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Transparent Current Mirrors With a-GIZO TFTs:
Neural Modeling, Simulation and Fabrication

Pydi Ganga Bahubalindruni, Vı́tor Grade Tavares, Pedro Barquinha, Cândido Duarte, Pedro Guedes de Oliveira,
Rodrigo Martins, and Elvira Fortunato

Abstract—This paper characterizes transparent current mir-
rors with n-type amorphous gallium–indium–zinc–oxide (a-GIZO)
thin-film transistors (TFTs). Two-TFT current mirrors with dif-
ferent mirroring ratios and a cascode topology are considered. A
neural model is developed based on the measured data of the TFTs
and is implemented in Verilog-A; then it is used to simulate the
circuits with Cadence Virtuoso Spectre simulator. The simulation
outcomes are validated with the fabricated circuit response. These
results show that the neural network can model TFT accurately,
as well as the current mirroring ability of the TFTs.

Index Terms—Transparent current mirrors, amorphous
gallium–indium–zinc–oxide thin-film transistor (a-GIZO TFT),
neural modeling.

I. INTRODUCTION

A MORPHOUS gallium–indium–zinc–oxide (a-GIZO)
thin-film transistor (TFT) technology has potential in-

dustrial applications in large-area, low-cost transparent display
technologies such as AMOLED [1] and ultra definition LCD
[2]. Fabrication can be achieved at low temperature, followed
by heat treatment not exceeding 200 C. Furthermore, the high
electrical mobility 20 cm /V s [3] compared to other TFTs
(a-Si:H : 1 cm /V s [4], organic TFT : 0.1-–1 cm /V s [5]),
make a-GIZO TFTs attractive for transparent and flexible
electronics [6]. These are the motivating factors to build analog
circuits for various types of sensing and display applications,
which will be portable and economic, resulting in integrated
circuits that avoid interfacing problems. The analog circuit
design is limited due to the lack of stable p-type TFT and
unavailability of built-in libraries for the active and passive
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components. Nevertheless, few circuits are reported, mostly
with depletion type TFTs such as a shift register [7] and a 6-bit
current-steering DAC [8].
In order to design and simulate circuits, punctilious device

models are necessary to predict the device behavior during sim-
ulations. Models based on device physics are generally used for
circuit design. Nevertheless, physical models are complex and
time consuming to develop. Especially physical modeling is not
a good choice for novel technologies, such as a-GIZO, which
are not yet well matured, and where experiments are still going
on to ensure better behavior, either by changing device structure
[9], materials for electrodes or processing conditions. All these
factors certainly impact the density of states and charge carrier
flow in the device. Whenever there is a change in any of the
aforementioned factors, the corresponding device physics need
to be studied and a new model needs to be developed. Possible
alternative methods are table-based and neural network models
that are built from the device measured characteristics. How-
ever, accurate table-based models [10] demand huge memory.
Artificial Neural Network (ANN) modeling overcomes all these
drawbacks without compromising performance. When quicker
circuit design is important, with new devices as a-GIZO TFT, a
simple, accurate and continuous model, with less development
time is desired. ANNs have all these properties, and in fact,
multilayer feedforward network has already been successfully
applied to model MOSFETs, as proposed in [11]. The current
work includes the complete device behavior, i.e., intrinsic and
extrinsic, by taking the series resistance of source and
drain electrodes into account. If only the intrinsic behavior of the
device needs to be modeled, the impact of should be
deembeded from the measured data. Then, the network needs to
be trained with this new data. The extraction method of
should basically follow the same procedure as in physical mod-
eling. General steps in physical and ANN based modeling ap-
proaches are shown in Fig. 1.
Current mirrors are important functional blocks in analog cir-

cuit design, which find applications in providing bias, as an ac-
tive load and pixel driving circuits in OLED displays [12]. ZTO
TFT-based current mirrors have been already reported in the
past, but with metallic electrodes and requiring a high post-pro-
cessing temperature of 400 C [13]. In this work we are re-
porting simple current mirrors with two TFTs having different
mirroring ratios and a cascode mirror, all based on fully trans-
parent GIZO-TFTs with processing temperatures not exceeding
200 C. As a first step, an ANN model is developed from the
measured data of the TFTs, being then implemented in Ver-
ilog-A for circuit simulation using Cadence Virtuoso Spectre.
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Fig. 1. General steps in physical and ANN based modeling methods.

Fig. 2. Topology of the feedforward ANN model with a single hidden layer.

Finally, circuits are fabricated. A comparison of simulated, fab-
ricated circuits and the expected results are presented to demon-
strate the ANN modeling ability, as well as current mirroring
capability of the a-GIZO TFTs.

II. NEURAL MODELING

A multilayer feedforward network, with a single hidden layer
and a sufficient number of neurons, is a universal approximator
[14]. This is the minimum structure adopted in this work to
minimize complexity, with the typical single-hidden layer
topology as shown in Fig. 2. Backpropagation algorithm is
used for training. The network learns the function that needs
to be approximated from the training data (i.e., as a func-
tion of , and ). The hidden layer neurons perform
weighted summation followed by a limiting function, whereas
the output neuron only performs a weighted summation (linear
neuron). During the training phase, the network calculates the
output from the given inputs in the forward direction. This is
compared to the expected value and the error is propagated in
the backward direction, which in turn modifies the weights and
biases of the network to minimize the error. The network stops
learning at a point when the validation error starts increasing.

Fig. 3. Transparent a-GIZO TFTs: (a) Schematic of the device cross section,
with a staggered bottom gate configuration (b) Micrograph of one isolated de-
vice, with m.

Fig. 4. Current mirrors schematics. (a) With two-TFTs. (b) Cascode.

Validation data is a portion of the input data that is not used
to train the network, but just to verify the performance during
training.

III. CIRCUIT DESIGN AND FABRICATION

A Schematic of the cross-section and a micrograph of the
fabricated transparent oxide TFTs are shown in Fig. 3. TFTs and
circuits (integrated in the same 2.5 2.5 cm glass substrates)
were fabricated with a staggered bottom gate structure and
annealed at 200 C. Gate, source and drain electrodes are based
on In O -ZnO (IZO, 200 nm thick), the oxide semiconductor
is Ga O -In O -ZnO (GIZO, 30 nm thick) and the dielectric
layer is a multicomponent/multilayer structure composed of
SiO /Ta O -SiO /SiO , 350 nm thick. All these layers were
deposited by RF magnetron sputtering without intentional sub-
strate heating, using a home-made system (IZO) and an AJA
ATC-1300F system (GIZO and dielectrics) [15]. The electrodes
and the semiconductor were patterned using a lift-off process,
while the dielectric was etched by reactive ion etching. More
details regarding the processing and properties of these thin
films and devices can be found in [16], [17]. On the top of this
structure, a SU8 layer was spin-coated to act as a passivation
layer, being patterned using conventional UV exposure and
development processes [18].
Schematics of two-TFT and cascode current mirrors are

shown in Fig. 4(a) and (b) respectively. The two-TFT cur-
rent mirrors micrographs of the fabricated circuits with
different mirroring ratios are shown in Fig. 5. Different widths
( m, 80 m, and 320 m) have been used for the tran-
sistor T2 to obtain different mirroring ratios, with all the TFTs
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Fig. 5. Micrographs of transparent two-TFT current mirrors based on a-GIZO
TFTs. (a) m. (b) m. (c) m.

Fig. 6. (a) Micrograph of the transparent cascode current mirror based on
a-GIZO TFTs with m for all the TFTs. (b) Entire glass
substrate with circuits and isolated devices.

having a channel length (L) of 20 m. The cascode current
mirror fabricated circuit is shown in Fig. 6(a). In this circuit, all
TFTs (T1 to T4) have the same width (40 m). A photo of the
glass substrate containing all the mentioned circuits, as well as
isolated devices (TFTs), is shown in Fig. 6(b).

IV. RESULTS AND DISCUSSION

In order to develop the ANNmodel, measured data (averaged
from two similar devices in two similar chips) are taken from
the fabricated TFTs. The measurements have been performed
using a semiconductor parameter analyzer Keithley 4200-SCS,
and a Cascade Microtech M150 probe station under darkroom
conditions. Matlab is used to train the network. The input data
to the ANN is randomly divided into training (60%), valida-
tion (20%) and testing (20%). From the training data, the ANN
learns the function that needs to be approximated. Validation
data is used for stopping criteria, which ensures no over-fitting
during the training phase. In its turn, testing data (never seen
during training) are used to evaluate the generalization ability of
the network. In the current case, a single hidden layer network
with 25 neurons presented a good performance. Post-training
values for testing and validation data are shown in Fig. 7(a) and
(b) respectively. These results show good agreement between
themeasured data andmodeled response as the regression factor

Fig. 7. ANN modeling response for a-GIZO TFTs. (a) Testing data perfor-
mance. (b) Validation data performance.

Fig. 8. (a) Threshold voltage calculation from the measured and sim-
ulated data (using the Verilog-A model—example with the 80 m TFT). (b)
Measured and modeled transfer characteristics of transistor whose width is 320
m.

(R) is almost one. The resulting network is implemented in Ver-
ilog-A and it is used for all the aforementioned circuit simula-
tions with Cadence Spectre simulator. The threshold voltages

of the TFTs can be calculated either from the simulated
data using the developed Verilog-A model or from the mea-
sured data as shown in Fig. 8(a). Fig. 8(b) demonstrates very
good agreement between measured and simulated transfer char-
acteristics of a TFT at 15 V, where the TFT width is 320
m, reinforcing the validity of the model in the complete re-
gion of operation. However, a separate network has been used
to model the region for 0 V, as the current in the cut-off
region spreads over several orders of magnitude. Nevertheless,
one should note that the model is built with the intention of de-
signing analog circuits, where generally, V.
For the current mirror circuits, ignoring channel-length mod-

ulation due to long length of the devices and assuming that
they are matched, the relation between input and mirrored

current can be expressed (for both topologies) as

(1)

where and are the threshold voltages of the transis-
tors T1 and T2, respectively. Fig. 9 shows the results for the
two-TFT current mirrors with different mirroring ratios: simu-
lation, expected, and measured responses are plotted (with mis-
match removed by offsetting the simulation current). Similar re-
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Fig. 9. Two-TFT current mirror response: expected, from neural model simu-
lation and measured response with fabricated circuits. (a) Mirrored current. (b)
Mirroring ratios.

TABLE I
MIRRORING RATIOS

sults for the cascode current mirror, at different bias voltages,
are shown in Fig. 10.
The average mirroring ratios of all the current mirrors are

listed in Table I. Results show good agreement between the met-
rics (expected, simulated and measured) at lower mirroring ra-
tios, whereas at higher mirroring ratio, there is a higher mirrored
current, which is related to the fingered layout of output the tran-
sistor that tends to have a lower threshold-voltage. Nevertheless,
the simulation results capture the non-ideal behavior properly.
For the 40–320 current mirror, the negative slope in Fig. 9(b) is
caused by a threshold-voltage mismatch between the input and
output transistors.

V. CONCLUSION

Current mirror circuits based on fully transparent a-GIZO
TFTs annealed at 200 C are demonstrated. A neural model is
developed from the measured data of the TFTs and implemented
in Verilog-A. This model’s response is in good agreement with

Fig. 10. Cascode current mirror response at different bias voltages: expected,
from neural model simulation and measured response with fabricated circuits.
(a) Mirrored current. (b) Mirroring ratios.

the measured data. Circuits have been simulated with the devel-
oped model using Cadence Spectre simulator. When the simu-
lation results are compared to the fabricated circuits’ response,
they reveal a good degree of prediction capability for the actual
transistor behavior within the circuit operation.
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