X-Ray: Monitoring and analysis of
distributed database queries

Pedro Guimaraes José Pereira

INESC TEC & U. Minho, Portugal
pg22834@alunos.uminho.pt, jop@di.uminho.pt

Abstract

The integration of multiple database technologies, including both SQL
and NoSQL, allows using the best tool for each aspect of a complex prob-
lem and is increasingly sought in practice. Unfortunately, this makes it
difficult for database developers and administrators to obtain a clear view
of the resulting composite data processing paths, as they combine op-
erations chosen by different query optimisers, implemented by different
software packages, and partitioned across distributed systems.

This work addresses this challenge with the X-Ray framework, that al-
lows monitoring code to be added to a Java-based distributed system by
manipulating its bytecode at runtime. The resulting information is collec-
ted in a NoSQL database and then processed to visualise data processing
paths as required for optimising integrated database systems. This pro-
posal is demonstrated with a distributed query over a federation of Apache
Derby database servers and its performance evaluated with the standard
TPC-C benchmark workload.

1 Introduction

The performance of data management systems depends on how operations are
mapped to different hardware and software components. This mapping is driven
by the developer, by query compilation and optimisation in the system itself,
and finally by database administrators. Obtaining the best performance thus
depends on monitoring and analysing such mapping. Relational database man-
agement systems have traditionally included tools to expose the execution plan
for a query, identifying what implementation is used for each abstract rela-
tional operation, in what order, and including a detailed accounting of 1/0O
operations, memory pages, and CPU time used. As an example, in Postgr-
eSQL this is provided by EXPLAIN ANALYZE [27] and presented graphically with
pgAdmin3 [14].

Recently, driven by novel applications, there has been a growing trend
towards using different data management techniques and tools for different
purposes, instead of always resorting to relational database management sys-
tems [26]. For instance, the CoherentPaaS platform-as-a-service integrates vari-
ous SQL and NoSQL data stores in a common framework [3, 20]. Moreover, the
large scale of current applications means using distributed data stores that scale

out with data size and traffic, such as HBase, trading off in the process query
processing capability and transactional ACID guaranties.

This poses several challenges to monitoring and analysis. First, some of the
data stores now commonly used have only minimal support for data collection
on individual operations, providing only aggregate resource measurements. In
fact, the additional application code needed for integration and to overcome the
limitations of NoSQL data stores is likely to have no monitoring capabilities
at all. Second, even when monitoring tools are available for the required data
stores, they provide partial views that cannot easily be reconciled and integrated
into a coherent observation, namely, by tracking its relation to a common user
request. Finally, when multiple instances of a specific data store are used for
scale out, such as in replication and sharding configurations, distributed mon-
itoring information has to be collected and organised according to its role in a
global operation, for instance, to reason about load balancing and parallelism.

This work addresses these challenges with X-Ray, a framework for monit-
oring and analysis of distributed and heterogeneous data processing systems.
First, it provides a way to add monitoring code to applications and data stores
running in the Java platform. By using bytecode instrumentation, this does
not rely on the availability of the source code and can be applied condition-
ally to avoid overhead in production systems. Second, it provides mechanisms
for tracking the interaction of multiple threads, on synchronisation primitives,
and of distributed processes communicating with sockets. Finally, it provides a
tool to reconcile monitoring data from multiple software components in a dis-
tributed system taking into consideration their relation to actual user requests,
thus providing a cross-cutting unified view of the system’s operation.

The rest of this paper is structured as follows: Section[2]introduces the X-Ray
approach and how it is applied to monitor data processing systems. Section
describes how it is implemented using bytecode instrumentation. Section
evaluates the proposal with a case study and a benchmark. Section [5| contrasts
the proposed approach with related work. Finally, Section [f] concludes the

paper.

2 Approach
/ Hypervisor \ / X-Ray Capture X-RayStorage\ &-RayAnalysis\
/" 0S \ and Processing | | and Visualization
VM
N S HBase
J Agent L
Application Hf M » F P Logback
X 4
J Analysis
Library
Asm L |
P/ Jetty
~ F S
~ j\§ - F
\ " %

Figure 1: Overview of the X-Ray architecture.

Figure|[l| presents an overview of the proposed X-Ray architecture. From left
to right, X-Ray targets distributed applications and data stores with software
components in multiple servers, virtual hosts, and Java virtual machines. These
applications generate monitoring events through the X-Ray Capture layer to
the X-Ray Storage and Processing layer, to be used in the X-Ray Analysis and
Visualisation layer. Label icons identify the main configuration points for the
system.

The main component of X-Ray Capture uses bytecode instrumentation,
a mechanism for modifying compiled programs. It uses asm[I0], a stateless
bytecode manipulation library modelled on the hierarchical visitor pattern [15].
This instrumentation inserts instructions to generate logging events and main-
tain context. This is the main configuration point for monitoring Java pro-
grams. Bridges or file processing can be used to obtain information about non-
X-Ray-ready programs. Finally, an agent periodically monitors and collects
metrics about the underlying Java runtime from Java Management Extensions
(JMX) [12].

Bytecode instrumentation can be customised by choosing what methods to
alter and what operations to perform. Logback enables processing various ac-
tions for the same message. Those actions are executed by entities called ap-
penders, programmable in Java, and configurable with a simple XML or Groovy
file.

The resulting events are routed through Simple Logging Facade for Java
(slf4j), a logging facade for Java [23], and Logback, a logging framework im-
plementing the slf4j API[22]. Logback works as an event spooler: it enriches
events with additional information and delivers them asynchronously to the X-
Ray Storage and Processing module. In the Storage and Processing module,
events can be stored in HBase (the sink database), that can be configured to
sustain high-throughput writes.

The Analysis Library contains analysis procedures applicable to the monit-
oring data, specially concerned with request tracking across software modules
and components. It joins logs originating from different machines and produces
a global coherent representation, interpreting remote communication events and
pseudo-nodes labelled with the socket address used for the communication and
connecting them in the right place on the graphs. A visual representations is
then made available to the end-user, with Graphviz or D3.js, or even exported
to enable further processing and interaction with external systems.

2.1 Request Tracking

The key feature of the X-Ray Capture layer is being able to chain operations
performed on behalf of each end-user request, to highlight the decomposition
of a data processing request in terms of software components and hardware
resources. This is achieved by using tags and probes, as follows.
Instrumentation provides the ability to add tags to entities being observed.
A tag is an automatically generated unique identifier that increases the data
that can be collected by X-Ray, motivated by the recognition that certain com-
putations happen in distinct contexts, even if the executed code is the same.
In detail, a tag can be associated with an object or thread and through con-
figuration instructions it is possible to generate, remove, move, or copy it to a

thread or object when a method is executed. Thus, during execution tags can
be associated with multiple threads and objects and flow through them.

It is also possible to associate a tag with message send and receive events
in sockets thus supporting communication between different virtual machines.
This takes advantage of FIFO order and the unique identifier of the socket
(including both addresses and ports, as well as a timestamp) to establish a
mapping between tags existing at both ends.

Probes implemented in X-Ray allow information to be collected on entry
and exit(s) of selected methods. The target data — name and reference of ex-
ecuting class, name and signature of the method, the current thread and the
parameters/return value — are accessible to all defined probes. Moreover, the
probe also collects tags associated with the current object and thread.

This makes it is possible to follow a logical work unit, even if it is scattered
across multiple threads and processes. The simplest usage just adds a tag to
the thread on starting to execute the request and removes it on completion.
This makes all work done by that thread, regardless of the software component
invoked, to be associated with that request.

Consider a more complex example of an application that uses a background
thread to periodically write multiple outstanding data items produced by differ-
ent clients. This is harder to track as the work done by the background thread
contributed to multiple requests. With X-Ray, one would copy the tag from the
request thread to the object queued for the background writer. On reception,
the tag would be copied from the object to the background writer thread. When
the background thread uses the I/O resource, it would be tagged with the tags
of all corresponding requests.

Finally, consider an example of a client/server system, where a request is
partially executed at the client and at the server. In this case, one would tag
the client thread upon starting the request, but also server threads whenever
a remote invocation is received. Moreover, when a remote invocation is issued
and received, socket tagging will map client and server side tags.

2.2 Configuration

X-Ray can be configured in two ways: using annotations or configuration files.
Both have the same expressive power, but the second approach is more flexible.
If these two configurations strategies are used in parallel and conflict in some
parameters, the value from configuration files will override the annotations.

Annotation use implies access to source code of the program to alter, and
each change in the configuration requires a program recompilation to take ef-
fect. It also results in configuration being spread over several files instead of
a centralised place to read or alter everything. But this solution has certain
advantages: it is simple and comes bundled with the code. Also, because it is
applied directly on the entity to examine, it is not affected by refactoring.

On the other hand, configurations written in files do not require access
to source code. Likewise, it is not necessary to recompile the program after
each change — simply restarting the program is enough. Configurations are all
grouped and separated from the code, which eases its reading or alteration and
is architecturally cleaner. As for disadvantages, it is fragile in case of refactor-
ing. Entities (class, method and package) identifiers are not exactly equal to

the entities they represent so a manual search and replace may fail to modify
them, and likewise IDE-assisted refactoring can also be ineffective.

2.3 Usage Methods

The first alternative to apply X-Ray is to use a custom class loader. It is
configured to read configuration files and react accordingly to classes to be
loaded, selectively altering them or returning the original class unchanged, as
appropriate.

Because of security restrictions preventing deep and potential unsafe changes,
it is not possible to alter methods in the java.* packages or native methods.
Also if X-Ray attempted to further alter the program representation, by chan-
ging multiple times the same class, the Java Runtime Environment (JRE) would
give an error (a java.lang.LinkageError) about an attempted duplicated class
definition, which is disallowed. This makes it impossible to change instrument-
ation properties during the application run and seeing these changes take effect.
The solution is to use the Java Agent or modify the desired configurations and
restart the program through the X-Ray class loader.

Another solution is to statically modify the bytecode. Instead of modifying
the program each time it is executed, it can be done just once. This is how
JarRecompiler works: it alters all the necessary files from a JAR and saves
them to a new file. This new JAR can then be normally used.

As the bytecode alteration is done just once, clients of the altered code do
not need the asm library to run it. A disadvantage of this method is that it is less
flexible - it is necessary to do a JAR recompilation every time a configuration
is changed and one wants to see the effects of those changes. To mitigate it,
a Maven plugin was developed for generating the altered JAR in the package
phase. It is also not possible to alter native methods. As the recompiler acts on
JAR files, it is possible to modify methods in the java.* packages if the input
JAR corresponds to one where JRE classes are, but this is not recommended as
it would permanently alter them.

The last option is a Java Agent [21] java.lang.instrument documentation].
Depending on the support provided by the JVM, it can be initiated along with
the program by passing an argument to the command line or it can be attached
to a running instance after it has started. Similar to static recompilation, it is
transparent for all normal code interactions and, as the class loader solution, to
test some change, a simple program re-run is enough. Depending on how agents
are configured, they have the ability to alter JRE classes and native methods
and redefine classes already instrumented. A disadvantage of the use of agents
is that not all Java Virtual Machines (JVMs) support it. Among those that do,
there is no standard way to do some things, specially initiating an agent after
the virtual machine start-up [16, § 8.4.3.4].

3 Implementation

Instrumentation of Java programs to insert tags and probes starts by reading
configuration files, if available, adding their commands to the framework’s in-
ternal state. Classes are then loaded, either due to the program running or by
statically traversing the JAR file, depending on the usage method chosen. For

each of them, it scans the file and for each method decides if it should be instru-
mented using configuration from files and configurations acquired by reading
annotations in the currently analysed class and other loaded classes.

This may require visiting the bytecode of super-classes or of the implemented
interfaces if they were not already visited, as the decisions on a class may depend
on information contained in other classes. If any method should be altered, the
new code for the method body is generated. After going through all the class
code one of these situations will happen:

1. The original code of the class was altered at some point, and so this new
code is returned to the JVM to be used by the program.

2. No original code was instrumented by lack of indications; if so the original
code is simply returned.

This process happens again each time a class is needed, until all are loaded and
transformed. This approach is only possible because the binary representation
of Java programs corresponds to a well specified, platform independent format
that can be manipulated.

If any method was changed for analysis, it is altered in at least two sites:
its entry and exit(s). The exits can be normal — from return statements — or
exceptional — from throw statements. At method entry and exit the method
and class names are collected, as well as a reference to the current object and
executing thread. At method entry, parameters will be saved and at method
exit, the return value is stored too.

Each time the execution flow passes through the method, indications of
passage through its entry and an exit are given to X-Ray and optionally from
there to other systems and all the collected information made available. Remote
communication events are also listened for and reported.

3.1 Selection of Instrumentation Targets

X-Ray operates every time it is called to resolve a class, meaning, to return
the bytecode associated with a class. The decision whether to instrument or
not is made for each method, on a case-by-case basis. A method m in class C
will be altered by X-Ray if there is configuration on: the analysed method m;
m’s enclosing class C; the package of C; the original method declaration or a
super implementation of m, if that indication is inheritable; a supertype that
C extends or implements, if that type’s configurations are to be inherited; or
a package that contains a supertype C' extends or implements, but only if that
indication is inherited. Otherwise, the original method code is returned and the
rest of the class is visited. The given conditions are tested by the order they
were presented.

When a settings conflict arises the priority is given to the more specific
indications, followed by the closest ones. For example if the class C' of method m
should log events with the TRACE level and there is an original implementation
of m with log level of DEBUG, m will have the DEBUG level.

3.2 Modifications to Targets

X-Ray adds fields and other information needed for its operation. The first
change is the addition of a reference to a slf4j logger object as a new static

field. Tags also require the creation of a new field. These constructed fields
are named in an unusual way to avoid colliding with existing code (using the
“$ xray_” prefix) and with a special marker to indicate they were generated
(their ACC_SYNTHETIC flag is set). This might be useful to other class manipu-
lation or reading tools to warn them it might not be necessary to process these
constructs or to enable the use of all tools simultaneously.

Before copying the original instruction to the new class representation, the
necessary logging instructions are inserted. These instructions capture all the
relevant execution information and pass it through calls to methods on core
X-Ray classes, needed at runtime. These X-Ray methods are responsible for
producing logging events following a certain structure, sending them to the
defined outputs and invoking any user-defined probes.

Each event has a unique identifier associated with it. The identifier is com-
posed of a VMID (Virtual Machine Identifier) and a sequence number. The
VMID is an unique identifier for each JVM, based on some of its unique prop-
erties and it is valid as long as its IP address remains unique and constant
(cfg. [21) java.rmi.dgc.VMID documentation][2I, java.rmi.server.UID doc-
umentation]). The sequence number is a local identifier that is incremented
once after each logged event. Each event has a type (like call logging, remote
communication or performance metrics) and a time stamp.

At method entry each parameter value will be saved by X-Ray. For objects,
a reference is saved and for primitive types, boxing of the original value is
performed. At method exit, before the terminating statements, the return value
or exception is also saved, as well as a flag indicating whether the method
returned normally or not. Stored data includes also the name and reference of
the current object (Java’s this), the method name, signature and the running
thread.

For the most part they are passed using slf4j parametrised messages, if not
directly obtainable from logback. Other information is copied using Mapped
Diagnostic Context (MDC), a per-thread key-value map, available at run-time
in several code locations.

4 Evaluation

4.1 Case Study

The first experiment is to monitor a distributed query. The query is made to
a federated SQL database management system built with Apache Derby. That
database is composed of two nodes, communicating with each other. The final
element of the distributed query is the client, which initiates the computation
by making a request to one the servers. To satisfy the request the server must
execute a sub-query on the other server, join the partial results, and return the
final values of the query to the client. The goal in this case study is to apply
the X-Ray framework to assess if it is possible to monitor this process, see how
to do it and observe the obtained results.

Most of the configuration needed for X-Ray to do this is shown in Figure
In detail, lines 1 to 7 set probes on the base class of relational operators. Then,
in line 8, the package implementing such operators is declared as being instru-
mented. This means that all classes found extending such base class, i.e., all

xray("org.apache.derby.iapi.sql.execute") {
instrument ("NoPutResultSet") {
inherit = true
log "openCore()V"
log "getNextRowCore()Lorg/apache/derby/iapi/sql/execute/ExecRow;"

}
xray ("org.apache.derby.impl")

0 N O U A W N

-
o ©

xray("org.apache.derby.client.am") {
instrument ("NetResultSet") {
tag "next()Z"
send("next()Z", "?laddr", "?raddr")
¥
}
xray("org.apache.derby.impl.drda") {
17 instrument ("DRDAConnThread") {

I T
o N

18 tag "processCommands ()V"

19 receive("processCommands ()V", "?laddr", "?raddr")
20| }

21|}

Figure 2: X-Ray configuration for federated Apache Derby.

operator implementations, get instrumented.

Moreover, lines 10 to 15 target the JDBC driver, which is the entry point
into Apache Derby. It sets a tag on entry of the next () method that is used to
retrieve data. Moreover, it links this tag to a message being sent on the socket
connection to the server. Some other methods in the client driver (not shown)
are also instrumented in the same manner. Finally, lines 16 to 21 target the
server-side protocol handler, by setting a tag on each received message and then
linking it to the context of the client socket, thus relating it to the corresponding
client-side context. This requires minor changes to Derby’s source code, to
expose the communication ports to X-Ray.

As a result we obtain Figures and They were obtained by saving
the logs produced by client and database servers to HBase, and by invoking the
analysis component to read that information from HBase, reconstruct it, and
add relevant remote communication event nodes between the datastore nodes
and the client.

The resulting flow graph shown in Figure was rendered by d3.js and
served by Apache Jetty. It is accessible and continuously updated at runtime.
Each bar represents a logged object and its width how many times it emitted
logging events to X-Ray. Figure was produced by Graphviz from a dot file
also being continuously updated. It is similar to other graphs used to repres-
ent relationships between objects. X-Ray could be used to track the relations
between methods, as presented in [7), 8]. All these graphics, additionally, have
the added feature of also representing remote connections.

Note that node labelled as “[8]” denotes a socket connecting two processes
and that the relation between parts of the computation taking place in different
processes is done automatically by the X-Ray system. Furthermore, most of the
nodes represent classes whose name ends in ResultSet. Except the one labelled
NetResultSet, all of them were obtained from the configuration in lines 1 to 8
of Figure [2} the inheritance of configuration makes this succinct. Finally, it is
clear that the structure of the computation and the amount of data handled by

ProjectRestrictResultSet 1]

ProjectRestrictResultSet [12]

GroupedAggregateResultSet [13]

ProjectRestrictResultSet [14]

] | g

(a) Nested operator invocations. (b) Data-flow between operators.

Figure 3: Visualisations of a distributed SQL query.

each software component is exposed to developers and administrators.

4.2 Performance

The performance impact of X-Ray instrumentation and probes was measured by
starting a Derby server and running the TPC-C transaction processing bench-
mark [I3]. The goal is to obtain significant statistics about the state of the
database over the course of the benchmark, to see what was the overhead of
using X-Ray and if it was even possible to instrument such a large code base de-
veloped by a third-party and that potentially makes use of features that conflict
with the framework.

The database where the TPC-C benchmark was run is a single warehouse
with approximately 200 MB of data and for the workload, 1 (one) client making
requests without delay between them (i.e. with no think time). Two machines
were used for these tests, both with 128 GiB of RAM, 24 cores and a disk with
7200 rpm. Their OS was Ubuntu 12.04.3 LTS (GNU/Linux 3.2.0-27-generic
x86_64) and their Java environment was the Oracle JVM version 1.7.0.60. One
of them was used to run the Apache Derby instance plus the benchmark client
and the other was used to run HBase.

Table [1| shows results obtained with the following configurations:

Baseline No instrumentation was used.

Table 1: Execution times of running TPC-C on Derby.

Configuration Latency (ms) Throughput (tpmC)
Baseline 50.2 526
Instrumented 57.3 478
Logging to text file 64.1 414
Logging to HBase 67.4 7
Asynchronous HBase 63.3 422

Lossy asynchronous to HBase 61.4 437

Table 2: Space occupied and number of lines written during the benchmark.

Configuration Size (Bytes) Size (lines)
Logging to File 317024499 2040975
Logging to HBase 436 240 260 760

Instrumented Run with the instrumentation turned on, but not using any
appender.

Logging to file Using TPC-C with instrumentation plus enabling logs to stdout
and redirecting them to a file.

Logging to HBase Having the HBase-appender save logging information to
HBase. In the HBase-appender auto-flush was turned off.

Asynchronous to HBase Using the previous appender, but wrapped under
an asynchronous appender [2, 4] that performs logging in other threads,
asynchronously.

Lossy synchronous to HBase Again, the HBase-appender is employed, but
this time wrapped under the asynchronous appender provided by Log-
back [I§] that may drop messages at times of congestion.

For the Logging to file and Logging to HBase tests, Table [2| shows the size
occupied in disk at the end of the benchmark and the number of lines written.
In the case of the Logging to file test, the number of lines and size refer to the
written file, and in the case of the Logging HBase run, size is the size of the data
written to HBase during the benchmark, and number of lines is the number of
written entries on its tables. It is possible to recognise that data written to
HBase was much less than what was written in the file. But considering the
total number of transactions, we have Hbase with 436240/877 ~ 497.42 and
file with 317024499/6400 ~ 49535.08 bytes per transaction. This means that
each set of events representing a transaction takes ~ 99.6 times more space to
represent in a file than in a table in HBase. The Logging to file run is portrayed
to show an upper limit to logging load. In practice, better performance could
be achieved by tweaking some parameters, such as changing Logback appender
layout, delaying writes to disk or using several log files and removing old ones.

It is possible to see that when using instrumentation (Instrumented) the
benchmark ran at 90.87% of the original speed; that is only a 9.13% slowdown.
Although simply using logging events to HBase synchronously incurs an heavy
penalty, when using an asynchronous approach, the result is far more acceptable

10

— 88.28% of the simple instrumentation speed, or 19.77% of the original Baseline
run. If one does not care about the possibility of dropping events, a better
16.92% can be achieved.

5 Related Work

There are already some monitoring or analysis solutions for distributed contexts.
Their purposes range from assisting debugging, identifying system bottlenecks
and network problems, discovering most frequent paths between nodes, to de-
tecting potential intrusions.

NetLogger [17] has a architecture similar to X-Ray, but no support for auto-
matic insertion of logging statements. To use it developers need to add explicit
invocations to the framework to benefit from it, which forces access to source
code. Pinpoint [T11] does monitoring of components in a distributed system auto-
matically, by tagging client requests with an identifier. Although useful, it only
works for J2EE applications. Pip [24] allows users to configure its operation
by using a domain-specific language. It with predicates about communications,
times, and resource consumption can be made and at runtime those predicates
can be validated or invalidated. Relations between components can be discerned
by the construction of causal paths, with the help of the provided configurations
and collected information. As with NetLogger, the source code is required, as
annotations are used to generate events. iPath [9] is a dynamic instrumentation
tool with some interesting properties for a distributed setting. It was conceived
and works on distributed systems. It also allows a more focused analysis as the
methods to analyse can be chosen and this selection can be altered at run-time.
Yet it is a native solution and although one can choose what methods to instru-
ment, when the call stack is walked to update the calling context information, all
methods including those that were not declared for observation will be recorded
in the calls information structure. Aspect-Oriented Programming (AOP) [19]
has also been used for monitoring. However, on one hand it provides too much
freedom when altering programs, hence, additional complexity, and on the other
hand does not provide the event spooling and processing components of X-Ray.
Frameworks such as AspectJ [I] could also have been used instead of asm [10],
although this would add some overhead to class loading in comparison to the
simple processing done now.

All these proposals, like X-Ray, require some information about the software
to examine. This enables the extraction of more targeted and meaningful in-
formation. On the other hand, treating target sysems as black boxes makes the
tool applicable when no internal details are known.

A system that follows the latter model is presented in [25]: considering that
information about the components or middleware of a distributed service may
be minimal and the source code unavailable, the proposed request tracing tool
considers each component as a black box, a device that receives input, processes
it in an unknown fashion and returns an output. As the processing is opaque
to the rest of the system, the tracing tool follows requests, as they are passed
between components until the computation associated to the request is pro-
duced (and optionally sent to the entity that made the request). A means to
recognise the most frequent paths is also provided. This analysis is made on-line
as the system and the logger nodes are running, without the need to stop them.

11

Information can be collected on demand, meaning that it can enabled or dis-
abled, or done intermittently, using sampling. The detection of communication
from one component to the others is made within the kernel when a send or
receive system call is used. That detection depends on SystemTap [5] hence this
solution it is not OS independent and has no JVM support implemented. An-
other similar solution is present in [6]. It only traces network messages, without
any knowledge of node internals or message semantics and infers the dominant
causal paths through them. It uses timing information from RPC messages and
signal-processing techniques to infer inter-call causality. But although the prin-
ciple that no information exists about the components is a valid one and the
results obtained are useful, for X-Ray different assumptions were made: even
if the source code of a component cannot be altered and deployed, it is still
available or its general API is, and so should be used.

6 Conclusions

In this paper, X-Ray, a framework for distributed systems analysis and monit-
oring was presented. Due to its flexible instrumentation mechanism, accepting
configurations and altering bytecode accordingly, it is applicable to any system
on the Java platform. The main contribution is the ability to track requests
across thread and process boundaries, and to expose distributed data processing
operations. Unlike existing solutions, it tries to balance the need for application-
specific information, that normally require source code, with the goal of working
with highly heterogeneous components.

During the qualitative analysis made when applying X-Ray to Apache Derby,
its applicability and usefulness when instrumenting and analysing a large code-
base was demonstrated. Derby is particularly demanding, as it makes use of
dynamic code generation, which was dealt with by using the JVM agent. On
the other hand, a certain amount of knowledge of the source code was still
required, specially to make communication ports available to instrumentation
code, but with mechanisms such as reflection and callbacks, access to the source
at runtime is still not required. As for the quantitative measurements made,
they confirmed that the proposed solution is lightweight and its usage does not
impose an expensive overhead.

Acknowledgements

This work has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under
grant agreement no 611068, project CoherentPaaS — Coherent and Rich PaaS
with a Common Programming Model (http://CoherentPaaS.eu).

References

[1] The aspectj project. http://www.eclipse.org/aspectj/

[2] Disruptor-based AsyncAppender for Logback. https://github.com/
reactor/reactor/tree/master/reactor-logback

12

http://CoherentPaaS.eu
http://www.eclipse.org/aspectj/
https://github.com/reactor/reactor/tree/master/reactor-logback
https://github.com/reactor/reactor/tree/master/reactor-logback

3]

[10]

[11]

Factsheet CoherentPaaS. http://coherentpaas.eu/wp-content/
uploads/sites/2/2014/01/CoherentPaaS_Factsheet_v0.21_0.pdf

Project Reactor Homepage. http://projectreactor.io/

Systemtap. https://sourceware.org/systemtap/

Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitachar-
oen, A.: Performance debugging for distributed systems of black boxes.
In: Proceedings of the Nineteenth ACM Symposium on Operating Sys-
tems Principles. pp. 74-89. SOSP ’03, ACM, New York, NY, USA (2003),
http://doi.acm.org/10.1145/945445.945454

Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance coun-
ters with flow and context sensitive profiling. SIGPLAN Not. 32(5), 85-96
(May 1997), http://doi.acm.org/10.1145/258916.258924

Ball, T., Larus, J.R.: Efficient path profiling. In: Proceedings of the 29th
Annual ACM/IEEE International Symposium on Microarchitecture. pp.
46-57. MICRO 29, IEEE Computer Society, Washington, DC, USA (1996),
http://dl.acm.org/citation.cfm?id=243846.243857

Bernat, A.R., Miller, B.P.: Incremental call-path profiling: Research art-
icles. Concurr. Comput. : Pract. Exper. 19(11), 1533-1547 (Aug 2007),
http://dx.doi.org/10.1002/cpe.v19:11

Bruneton, E., Lenglet, R., Coupay, T.: Asm: a code manipulation tool to
implement adaptable systems. http://asm.ow2.org/current/asm-eng.
pdf

Chen, M., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem
determination in large, dynamic internet services. In: Dependable Systems
and Networks, 2002. DSN 2002. Proceedings. International Conference on.
pp. 595-604 (2002)

Corporation, O.: Monitoring and Management of the Java Virtual Machine
— Overview of the JMX Technology (The Java ™Tutorials). http://docs.
oracle.com/javase/tutorial/jmx/overview/javavm.html

Council, T.P.P.: TPC-C Homepage — Version 5.11. http://www.tpc.org/
tpcc/

pgAdmin Development Team, T.: pgAdmin III 1.20.0 documentation.
http://pgadmin.org/docs/1.20/query.html

DiFalco, R.A.: Hierarchical visitor pattern. Wiki Wiki Web http://c2.
com/cgi/wiki?HierarchicalVisitorPattern (2011)

Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The Java Lan-
guage Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st
edn. (2014)

13

http://coherentpaas.eu/wp-content/uploads/sites/2/2014/01/CoherentPaaS_Factsheet_v0.21_0.pdf
http://coherentpaas.eu/wp-content/uploads/sites/2/2014/01/CoherentPaaS_Factsheet_v0.21_0.pdf
http://projectreactor.io/
https://sourceware.org/systemtap/
http://doi.acm.org/10.1145/945445.945454
http://doi.acm.org/10.1145/258916.258924
http://dl.acm.org/citation.cfm?id=243846.243857
http://dx.doi.org/10.1002/cpe.v19:11
http://asm.ow2.org/current/asm-eng.pdf
http://asm.ow2.org/current/asm-eng.pdf
http://docs.oracle.com/javase/tutorial/jmx/overview/javavm.html
http://docs.oracle.com/javase/tutorial/jmx/overview/javavm.html
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://pgadmin.org/docs/1.20/query.html
http://c2.com/cgi/wiki?HierarchicalVisitorPattern
http://c2.com/cgi/wiki?HierarchicalVisitorPattern

[17]

[25]

Gunter, D., Tierney, B., Crowley, B., Holding, M., Lee, J.: Netlogger:
A toolkit for distributed system performance analysis. In: Proceedings of
the 8th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems. pp. 267—. MASCOTS ’00,
IEEE Computer Society, Washington, DC, USA (2000), http://dl.acm.
org/citation.cfm?id=580760.823762

Giilcti, C., Pennec, S., Harris, C.: The logback manual, Chapter 4: Append-
ers. http://logback.qos.ch/manual/appenders.html#AsyncAppender

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., marc Lo-
ingtier, J., Irwin, J.: Aspect-oriented programming. In: ECOOP. Spring-
erVerlag (1997)

Kolev, B., Valduriez, P., Jimenez-Peris, R., Martinez-Bazan, N., Pereira, J.:
CloudMdsQL: Querying heterogeneous cloud data stores with a common

language. In: Gestion de Données — Principes, Technologies et Applications
(BDA) (2014)

Oracle Corporation: Java Platform, Standard Edition API Specification,
8 edn.

QOS.ch: Logback Project. http://logback.qos.ch
QOS.ch: Simple Logging Facade for Java (SLF4J). http://www.s1f4j.org

Reynolds, P., Killian, C., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat,
A.: Pip: Detecting the unexpected in distributed systems. In: Proceedings
of the 3rd Conference on Networked Systems Design & Implementation
- Volume 3. pp. 9-9. NSDI’06, USENIX Association, Berkeley, CA, USA
(2006), http://dl.acm.org/citation.cfm?id=1267680.1267689

Sang, B., Zhan, J., Lu, G., Wang, H., Xu, D., Wang, L., Zhang, Z., Jia, Z.:
Precise, scalable, and online request tracing for multitier services of black
boxes. IEEE Transactions on Parallel and Distributed Systems 23(6), 1159—
1167 (2012)

Stonebraker, M.: Technical perspective: One size fits all: An idea whose
time has come and gone. Commun. ACM 51(12), 76-76 (Dec 2008), http:
//doi.acm.org/10.1145/1409360.1409379

The PostgreSQL Global Development Group: PostgreSQL Document-
ation 9.4: EXPLAIN. http://www.postgresql.org/docs/9.4/static/
sql-explain.html

14

http://dl.acm.org/citation.cfm?id=580760.823762
http://dl.acm.org/citation.cfm?id=580760.823762
http://logback.qos.ch/manual/appenders.html#AsyncAppender
http://logback.qos.ch
http://www.slf4j.org
http://dl.acm.org/citation.cfm?id=1267680.1267689
http://doi.acm.org/10.1145/1409360.1409379
http://doi.acm.org/10.1145/1409360.1409379
http://www.postgresql.org/docs/9.4/static/sql-explain.html
http://www.postgresql.org/docs/9.4/static/sql-explain.html

	Introduction
	Approach
	Request Tracking
	Configuration
	Usage Methods

	Implementation
	Selection of Targets
	Modifications to Targets

	Evaluation
	Case Study
	Performance

	Related Work
	Conclusions

