,
the area of search in the candidate image is straightforward.
Assuming the right image to be the reference one, no object
on the left image (the candidate one) can appear at a position
closer to the left margin than it does in the right image. Thus,
the search has only to be done leftwards, starting from the X-
coordinate of the pixel under analysis in the reference image.

Several metrics can be used to evaluate the similarity of
two matrices of pixels [3], [4]. We will highlight two of them,
which measure different aspects of the neighborhood. The first
is the Sum of the Absolute Differences (SAD) of the pixels of
two matrices, which allows to compare the brightness of the
matrices. The candidate matrix that yields the smallest SAD
will be the most similar to the reference matrix.

The second metric used in our system is a non-parametric
summary of the local spatial structure called Census [5]. The
Census metric is calculated by assigning each pixel of a matrix
a bit, according to if it is brighter or darker than the central
pixel. The number of identical bits in the resulting sequences
of bits associated with the reference and the candidate matrices
provides a measure of their similarity.

After the above procedure has been done to all pixels of the
reference image, one is in possession of a dense disparity map.
This means that for every pixel, a value is assigned indicating
the distance in pixels to the pixel, in the candidate image, that
most likely corresponds to the same physical point. Upon this
information, the segmentation of a scene into focal planes is
done by selecting only pixels with disparity within a certain
range. In this particular work, only two planes are considered
(foreground and background), but more could be defined.

The processing of occluded areas presents a difficulty for
this type of algorithms. In this case, a background pixel
appears in only one of the images; the search for the cor-
responding pixel in the candidate image will come up with a
false match, since no such pixel is actually present in it. For
a two-camera setup, one way to avoid this type of error is to
perform two disparity computations, each one using a different
image as reference (right pixels are searched for on the left
image, and vice-versa). A consistency check is then made to
assess if a given pixel belongs to the foreground, by verifying
if it was classified as such in both disparity computations
(foreground pixels are never occluded).

FPGAs have since long been an ideal platform for ex-
perimenting hardware architectures oriented for the compu-
tationally intensive, highly parallelized nature of most image
processing algorithms. A seminal implementation of depth
map computation used the PARTS system [6], which was
composed of 16 Xilinx 4025 FPGAs and capable of computing
24 stereo disparities on 320 by 240 pixel images at 42 frames
per second (using the Census metric).

A more recent example is the hand-sized trinocular system
based on FPGA is described in [7], which uses a SAD-based
metric to process 320 x 240 images at 120 fps and can handle
disparities of up to 64 pixels. The system of [8] employs
a Spartan-3 FPGA, and performs the Census transform on
320 x 240 images at a rate of 30 fps (eventually up to 150,
with adequate cameras) using 7 x 7 matrices and achieving
a maximum disparity of 20 pixels. Further examples and
comparisons of hardware systems can be found in [9], [10].

III. SYSTEM OVERVIEW

The overall sequence of steps that compose the implemented
system will now be presented. For reference, a diagram of the

Left image’s
mem_3x3 module

Right image’s
mem_3x3 module

1
Left Candidate Matrices

Left Right
Refer. Refer.
Matrix Right Candldate Matrices Matrix

LR sweep RL sweep

20 metric_fund modules

SAD Census SAD Census
disp. ma| disp. map disp. ma| disp. map

‘ LR sweep thresholder module

Thresholded Thresholded
LR sweep bitmap R L sweep bitmap

matcher module

Matched
LR sweep bitmap

‘ post-processer module ‘

Treated
R sweep bitmap

‘ Coordinate Computation ‘

20 metric_fund modules

‘ RL sweep thresholder module

Fig. 1. Overview of System Organization and Data Flow.

system’s architecture is shown in Fig. 1.

1. Image acquisition — The disparity map computation
requires that at least 3 lines of each image are buffered.
Receiving pixel data from the cameras, storing and delivering
it in the correct order to the subsequent modules are the tasks
of the hardware modules mem_3x3 (see Fig. 1).

2. Disparity map computation — This step implements
the area-match algorithm presented in the previous section,
and requires the joint co-operation of the hardware modules
mem_3x3, metric_fund and global_ctrl (not shown in Fig 1).
The chosen similarity measures between matrices were SAD
and Census, due to their quality/resource consumption trade-
off and complementary nature. Four disparity maps are output
at this stage: two maps (one for each metric) using the left
image as reference and the right as candidate - LR sweep -
and two other using the right image as reference - RL sweep.

3. Binarization — The scene is segmented in two focal
planes by thresholding the disparity values at the thresholder
modules. Since only two focal planes are of interest (back-
ground and foreground), a simple binarization operation is
used to assign pixels to focal planes.

The results of the two metrics (SAD and Census) are
combined for each sweep: a pixel is assigned to the foreground
if it has a high enough disparity by any of the metrics. The

final output are two bitmaps (one per sweep), indicating to
which plane a specific pixel belongs.

4. Matching — The hardware module matcher receives
the two combined disparity maps, and performs a consistency
check on one of the maps to detect areas that were erroneously
considered as foreground due to occlusion. The resulting map
is the final output of the system.

5. Post-processing — This is an optional stage, imple-
mented by module post_processer, which coarsens the output
of matcher. Possible uses are described in Section IV-E.

6. Coordinate computation — The center of gravity of
the foreground pixels is computed in this step: the number
of foreground pixels of each row and line is determined and
multiplied by the index of the corresponding row or line.
Dividing the sum of all row (column) values by the number of
foreground pixels yields the horizontal (vertical) coordinate.

IV. HARDWARE ORGANIZATION

This section provides more details on the hardware imple-
mentation of the main processing steps.

A. Image Acquisition

In our system, 640x480-pixels images are provided by
two CMOS cameras with a common horizontal baseline.
Each camera delivers to its own mem_3x3 module an 8-bit
luminance value at 12.5 MHz. The two 9x8-bit output ports
produce data at 100 MHz: one feeds the reference matrix bus
of one of the sweeps, and the other the candidate matrix bus
of the other sweep (cf. Fig. 1).

The design of module mem_3x3 was driven by two major
requirements of the system. Firstly, later operation of the
system requires pixel matrices to be at least 3x 3, which means
a minimum of 3 lines of the image must be stored at all times.
Secondly, real-time operation implies that one line has to be
processed in the same time it takes to receive a new line.

To meet these requirements, module mem_3x3 uses four
internal memories, mapped to FPGA block RAMs, that op-
erate in a round-robin fashion. While three of them provide
the data for the matrix operations, the fourth one is being
filled with data from the camera. When a complete new line
has been received, the oldest line can be discarded and the
corresponding memory is used for the next line.

B. Disparity Map Computation

Three different types of modules are required for this stage:
global_ctrl, mem_3x3, and metric_fund. Module global_ctrl is
in charge of managing the entire disparity map computation
process: it provides the mem_3x3 modules with the addresses
of the reference and candidate windows, and controls the
activation of the metric_fund modules.

The core elements of the computation are the 20x2 met-
ric_fund modules. Their input data comes from the reference
matrix port of one of the mem_3x3 modules and the candidate
matrix port of the other mem_3x3 module, as shown in Fig. 1.
Each receives and stores a reference matrix at a given time, and
for the following n cycles they will receive candidate matrices

to compare with the reference one. After those n cycles, they
output the index of the candidate matrix that was the most
similar, according to SAD and Census measures.

As discussed in the previous subsection, the system receives
pixels from the cameras at 12.5 MHz and operates at 100 MHz,
which gives 8 clock cycles to process each reference pixel. If
only one module metric_fund is used, at most 8 candidate
matrices can be compared with the reference one, i.e., the
maximum disparity would be only of 8. Adding more met-
ric_fund modules allows for more reference matrices to be
handled simultaneously, thus extending the maximum disparity
range achievable. The number of modules to use should result
as a trade-off between desired disparity range and available
resources. Also, for optimal implementation, it should be
a divisor of 640. We chose 20 modules for our prototype,
allowing each reference matrix to be assigned 160 cycles for
processing, and therefore attain a maximum disparity of 160.

However, taking advantage of all 160 cycles would have
an important requirement: the stream of candidate matrices
presented to each module, over all the 160 cycles, would
be different. This would demand 20 independent and simul-
taneous accesses to memory. To circumvent this problem,
the modules metric_fund are loaded with reference matrices
sequentially, over 20 cycles. Although the maximum disparity
attainable decreases from 160 to 140, this strategy allows
us to feed exactly the same stream of candidate images to
all metric_fund modules. Due to implementation details, the
effective maximum disparity attainable is 135, which is still
quite reasonable as it allows the detection of objects up to
40 cm from the cameras.

Finally, the reason for having two sets of 20 metric_fund
modules is that disparity calculations have to be made both
for the LR sweep (left image as reference) and for the RL
sweep (right image as reference). However, the direction on
which reference images are swept is from the left to the right
in both cases, even though in the case of the LR sweep the
other way around would be more intuitive. This option allows
us to have the results of both computations available close in
time and space, which makes implementation of the Matching
stage easier.

We believe the hardware architecture dedicated to this step
to be the most important contribution of our work, with
respect to previous implementations. A major feature is its
good scalability. In its current size, it can work with 640x480
images at a frame rate of 40 fps with a maximum disparity of
138 using windows of 3x3 pixels. However, there is plenty of
room for trade-offs. The architecture could, just as well, work
at 160 fps over 320x240 images with a maximum disparity of
55. For this last resolution, at 40 fps, the maximum disparity is
295 pixels. On the downside, increasing the matrix size would
be very demanding in terms of FPGA resource consumption.

C. Binarization

The previous computation outputs the disparity maps in
bursts of 20 pixels, on the last 20 cycles of every sequence
of 160 cycles. Recall, as explained in Section III, that there

are two sets of results: one for the RL sweep and other for
the LR sweep. For each, two disparity maps are available:
one using SAD, and the other using Census. The disparity
maps are transformed into simple bitmaps by assigning a 1 or
a 0 to each pixel (1 indicates a foreground pixel), according
to whether their disparity is above or below an user-defined
threshold. The resulting bitmaps from the SAD and Census
are merged by ORing their outputs, thus producing at the end
of this stage two bitmaps, one for each sweep.

D. Matching

The module matcher performs a consistency check between
the bitmaps of the LR and RL sweeps that result from the last
stage: only if both sweeps agree a specific pixel belongs to
the foreground, it is considered as such.

The matching consists of ANDing the bit of each LR sweep
pixel with the bit of the RL sweep pixel indexed by its
disparity. Thresholded results from the LR sweep are stored
in a 20-bit long memory with their corresponding disparities;
thresholded results from the RL sweep are stored in a 155-bit
long memory, so that the full range of disparity is available.
This stage outputs one bitmap based on the LR sweep.

E. Post-processing

The post-processing stage is optional and, in the current
system, it is used to produce a coarser representation of the
segmented image, where each bit corresponds to a 20x20 pixel
square of the original bitmap. The final value depends on the
number of foreground pixels present in the source square.

The coarser-grained version is less sensitive to small vari-
ations of the image data and makes the center of gravity
calculation simpler. In addition, the smaller image can be
useful for searching in a data base of image templates. This
can be useful if the shape of the object in the foreground must
be identified from a set of very different alternatives.

V. PHYSICAL IMPLEMENTATION

In order to verify the correct functioning of the hardware
architecture, we have built a laboratory prototype using two
CMOS cameras, based on OV7120 image sensors, horizontally
aligned and 7.5 cm apart. Both are connected to a Xilinx FPGA
Virtex-1I Pro XC2VP30, whose embedded CPUs are not used.
For visualization of the results, the disparity maps and final
bitmap can be sent to a VGA monitor, and the coordinates are
sent by an RS232 connection to a PC. The architecture was
specified in Verilog and synthesized using ISE 9.1 from Xilinx.
Table I summarizes the resource usage for the implementation
with 20 metric_fund modules per sweep.

TABLE I
RESOURCE USAGE FOR IMPLEMENTATION ON XC2VP30
Element Total available Used Occupancy
Slices 13,696 9,565 69%
LUTs 27,392 16,847 39%
Flip-flops 27,392 10,936 61%
BRAMSs 136 18 13%

The processing core uses a 100 MHz clock. The embedded
digital clock manager is used to generate the camera pixel
clock (12.5MHz) and the VGA pixel clock (25 MHz).

VI. CONCLUSION

We have designed, and implemented on a FPGA, a system
capable of determining, in real-time, the position of the
object that is in the foreground of the scene captured by two
stereoscopic cameras. It is capable of processing two 640x480
black-and-white images at a maximum frame rate of 40 fps,
using 3x3 windows, and covering a disparity range of 135.

It does so by computing four dense disparity maps, using the
images of both stereo cameras as reference and two similarity
metrics, SAD and Census. The distance information obtained
in this way is then used to isolate the closest object in the scene
and compute its position. A threshold operation individualizes
the foreground object, and a consistency check is made to
handle false results caused by occluded areas.

Our main contribution, with respect to previous works, is the
new hardware architecture for disparity map computation. It
is highly flexible, and augmenting disparity range and matrix
size is simple and limited only by host platform resources.
A novel post-processing stage is also included, which can be
useful for several applications.

ACKNOWLEDGMENT

Work partially supported by research contract
PTDC/EEAELC/69394/2006 from the Foundation for
Science and Technology (FCT), Portugal. The first author
was supported by a travel grant from the Masters Program in
Electrical and Computer Engineering.

REFERENCES

[1] P. de la Hamette and G. Troster, “Architecture and applications of the
FingerMouse: a smart stereo camera for wearable computing HCL”
Personal and Ubiquitous Computing, vol. 12, no. 2, pp. 97-110, 2008.

[2] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,” Intl. J. Comput. Vis., vol. 47,
no. 1, pp. 742, Apr. 2001.

[3] J. Banks, M. Bennamoun, and P. Corke, “Non-parametric techniques for
fast and robust stereo matching,” in Proc. IEEE Region 10 Ann. Conf.
Speech Image Tech. Comput. Telecomm., 1997.

[4] N. W. Bergmann and R. B. Porter, “A generic implementation framework
for FPGA based stereo matching,” in Proc. IEEE Region 10 Ann. Conf.
Speech Image Tech. Comput. Telecomm., 1997.

[5] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” in Computer Vision ECCV '94, J.-O.
Eklundh, Ed. Springer Berlin / Heidelberg, 1994, pp. 151-158.

[6] J. Woodfill and B. Von Herzen, “Real-time stereo vision on the parts
reconfigurable computer,” in Proc. 5th Ann. IEEE Symp. FPGAs Custom
Comput. Machines, 16-18 1997, pp. 201-210.

[71 L. An, Y. Jia, M. Li, and X. Zhang, “A miniature stereo vision machine
(MSVM-III) for dense disparity mapping,” Proc. 17th Intl. Conf. Pattern
Recogn., 2004.

[8] C. Murphy, D. Lindquist, A. Rynning, T. Cecil, S. Leavitt, and

M. Chang, “Low-cost stereo vision on an FPGA,” 15th Ann. IEEE Symp.

Field-Programmable Custom Comput. Mach., pp. 333-334, 2007.

R. Carrillo, J. Diaz, A. Prieto, and E. Ros, “Real-Time System for High-

Image Resolution Disparity Estimation,” IEEE Trans. Image Process.,

vol. 16, 2007.

[10] K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, “SAD-

based stereo matching using FPGAs,” in Embedded Computer Vision,
B. Kisacanin, A. Nhattacharya, and S. Chai, Eds. = Springer Verlag,
2008, ch. 6.

[9

