
Simplifying the analysis of software design
variants with a colorful Alloy

Chong Liu, Nuno Macedo, and Alcino Cunha

INESC TEC and Universidade do Minho, Portugal

Abstract. Formal modeling and automatic analysis are essential to
achieve a trustworthy software design prior to its implementation. Alloy
and its Analyzer are a popular language and tool for this task. Frequently,
rather than a single software artifact, the goal is to develop a full software
product line (SPL) with many variants supporting different features.
Ideally, software design languages and tools should provide support for
analyzing all such variants (e.g., by helping pinpoint combinations of
features that could break a property), but that is not currently the case.
Even when developing a single artifact, support for multi-variant analysis
is desirable to explore design alternatives. Several techniques have been
proposed to simplify the implementation of SPLs. One such technique
is to use background colors to identify the fragments of code associated
with each feature. In this paper we propose to use that same technique for
formal design, showing how to add support for features and background
colors to Alloy and its Analyzer, thus easing the analysis of software design
variants. Some illustrative examples and evaluation results are presented,
showing the benefits and efficiency of the implemented technique.

Keywords: Formal software design · Variability · Alloy

1 Introduction

Formal methods are crucial in the development of high-assurance software. Their
role in early development phases is well established, for example to check the
consistency of formally specified requirements before proceeding to design, or
that a formal model of the intended design satisfies desirable properties before
proceeding to implementation. Among the myriad of formal methods proposed,
lightweight ones – which rely on automatic analyses to verify (often partial) speci-
fications – are quite popular. That is the case of model checkers like NuSMV [4] or
SPIN [13], for verifying temporal logic properties of (behavioral) designs (modeled
as transition systems), or model finders like Alloy [14], more geared towards
verifying first-order properties of structural designs specified at a high level of
abstraction (using simple mathematical concepts like sets and relations).

When developing large-scale software systems it is common to adopt the
paradigm of feature-oriented software development [2], which organizes software
around the key concept of feature, a unit of functionality that satisfies some of the
requirements and that originates a configuration option. If the implementation is

2 Chong Liu, Nuno Macedo, and Alcino Cunha

properly decomposed, it is possible to deliver many variants of the system just
by selecting the desired features. The set of all those variants is usually called a
software product line (SPL). Ideally, the design of SPLs should already explicitly
take features into account, and formal methods should be adapted to support
such feature-oriented design [3]. In fact, even when developing a single software
product, it is still convenient to explicitly consider features and multi-variant
analysis during design to support the exploration of different design alternatives.

Most techniques to organize software implementation around features fall into
one of two categories: compositional approaches implement features as distinct
modules, and some sort of module composition technique is defined to generate a
specific software variant; annotative approaches implement features with explicit
(or sometimes implicit) annotations in the source code, that dictate which code
fragments will be present in a specific variant. The former are well suited to
support coarse-grained extensions, for example adding a complete new class to
implement a particular feature, but not to support fine-grained extensions, for
example adding a sentence to a method or change the expression in a conditional,
to affect the way a code fragment works with different features [15]. Annotative
approaches are much better suited for such fine-grained variability points.

Unfortunately, explicit support for feature-oriented design in formal methods,
providing a uniform formalism for feature, architectural and behavioral modeling
as advocated for SPL engineering [19], is still scarce. Support for features in
model checking has been proposed, namely a compositional approach for the
SMV modeling language of NuSMV [18] and an annotative approach for the
Promela modeling language of SPIN [5]. For structural design, a compositional
approach has been proposed to explicit support features in Alloy [3]. Typically,
modeling and specifying in Alloy is done at high levels of abstraction, and adding
a feature can require only minimal and very precise changes (e.g., adding one new
relation to the model or changing part of the specification of a desired property).
Compositional approaches such as [3] are not well suited for these fine-grained
extensions. This paper addresses precisely this problem, proposing an annotative
approach to add explicit support for features to Alloy and its Analyzer.

A classic annotative approach for source code is the use of #ifdef and
#endif C/C++ compiler preprocessor directives to delimit code fragments that
implement a specific feature. Unfortunately, such annotation style obfuscates the
code and makes it hard to understand and maintain, leading to the well-known
#ifdef hell [11]. To alleviate this problem, while retaining the advantages of
annotative approaches, Kästner et al [15] proposed to annotate code fragments
associated with different features with different background colors, which was
later shown to clearly improve SPL code comprehension and be favored by
developers [11]. Given these results, we propose to use such annotative technique
to support features in Alloy. Our main contribution is thus a colorful extension
to Alloy and its Analyzer, that allows users to annotate model and specification
fragments with different background colors (denoting different features), and run
analysis commands to verify either a particular variant, or several variants at
once, of the design, simplifying the detection of feature combinations that may

Simplifying the analysis of software design variants with a colorful Alloy 3

1 fact FeatureModel {
2 // 4 requires 3

3 4 3 some none 3 4 }
4
5 sig StoredModel {
6 1 derivationOf : lone StoredModel 1 ,
7 public : lone Link,
8 2 secret : lone Link 2 ,
9 3 command : lone Command 3 }

10
11 2 sig Secret in StoredModel {} 2

12
13 sig Link {}
14
15 3 sig Command {} 3

16
17 3 4 sig Instance {
18 instanceOf : one Command,
19 model : set StoredModel,
20 link : one Link } 4 3

21
22 fact {
23 // Links are not shared between artifacts
24 all l : Link | one (public+ 2 secret 2 + 3 4 link 4 3).l
25 // All models have public links, unless commands are stored
26 3 all m : StoredModel | one m.public 3

27 // The model derivations form a forest
28 1 no m : StoredModel | m in m.^derivationOf 1

29 // Private and public links must be different
30 2 all m : StoredModel | m.public != m.secret 2

31 ... }
32
33 run {some command} with 3 for 3
34 run {some command} with exactly 2 , 3 for 3
35
36 assert OneDerivation {
37 // Stored models without a public link can have at most one derivation
38 1 all m : StoredModel | no m.public implies lone derivationOf.m 1 }
39 check OneDerivation with 1 for 3

Fig. 1: Alloy4Fun specification in colorful Alloy.

fail to satisfy the desired specification. To the best of our knowledge, this is the
first color-based annotative approach for feature support in a formal method.

The paper is organized as follows. The next section presents an overview of
the proposed approach using a simple case study. Section 3 formally presents
the new language extension, including the typing rules for the annotations, and
Section 4 the extensions to the Alloy engine to support multi-variant analysis.
Section 5 evaluates the flexibility of the language and the efficiency of the new
multi-variant analysis engine using various examples. Section 6 discusses related
work. Finally, Section 7 concludes the paper, presenting ideas for future work.

2 Overview

Alloy4Fun [17] is a web-platform1 developed by our team for learning Alloy
and sharing models. Besides the online creation, analysis and sharing of models,
1 alloy4fun.inesctec.pt

alloy4fun.inesctec.pt

4 Chong Liu, Nuno Macedo, and Alcino Cunha

Alloy4Fun has two additional goals: to provide a kind of auto-grading feature by
marking certain parts of the model as secret, and to collect information regarding
usage patterns and typical pitfalls when modeling in Alloy.

Modeling. The structure of an Alloy2 model is defined by declaring signatures
and fields (of arbitrary arity) within them, possibly with multiplicity constraints.
A hierarchy can be imposed on signatures, either through extension or inclusion.
These are combined into relational expressions using standard relational and
transitive closure operators. Basic formulas over these expressions either compare
them or perform simple multiplicity tests, and are combined using first-order logic
operators. Predicates and functions represent re-usable formulas and expressions,
respectively. Additional axioms are introduced through facts, and properties
which are to be checked through asserts. In colorful Alloy, parts of the model
can be associated with a positive annotation – selecting the feature introduces
the element, colored background – or a negative annotation – selecting a feature
removes the element, colored strike-through. Both positive and negative anno-
tations can be nested, in which case the colors are mixed. Following the results
of [11], we chose colors that would reduce visual fatigue.

Figure 1 depicts an excerpt of the encoding of the Alloy4Fun design variants in
colorful Alloy. The base variant (i.e., the parts without annotations) simply stores
models when shared by the user, and is thus comprised by stored models (sig
StoredModel, l. 5) assigned to at most one public link (sig Link, l. 11, through
field public with lone multiplicity, l. 7). Two additional constraints are enforced
(by a fact, l. 22): a link is assigned to exactly one stored model (l. 24) and every
stored model has a public link assigned to it (l. 26). To this base, 4 features can
be added:

1 to collect usage patterns, the derivation tree of the stored models is registered,
introducing a new field (derivationOf, l. 6) and an additional constraint to
avoid cyclic dependencies (using transitive closure, l. 28);

2 stored models can have secrets defined (sig Secret as a subset of StoredModel,
l. 11), and as a consequence, have private links generated when shared so
that they can be recovered (field secret, l. 8); a new constraint forces public
and private links to be distinct (l. 30) and the existing constraint on links is
relaxed to allow links to be private (l. 24);

3 models are also stored when commands are executed (sig Command, l. 14),
rather than just when shared by the user, allowing finer data collection; the
command that originated such models is also stored (field command, l. 9);
moreover, the constraint on the existence of public links is removed (l. 26),
since stored models created through command execution are shared;

4 instances (sig Instance, l. 17) resulting from command execution can also be
stored and shared; the constraint on links (l. 24) is relaxed, which may now
point to stored instances (field link, l. 20) rather than just stored models.

Feature-oriented software development is usually accompanied by a feature model
denoting which feature combinations are acceptable. In our example, instances
2 For a thorough presentation of the Alloy language and the Analyzer, please see [14].

Simplifying the analysis of software design variants with a colorful Alloy 5

are associated to the commands that created them, so feature 4 requires feature
3. This is enforced by a fact (l. 1) that guarantees that invalid variants are
unsatisfiable: if feature 4 without feature 3, an inconsistent formula is imposed
(some none, since Alloy does not support Boolean constants). Feature models are
easily translated into propositional logic [9], and are expected to be simple and
easy to encode as this kind of facts at the level of abstraction that (colorful) Alloy
is employed. Exploring whether dedicated support to encode feature models is
needed is left for future work.

Analysis. Once the colorful Alloy model is defined, the user can instruct the
Analyzer to generate scenarios for which a certain property holds through run
commands, or instruct it to find counter-examples to a property expected to hold
through check commands. These are assigned a scope, denoting the maximum
size to be considered for the model’s signatures. The colorful Analyzer supports
an additional scope on the variants that should be explored: a set of (positive
and negative) feature presence conditions is provided, and analysis will either
consider all variants or the smallest variant for which those conditions hold.

In our example, the run in l. 33 allows the user to explore scenarios with stored
commands in all 8 variants where feature 3 is selected (without feature 3 command

does not exist, so a type error would be thrown). This will generate an arbitrary
instance for one of those variants; the user can then ask for succeeding solutions
which may vary in variant or in scenario (more controlled enumeration is work in
progress). A tighter scope provides a finer control on the explored variants, as the
run in l. 34 for the 4 variants with features 2 and 3, which the Analyzer will report
as unsatisfiable. This was due to a bug in the constraint on secret links (l. 30),
which does not hold when stored models are created from command execution (a
possible fix is to enforce instead all m : StoredModel | no m � public&m � secret).
Such issue could go unnoticed without variant-focused analysis since it arises
from the interaction of 2 features.

After exploring scenarios, the user can start checking desirable properties. The
assert in l. 36 specifies a property that could be expected to hold for all variants
that allow derivation trees: if a stored model has no public link, then at most
one stored model is derived from it. Through the check in l. 39 for all variants
with feature 1, the Analyzer quickly shows that that is not the case, generating a
counter-example in a variant with features 1, 2 and 3, where command execution
allows two stored models to derive the same ancestor. An analysis focused on
individual variants could miss this possible issue arising from the interaction of
features 1 and 3. Figure 2 presents an overview of the colorful Alloy Analyzer for
this scenario, with its editor with feature annotations, and its visualizer with the
counter-example and a panel denoting to which variant it belongs.

Discussion. Using regular Alloy, the user would have two alternative ways of
encoding these design variants. One would be to try to encode in a single Alloy
model all conditional structures and behaviors that the design may have, using a
signature (e.g., Variant) to denote which features are under consideration. This

6 Chong Liu, Nuno Macedo, and Alcino Cunha

Fig. 2: Counter-example to OneDerivation.

quickly renders the Alloy model intractable, particularly in annotations of small
granularity. For instance, the expression in l. 24 could be encoded like

public + (F2 in Variant implies secret else none → none) +
(F3 + F4 in Variant implies link else none → none)

which can quickly become impenetrable and unmanageable.
The other alternative would be to rely on the Alloy module system and

define variants as separate modules that import common elements. Modules are
completely included when imported, meaning that existing elements cannot be
removed or changed. As a consequence, a base module with the non-annotated
parts cannot be extended with fields in existing signatures, requiring less intuitive
workarounds. For instance, a module for feature 2 could add signature Command

with the (arguably less intuitive) inverted field secret declared in it; for feature 1,
adding field derivationOf would require the introduction of a “dummy” singleton
signature with a field of type StoredModel → StoredModel. Negative annotations
are even more troublesome, since they would have to be added by all modules
except the ones that would remove them, which quickly becomes unmanageable.
These issues are handled by the compositional approach implemented in Fea-
tureAlloy [3], that allows the insertion of fields in existing signatures, as well
as replacing existing paragraphs. However, handling variability points of fine
granularity is still difficult to manage. For instance, the constraint in l. 24 not
only would have to be fully replaced by features 2 and 4, but a new feature
merging those two features would have to be created due to feature interaction.

3 Language

One of the reasons behind the initial proposal of color annotations was to avoid
obfuscating the code with additional constructs [15]. There, colors are internally

Simplifying the analysis of software design variants with a colorful Alloy 7

handled by the IDE developed for that purpose, which hinders saving, sharing
and editing models, particularly when dealing with simple, single-file, models
as is typical in Alloy. Our approach aims at a middle ground, using minimal
annotations that are colored when using the Analyzer, but that can still be
saved and interpreted as a pure text file. Additionally, unlike [15], our language
allows elements to be marked with the absence of features. Thus, although not
allowing full propositional formulas, elements can be assigned a conjunction of
positive/negative literals.

The colorful Alloy language is thus a minimal extension to regular Alloy
mainly by allowing, first, elements to be associated with the presence or absence
of features; and second, analysis commands to focus on particular sets of features.
Features are identified by circled symbols, c and c , denoting the presence and
absence of a feature, respectively, for 1 ≤ c ≤ 9 (throughout the paper, c will
denote either c or c). This allows models with at most 9 distinct features,
which we believe to be adequate since the colorful approach is known to be better
suited for models with a small number of features [11], and our own experiments
never relied on more than 6 features. Figure 3 presents the syntax of colorful
Alloy, highlighting changes with regard to the regular Alloy language.

Features are associated to model elements by using feature marks as delimiters
surrounding those elements. An element within a positive delimiter c will only
exist in variants where c is selected, while those within negative delimiters c

only exist if c is absent from the variant. Color annotations can be nested,
denoting the conjunction of presence conditions (e.g., 4 3 some none 3 4 in Fig 1,
l. 3, some none will be present in any variant with feature 4 selected but not
feature 3). Likewise [15], only elements of the Alloy AST can be annotated. Thus,
features cannot be assigned, for instance, to operators. Another consequence
is that the model stripped down of its color marks is still a valid Alloy AST
itself.3 In general, any node whose removal does not invalidate the AST can be
marked with features, including all global declarations (i.e., signatures, fields,
facts, predicates, functions and asserts) and individual formulas within blocks.
The marking of local declarations (i.e., predicate and function arguments, and
quantified variables) is left as future work. One exception to the AST validity
rule is allowed for binary expressions with a neutral element, in which case the
sub-expressions can be annotated even if the whole binary expression is not. For
instance, public+ 2 link 2 is interpreted as public+(none → none) in variants
where feature 2 is not selected.

Run and check commands can then be instructed to focus, possibly exactly,
on certain features using a with scope: if not exact, commands will consider
every variant where the scope features are present/absent; otherwise, exactly
the variant with the presence features will be considered (negative features are
spurious in that case). For instance, run {} with 1 , 2 will consider every variant
with feature 1 selected but not feature 2, while run {} with exactly 1 , 2 will
only consider the variant with exactly feature 1 selected. An additional feature

3 We actually force the stripped model to be a valid Alloy model, forbidding, for
instance, declarations with the same identifier associated with different feature sets.

8 Chong Liu, Nuno Macedo, and Alcino Cunha

spec ····= module qualName [[name,+]] import∗ paragraph∗

import ····= open qualName [[qualName,+]] [as name]
paragraph ····= colPara | cmdDecl
colPara ····= c colPara c | sigDecl | factDecl | funDecl | predDecl | assertDecl

sigDecl ····= [abstract] [mult] sig name,+ [sigExt] { colDecl,∗ } [block]
sigExt ····= extends qualName | in qualName [+ qualName]∗
mult ····= lone | some | one

decl ····= [disj] name,+ : [disj] expr
colDecl ····= c colDecl c | decl

factDecl ····= fact [name] block
assertDecl ····= assert [name] block
funDecl ····= fun name [[decl,∗]] : expr block
predDecl ····= pred name [[decl,∗]] block
expr ····= const | qualName | @name | this | unOp expr | expr binOp expr

| colExpr colBinOp colExpr | expr arrowOp expr | expr [expr,∗]
| expr [! | not] compareOp expr | expr (⇒ | implies) expr else expr

| quant decl,+ blockOrBar | (expr) | block | { decl,+ blockOrBar }
colExpr ····= c colExpr c | expr

const ····= none | univ | iden
unOp ····= ! | not | no | mult | set | ∼ | * | ^
binOp ····= ⇔ | iff | ⇒ | implies | − | ++ | <: | :> | �
colBinOp ····= || | or | && | and | + | &
arrowOp ····= [mult | set] → [mult | set]
compareOp ····= in | =
letDecl ····= name = expr
block ····= { colExpr∗ }
blockOrBar ····= block | | expr
quant ····= all | no | mult
cmdDecl ····= [check | run] [qualName] (qualName | block) [colScope] [typeScopes]
typeScopes ····= for number [but typeScope,+] | for typeScope,+

typeScope ····= [exactly] number qualName

colScope ····= with [exactly] [× | c],+

qualName ····= [this/] (name/)∗ name

Fig. 3: Concrete syntax of the colorful Alloy language (additions w.r.t. the Alloy
syntax are colored red).

mark × denotes the empty variant (no features selected), and can be used to
analyze every possible variant (if not exact, the default behavior if no color scope
is provided) or solely the base variant (if exact).

The grammar of the language restricts which elements can be annotated,
but additional type checking rules must be employed to guarantee consistent
colorful models. These are formalized in Figs. 4 and 5 for a kernel of expressions
and paragraphs, respectively, to which the remainder language features can be
converted (except comprehension, omitted for simplicity). Expression arity is
also considered, since this is the only rule enforced by the type system of regular
Alloy. For a mark, ¬ c converts between the positive and negative version; c
denotes a set of marks; and bcc expands c with all marks c such that c 6∈ c.
The context of the type rules is a mapping Γ from variables to the color (and
arity) of their declaration, and a set of marks c under which it is being evaluated.
We denote a singleton mapping as v 7→ (c, n) for a variable v, marks c and arity n,
while denotes the overriding of mappings. An expression (or declaration) e of
arity n is well-typed if Γ, c `n e (arity 0 denotes formulas), and a paragraph p if

Simplifying the analysis of software design variants with a colorful Alloy 9

� ∈ {none, univ}

Γ, c `1 � Γ, c `2 iden

v 7→ (r, n) ∈ Γ r ⊆ c

Γ, c `n v

Γ, c `n e n > 0

Γ, c `n ^e

Γ, c `2 e

Γ, c `2 ∼e

Γ, c `0 e

Γ, c `0 not e

Γ, c `0 e1 Γ, c `0 e2

Γ, c `0 e1 and e2

Γ, c `n e1 Γ, c `n e2 n > 0

Γ, c `0 e1 in e2

Γ, c `n e1 Γ, c `n e2 n > 0 � ∈ {&,+ ,−}

Γ, c `n e1 � e2

Γ, c `n e1 Γ, c `m e2 k = n+m− 2 n,m, k > 0

Γ, c `k e1 � e2

Γ, c `n e1 Γ, c `m e2 k = n+m n,m > 0

Γ, c `k e1 → e2

Γ, c `1 d Γ, c v 7→ (∅, 1) `0 e

Γ, c `0 all v : d | e

Γ, c `n e ¬ c 6∈ c

Γ, c ∪ { c } `n c e c

Fig. 4: Type rules for kernel expressions.

Γ, c `n1
d1 . . . Γ, c `ni

di Γ, c `0 b Γ, c `1 h n1 . . . ni > 0

Γ, c ` a m sig n x h { d1, . . . , di } b

Γ, c `n1
d1 . . . Γ, c `ni

di Γ, c `n e Γ, c `n b n, n1 . . . ni > 0

Γ, c ` fun n [d1, . . . , di] : e b

Γ, c `n1
d1 . . . Γ, c `ni

di Γ, c `0 b n1 . . . ni > 0

Γ, c ` pred n [d1, . . . , di] b

Γ, c `0 b

Γ, c ` fact n b

Γ, c `0 b � ∈ {run, check} ` c

Γ, ∅ ` � n b with c s

Γ, bcc `0 b � ∈ {run, check} ` c

Γ, ∅ ` � n b with exactly c s

Γ, c ` p ¬ c 6∈ c

Γ, c ∪ { c } ` c p c

` c ¬ c 6∈ c

` c , c

Γ, c `n e n > 0

Γ, c `n v : e

Γ, c `n d ¬ c 6∈ c

Γ, c ∪ { c } `n c d c

Γ = decls(∅, p1, . . . , pn) Γ, ∅ ` p1 . . . Γ, ∅ ` pi

` m p1 . . . pi

Fig. 5: Type rules for kernel paragraphs.

Γ, c ` p. A set of marks c is valid, ` c, if it does not contain contradictory marks.
A complete colorful model m comprised by paragraphs p1 . . . pi, is well-typed
if ` m p1 . . . pi. This requires the prior collection of the declarations of global
elements, as calculated by function decls:4

4 Function arity is an oversimplification, since calculating the arity of a bounding
expression requires the arity of other declared sigs and fields.

10 Chong Liu, Nuno Macedo, and Alcino Cunha

decls(c, d1, . . . , dn) = decl(c, d1) . . . decl(c, dn)

decl(c, c d c) = decl(c ∪ { c }, d)
decl(c, a m sig n x { d } b) = n 7→ (c, 1) decls(c, d)

decl(c, v : e) = v 7→ (c, arity(e))

decl(c, pred n [d] b) = n 7→ (c,#d)

decl(c, fun n [d] : e b) = n 7→ (c,#d+ arity(e))

decl(c, run n b w f) = ∅
decl(c, check n b w f) = ∅

Type rules check mainly for two kinds of coloring issues. First, calls to
global elements must occur in a context that guarantees its existence. For in-
stance, signature Secret, declared with feature 1, may not be called in a plain
fact { some Secret } since that fact will be present in variants where secrets
do not exist (those without feature 1). This applies to calls in expressions, the
class hierarchy (the parent signature must exist in every variant that the children
do), and calls to predicates/asserts in run/check commands. Commands are not
annotated, their context being instead defined by the color scope (for exact color
scopes, the context is expanded with the negation of all marks not present in
it, bcc). Second, the nesting of negative and positive annotations of the same
feature is forbidden, since this conjunction of conditions is necessarily inconsistent
(i.e., under 1 1 e 1 1 , e will never exist). This also applies to color scopes of
commands, where the presence and absence of a feature would allow no variant.

4 Analysis

Analysis of colorful Alloy models is achieved through the translation into regular
Alloy. There are two main alternative ways to do this: i) through the generation
and analysis, for every feature combination, of a projected version of the model;
ii) through the generation of an ‘amalgamated’ Alloy model that encompasses the
alternative behaviors of the model family. In order to compare their performance
(see Section 5), we have implemented both translations in our prototype. Since
this preliminary evaluation is inconclusive, the current version of the colorful
Analyzer relies on the amalgamated translation for non-exact color scopes, and
on the projection one otherwise (i.e., for the analysis of a single variant). The
resulting models are also provided to the user, which can be used to better
understand the model family under development (particularly, the projected
versions allow the user to inspect concrete variants).

Figures 7 and 8 present the translation of the colorful model into the amalga-
mated version for paragraphs and expressions, respectively. It is assumed that
the colorful model is well-typed at this stage, and that all unique colorful marks
c0 that occur in it have been collected during that process (i.e., the features
relevant for this family of models). Expressions c+ and c− filter the positive

Simplifying the analysis of software design variants with a colorful Alloy 11

abstract sig Feature {}
one sig F1,F2,F3,F4 extends Feature{}
sig Variant in Feature {}

fact FeatureModel {
(F3 not in Variant and F4 in Variant) implies

some none }

sig StoredModel {
derivationOf : set StoredModel,
. . .,
command : set Command }

sig Link, Command {}

fact {
F3 in Variant implies

command in StoredModel → lone Command else no command
F3 not in Variant implies no Command
. . . }

fact Links {
all : Link | one (public+

(F2 in Variant implies secret else none → none)+
(F3+F4 in Variant implies link else none → none)) � l

F3 not in Variant implies all m : StoredModel | one m � public
. . . }

(a) Amalgamated translation.

sig StoredModel{
public: lone Link,
secret: lone Link,
command: lone Command }

sig Secret in StoredModel{}

sig Link{}

sig Command{}

fact Links {
all l : Link |

one (public+secret) � l
all m : StoredModel |

m � public != m � secret
. . . }

(b) 2 , 3 projection.

Fig. 6: Excerpts of the translations for the Alloy4Fun colorful model.

or negative color marks from a set, respectively. For a model m p1 . . . pi, the
translation Jm p1 . . . piKc0

starts by introducing an abstract signature Feature,
that is extended exactly by singleton signatures that represent each of the relevant
features. Signature Variant, a sub-set of Feature, represents particular feature
combinations under consideration.5 Its acceptable valuations are restricted by
facts introduced during the translation of the color scope of the commands. To
control the existence of structural elements (signatures and fields), their multi-
plicity is relaxed and additional facts only enforce them if the associated features
are present/absent. Even though these elements are always declared, the colorful
type checking rules guarantee that they are not referenced in invalid variants. In
the kernel language, only sub-expressions of binary operators may be associated
with features (blocks of formulas have been converted into binary conjunctions).
Depending on the presence/absence of the relevant features, either the expression
or its neutral element is returned. Commands are also expanded depending on
their color scope, so that only relevant variants are considered. Figure 6a presents
an except of the amalgamated Alloy model for the Alloy4Fun colorful model.

The projection translation is straight-forward: given a concrete variant, it
projects away elements not relevant in that variant. Paragraphs not associated
with a particular variant are completely removed, as are branches of marked
binary expressions. Since colorful Alloy does not natively support feature models,
5 To avoid collisions with the identifiers of the colorful model, the translation actually
uses obfuscated identifiers these signatures.

12 Chong Liu, Nuno Macedo, and Alcino Cunha

Jm p1 . . . piKk...l ≡

m
abstract sig Feature {}
one sig Fk, . . ., Fl extends Feature {}
sig Variant in Feature {}
Jp1K∅ . . . JpiK∅

Ja m sig n x { d1, . . . , di } bKc ≡

a sig n x { Jd1Kc, . . . , JdiKc } JbKc
fact { (Jc+K in Variant and Jc−K not in Variant) implies m n

else no n }
fact { trans(d1) . . . trans(di) }

where
trans(c d c) = trans(d)

trans(v : e) = (Jc+K in Variant and Jc−K not in Variant) implies v in n → e

else no v

Jpred n [d] bKc ≡ pred n [JdKc] JbKc
Jfun n [d] : e bKc ≡ fun n [JdKc] : JeKc JbKc
Jfact n bKc ≡ fact n JbKc

Jrun n b with c sK∅ ≡ run n { (Jc+K in Variant and Jc−K not in Variant) and JbKc } s

Jrun n b with exactly c sK∅ ≡ run n { Jc+K = Variant and JbKc } s

Jcheck n b with c sK∅ ≡ check n { (Jc+K in Variant and Jc−K not in Variant) implies JbKc } s

Jcheck n b with exactly c sK∅ ≡ check n { Jc+K = Variant implies JbKc } s

J c p c Kc ≡ JpK
c∪{ c }

Jv : m eKc ≡ v : set JeKc
Jv : e1 m1 → m2 e2Kc ≡ v : Je1Kc set → set Je2Kc

J i , . . . , j K ≡ J i K, . . . , J j K

J c K ≡ Fc

J× K ≡ none

Fig. 7: Paragraph translation into the amalgamated model with variability.

the 2#c projected models must be generated and analyzed (although the process
can be stopped once one of those models is found to be satisfiable). However,
the codification of feature models proposed in Section 2 actually renders invalid
variants trivially unsatisfiable and instantaneously discharged: the projection of
the model for such variants will end up with a fact enforcing some none, which
is detected during the translation into SAT before the solving process is even
launched. Figure 6b presents an excerpt of a projected Alloy model for the
Alloy4Fun colorful model under an exact scope 2 , 3 .

5 Evaluation

Our evaluation aimed to answer two questions regarding the feasibility of the
approach, prior to developing more advances analysis procedures: i) is the analysis

Simplifying the analysis of software design variants with a colorful Alloy 13

JkKc ≡ k

JnKc ≡ n

J�eKc ≡ �JeKc

Je1 � e2Kc ≡
{

Je1Kc � Je2Kc if � 6∈ {+ , &, or, and}
trans(e1) � trans(e2) otherwise

where

trans(e) ≡ Jc+K in Variant and Jc−K not in Variant implies JeKc else neutral(�, arity(e))

neutral(+ , a) = none → . . . → none︸ ︷︷ ︸
a

neutral(&, a) = univ → . . . → univ︸ ︷︷ ︸
a

neutral(or, a) = some none

neutral(and, a) = no none

J� d | eKc ≡ �JdKc | JeKc
J c e c Kc ≡ JeK

c∪{ c }

Jv : eKc ≡ v : JeKc

Fig. 8: Expression translation into the amalgamated model with variability.

through the amalgamated model feasible? And if so, ii) does it outperform
a preprocessing approach that iteratively analyzes all projected variants? To
answer these questions, we applied our technique to 7 model families with
different characteristics, including some rich on structural and others on behavioral
properties, and mostly encoding variants of system design. This also allowed us
to validate the expressibility and flexibility of the language extension.

5.1 Evaluation subjects

The OwnGrandpa model is based on 2 toy models by Daniel Jackson distributed
with the Alloy Analyzer that share certain elements, one modeling genealogical
relationships and other solving the “I’m My Own Grandpa” puzzle. In [14], the
latter is presented in stages to address different concepts, which are distributed
as 3 distinct Alloy files. Our base variant considers basic biological facts, which
can be extended by 1) introducing Adam and Eve, who are considered as the
first man and woman according to the Bible creation myth; 2) introducing social
norms regarding marriage; and 3) forbidding incestuous marriages. The feature
model forces feature 3 to require 2. The command evaluated checks whether all
persons descend from Adam and Eve in variants with feature 1.

The E-commerce platform model is adapted from [8] and models variants
for the catalog structure of the platform. In the base variant the catalog is a
collection of items, which can be enhanced by 1) allowing items to be classified
in categories; 2) allowing a hierarchy on categories; 3) allowing the assignment
of multiple categories to items; 4) presenting images of items; and 5) presenting
thumbnails summarizing categories. The feature model forces features 2, 3 and 5

14 Chong Liu, Nuno Macedo, and Alcino Cunha

Table 1: Evaluation of the amalgamated and iterative approaches for the examples.
Model NF Command NP NV Scope TA(s) TI(s) SU SP(s)

OwnGrandpa 3 AllDescend 4 4

9 0.3 1.7 5.67 0.9
10 1.0 10.9 10.90 4.0
11 7.3 24.1 3.30 13.4
12 26.1 132.6 5.08 57.1

E-commerce 5 AllCataloged 32 12
10 6.2 13.6 2.19 3.5
11 15.5 57.1 3.68 17.4
12 73.7 182.0 2.47 45.2

Graph 6
Connected 32 6 8 3.2 19.2 6.00 3.4

9 11.9 80.9 6.80 16.7

SourcesAndSinks 32 10 8 7.0 62.1 6.99 12.9
9 187.5 1010.2 5.39 166.0

Alloy4Fun 4

NoCommands 4 4 25 1.8 8.1 4.50 3.1
30 4.4 17.5 3.98 7.7

PublicSecretDisjoint 8 6
20 1.1 6.3 5.73 1.9
25 2.8 19.6 7.00 7.6
30 5.9 37.9 6.42 11.0

Vending 2

Stock 4 4

6 but 4 Int 4.6 8.5 1.85 5.0
8 but 4 Int 5.5 9.7 1.76 4.4
5 but 5 Int 30.7 26.1 0.85 14.8
7 but 5 Int 19.3 28.6 1.48 13.1

Selection 4 4

6 but 4 Int 2.1 2.8 1.33 1.1
8 but 4 Int 2.4 3.7 1.54 1.7
5 but 5 Int 4.5 5.7 1.27 2.7
7 but 5 Int 4.0 9.0 2.25 4.5

Bestiary 4

Injective 8 8 25 6.9 12.8 1.86 3.0
30 9.8 49.6 5.05 16.0

Functional 8 8 25 2.4 11.1 4.59 2.4
30 10.2 33.6 3.29 8.4

Associative 8 8
6 2.8 9.4 3.38 2.5
7 52.5 211.9 4.04 62.2
8 230.2 891.9 3.88 309.1

to require feature 1; feature 5 also requires feature 4. The command evaluated
tests whether all items are cataloged in every variant.

Graph is adapted from a compositional version from [1] that explores different
classes of graphs. The base simply defines nodes and edges, which can be extended
by forcing the graph to be: 1) a multigraph; 2) undirected; 3) a directed acyclic
graph; 4) a tree; 5) edge labeled; and 6) a binary search tree. The feature model
declares feature 2 as incompatible with 3, feature 4 requiring 3, and 6 requiring
both 4 and 5. The evaluated properties are whether the graph is connected and
whether non-empty graphs have at least one source and one sink node.

Alloy4Fun has already been thoroughly explored in Section 2. The evaluated
commands check whether it is possible to create commands, and whether public

Simplifying the analysis of software design variants with a colorful Alloy 15

and private links are always disjoint. Vending is inspired by various vending
machine examples commonly used in SPL literature (e.g., [10]). The base variant
of this dynamic example encodes the process of selecting and serving an item,
extensible by introducing two independent features, 1) the notion of price and
payment; and 2) the possibility to select multiple items. The first command
evaluated tests whether the stock is always non-negative, and the second whether
only elements with positive stock can be selected (all commands assume scope 15
on Time). Finally, Bestiary is a a family of very simple models that we use in classes
to explore different types of relations. Each feature defines relations as 1) injective;
2) functional; 3) total; and 4) surjective. Commands test alternative definitions
of injectivity and functionality, as well as whether relations are associative.

5.2 Results

Table 1 depicts execution times for the examples presented above, for varying
scope. The table presents how many features each model has (NF). Then, for each
pair command/scope of a model, it presents how many variants are considered
by the color scope (NP), how many of those variants are valid according to the
feature model (NV), the analysis time under the amalgamated model (TA), under
the iterative analysis of all projected variants (TI), and the speedup of the former
in relation to the latter (SU). The slowest time for a projected variant (SP) is
also presented. All commands were run 50 times on a MacBook with a 2.4 GHz
Intel Core i5 and 8GB memory using the MiniSAT solver.

Results show that the amalgamated approach is indeed feasible, since it proves
to be always faster than the iterative analysis except for one particular command
of Alloy4Fun (highlighted as bold). The evaluation did however raise an interesting
unexpected question, due to how frequent the analysis of a single projected variant
is slower than the full amalgamated analysis. For OwnGrandpa we identified
the cause as being related to imposing signature multiplicities through the
declaration rather than through a fact. Why this affects the underlying procedure,
and whether it can be explored to improve performance, is left as future work.

6 Related work

Several approaches have been proposed for feature-oriented design. We focus
on those that provide specification languages supported by automated analyses.
fSMV [18] is a compositional approach for SMV, where a base system in pure
SMV can be extended with features, modeled in new textual units. The base
behavior may be overwritten by features, integrated automatically by compilation
into pure SMV so that normal SMV model checkers can be employed. fPromela [5]
provides instead an annotative approach for SPIN’s modeling language, where
features are introduced by a new user-defined data type structure. Features of a
model must be declared as a field of this structure and can be referenced elsewhere
by declaring a variable of this type. fPromela is accompanied by a language for the
specification of feature models, TVL. FeatureAlloy [3] introduces a compositional

16 Chong Liu, Nuno Macedo, and Alcino Cunha

approach for Alloy. Like fSMV, features are encapsulated and modeled separately
from the base system, which are then combined by an external tool in order to
produce a final model. This is achieved by recursively superimposing and merging
selected features; new fields can be added to signatures, while facts, predicates,
or function are overridden, which is unsuited for fine-grained variability points.

The idea to compare some kind of “amalgamated” model checking with the
iterative analysis of all variants has been explored in [6], where the analysis
of fSMV models through a symbolic algorithm for featured transition systems
(FTS) was compared with that of the enumeration of regular SMV models and
analysis with NuSMV. Evaluation showed that the former often outperformed
the enumerative approach. A similar study was performed for fPromela through
a semi-symbolic algorithm for FTS [5], which again proved to be more efficient
in general than the enumerative approach using SPIN.

As previously mentioned, background colors have been proposed as an annota-
tive approach for feature-oriented software development [15]. These are similar to
#ifdef statements, with code fragments only being included when the associated
features are selected. Similarly to our approach, it offers a direct mechanism for
developers to find whether a code fragment is associated with a feature, but in our
approach annotations are part of the model itself, instead being handled by the
supporting tool. Extensions to this work [11] also support negative annotations,
but color them similarly to positive ones. Colors have also been used to highlight
feature annotations in graphical editors for models with variability [7,12].

Several approaches have used Alloy to formalize and analyze feature mod-
els [20], but not models with variability points. These could complement colorful
Alloy, if dedicated support for feature models is deemed useful in the future.

Techniques have been proposed for type-checking SPLs. One such technique
is proposed in [16] but is tailored for Java programs. [8] proposes checking the
well-formedness of a model template against a feature model by mapping OCL
well-formedness rules into to propositional formulas verified by a SAT solver.

7 Conclusion and future work

This work explores an annotative approach to feature-based design that minimally
extends the Alloy language, and its Analyzer, through colorful annotations
and variant-focused analysis commands. Two alternative analysis approaches
have been explored to execute these commands. A preliminary study has been
performed, showing that in general the amalgamated analysis of the model fares
better than the enumeration and subsequent analysis of all projected variants.

Future work is planned on several axes. Regarding the language, we intend to
expand the support to additional operators, as well as explore whether syntactic
features for specifying feature models are needed. Regarding the analysis processes,
we plan to continue exploring the relation between the amalgamated and the
iterative approach, and whether there is some middle ground that could provide
optimal results. We also expect to implement new analysis operations, like run
commands that check all variants for consistency.

Simplifying the analysis of software design variants with a colorful Alloy 17

Acknowledgments

This work is financed by the ERDF - European Regional Development Fund -
through the Operational Programme for Competitiveness and Internationalisation
- COMPETE 2020 - and by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-
0145-FEDER-016826. The third author was also supported by the FCT sabbatical
grant with reference SFRH/BSAB/143106/2018.

References

1. Apel, S., Kästner, C., Lengauer, C.: Language-independent and automated soft-
ware composition: The FeatureHouse experience. IEEE Transactions on Software
Engineering 39(1), 63–79 (2013)

2. Apel, S., Kästner, C.: An overview of feature-oriented software development. Journal
of Object Technology 8(5), 49–84 (2009)

3. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Detecting dependences and inter-
actions in feature-oriented design. In: Proceedings of the IEEE 21st International
Symposium on Software Reliability Engineering (ISSRE). pp. 151–170. IEEE (2010)

4. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Transfer
2(4), 410–425 (2000)

5. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Software Tools for Technology Transfer 14(5),
589–612 (2012)

6. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: Efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE). pp. 335–344. ACM (2010)

7. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Proceedings of the 4th International Conference
on Generative Programming and Component Engineering (GPCE). LNCS, vol. 3676,
pp. 422–437. Springer (2005)

8. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against well-
formedness OCL constraints. In: Proceedings of the 5th International Conference
on Generative Programming and Component Engineering (GPCE). pp. 211–220.
ACM (2006)

9. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again. In:
Proceedings of the 11th International Conference Software Product Lines (SPLC).
pp. 23–34. IEEE (2007)

10. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In:
Proceedings of the 12th International Conference on Software Product Lines (SPLC).
pp. 193–202. IEEE (2008)

11. Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R., Pa-
pendieck, M., Leich, T., Saake, G.: Do background colors improve program com-
prehension in the #ifdef hell? Empirical Software Engineering 18(4), 699–745
(2013)

18 Chong Liu, Nuno Macedo, and Alcino Cunha

12. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping features to
models. In: Companion Volume of the 30th International Conference on Software
Engineering (ICSE Companion). pp. 943–944. ACM (2008)

13. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

14. Jackson, D.: Software Abstractions – Logic, Language, and Analysis. MIT Press,
revised edn. (2012)

15. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Proceedings of the 30th International Conference on Software Engineering (ICSE).
pp. 311–320. ACM (2008)

16. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based
product lines. ACM Transactions on Software Engineering and Methodology 21(3),
14:1–14:39 (2012)

17. Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva, A.C.R., Ramalho,
M.S., Silva, D.C.: Sharing and learning Alloy on the web. CoRR abs/1907.02275
(2019)

18. Plath, M., Ryan, M.: Feature integration using a feature construct. Science of
Computer Programming 41(1), 53–84 (2001)

19. Schaefer, I., Hähnle, R.: Formal methods in software product line engineering. IEEE
Computer 44(2), 82–85 (2011)

20. Sree-Kumar, A., Planas, E., Clarisó, R.: Analysis of feature models using Alloy:
A survey. In: Proceedings of the 7th International Workshop on Formal Methods
and Analysis in Software Product Line Engineering (FMSPLE@ETAPS). EPTCS,
vol. 206, pp. 46–60 (2016)

	Simplifying the analysis of software design variants with a colorful Alloy

