
Paradigm integration in a specification course

Manuel A. Martins
CIDMA, Dep. Mathematics

Universidade de Aveiro
martins@ua.pt

Alexandre Madeira, Luı́s Soares Barbosa, Renato Neves
HASLab - INESC TEC

Univ. Minho
madeira@ua.pt, lsb@di.uminho.pt, nevrenato@gmail.com

Abstract

As a complex artefact, software has to meet requirements
formulated and verified at different levels of abstraction. A
basic distinction is drawn between behavioural (dynamic)
and data (static) aspects. From an educational point of
view, although disguised under a number of different des-
ignations, both issues are usually present, but kept sepa-
rated, in typical Computer Science undergraduate curric-
ula. It is often argued that they tackle orthogonal problems
through essentially different methods. This paper explores
an alternative path in which students progress from equa-
tional to hybrid specifications in a uniform setting, integrat-
ing paradigms, combining data and behaviour, and dealing
appropriately with systems evolution and reconfiguration.

1 Introduction

Motivation. Fundamental infrastructures of modern so-
cieties, including those related to finances, health services,
education, energy and water supply, are critically based on
information systems. Moreover, our way of living depends
on software whose reliability is crucial for our own work,
security, privacy, and quality of life. This explains why
the quest for programs whose correctness could be estab-
lished by mathematical reasoning, which has been around
for a long time as a research agenda, seems to be finally
emerging as a key concern in industry. Companies are be-
coming aware of the essential role played by formal logic.
The growing demand for highly skilled professionals who
can successfully design complex systems at ever-increasing
levels of reliability and security, places serious challenges
to higher education and training programmes.

This paper aims at contributing to the on-going debate
on how a rigorous discipline of software development, with
sound, mathematical foundations can be successfully inte-
grated in the curricula of undergraduate degrees in Com-
puter Science. In the sequel we discuss the rationale and
design of one semester course, entitled Introduction to Soft-

ware Specification, to be placed in the last semester of a
three-year long undergraduate degree. The course is ex-
pected
- To invite Software Engineering students to revisit elemen-
tary mathematical concepts which constitute a background
for formal specification and development methods. Such
notions come essentially from Logic — including e. g.
those of a signature, sentence, axiom, model and satisfac-
tion. Although most students have already been exposed to
them (typically in a previous course on Logic or Discrete
Mathematics), they are re-visited with a clear application
purpose: that of formally expressing software requirements.
- To help students building up correct intuitions on the data
- behaviour symmetry when describing software and intro-
duce them to suitable conceptual tools to handle them. The
latter cover abstract data types (building on previous expe-
rience with data structures in programming languages), on
the one hand, and transition systems (building up on a first
course on automata and formal languages).
- To motivate for the role of (formal) specifications in Soft-
ware Engineering and illustrating their use through a nota-
tion and framework which is kept close to standard mathe-
matical notation as far as possible and has reasonable tool
support.

Context. The need for such a course arose in a very
concrete context: the re-organisation of university degrees
motivated by the implementation of the Bologna Agreement
in the European Union, a process which in Portugal is cur-
rently going through its first nation-wide assessment and re-
view. In Portugal, the Bologna Agreement led to the split of
traditional 5-years courses into separate Bachelor (3 years)
and Master (2 years) degrees. Bachelor degrees are ex-
pected to provide large-spectrum training in standard Com-
puter Science areas (e.g. programming, databases, com-
puter networks, compilers, etc.) as well as basic skills in
Mathematics and Engineering. The latter includes project
planning and entrepreneurism, among others. Master de-
grees, on the other hand, are usually intended to offer verti-
cal specializations.

At Universidade do Minho, the Master degree in Soft-

Program Calculi

Modelling and Testing

Concurrency Theory

Verification

Discrete Maths
Functional Programming

Imperative Programming
Languages and Automata

Object-oriented Design
Program Semantics

Introduction to Software Specification

MSc profile in
Formal Method

(2 years)

BSc in
Informatics
Engineering

(3 years)

Figure 1. The context.

ware Engineering is organised around a number of vertical
specialisations in specific domains of Computer Science,
for example Artificial Intelligence, OLAP and Data Mining,
Computer Graphics or Formal Methods in Software Engi-
neering. Each of these specialisation profiles sum up to 30
ECTS and includes 4 regular courses plus a integrated lab-
oratory with a year long engineering project.

The Introduction to Software Specification course dis-
cussed in this paper is placed in the final semester of the
Bachelor level, and offered as an option to students who
intended to pursue a specialisation in Formal Methods. Fig-
ure 1 shows this context, highlighting the subjects lectured
in each level which are most relevant as either an antecedent
or a follow-up of this course. The effort put on re-designing
University education in a new 3+2 framework entailed the
need to re-think undergraduate degrees in order to concen-
trate in a unique course each core curricular area, with its es-
sential concepts and methods. In what Formal Methods are
concerned this means to design an larger spectrum course
able to provide a broad overview of the area. Several ex-
periments were implemented along this first 5 years post-
Bologna experimental period. Most of them chose to focus
on a single framework/method and limit explicitly its scope
to hopefully go deeper in the syllabus. Model-oriented de-
velopment (e.g. in VDM), algebraic specification (e.g. with
OBJ), verification (typically in a model-checking version,
e.g. with SPIN) or concurrency theory (e.g. with mCRL2)
are examples of such courses.

This paper reports on a second thought on this experi-
ence and discusses an alternative approach to the introduc-
tion of formal methods in the Software Engineering curricu-
lum. The pedagogical intuition was to provide undergradu-
ates with a solid exposition to a formal framework/method,
motivating for the relevance of the area and training in its
methodological principles. Later, at a MSc stage, students
would have the opportunity to choose a specialisation in this

area. A questionnaire to young professionals who have re-
cently completed their undergraduate studies pointed out,
as reported below in section 2, the relevance of tool sup-
port as well as of methodologies able to tackle in a common
framework different aspects of software design.

The course. Our starting point was, therefore, the fol-
lowing observation: software is a complex artifact, which
deals with a multitude of different concerns and has to meet
requirements formulated (and verified) at different abstrac-
tion levels. A basic distinction, whose didactical relevance
can be easily appreciated, is drawn between behavioural
and data requirements. While processes are dynamic and
active, data is static and passive. Typically, the emergent
behaviour of a software system is determined by the con-
current execution of several processes which exchange data
in order to influence each other’s behaviour. From an edu-
cational point of view, although disguised under a number
of different designations, both approaches used to be part of
a typical Computer Science undergraduate curriculum: ab-
stract behavioural structures are typically studied in a Pro-
cess Algebra course (often on top of a previous course on
languages and automata), while abstract data structures are
covered in algebraic specification courses. The latter are
typically concerned with the concept of abstract data type
[11]. Even if a number of attempts to integrate data and
behaviour specifications do exist, as in LOTOS or mCRL2
It is often argued that those specifications tackle orthogonal
problems through essentially different methods.

To design the course we proceed by identifying both a
class of problems to motivate students from the outset, and
a formal framework.

For the former we chose to address requirements for re-
configurable systems. Often, and most typically in service-
oriented applications, what a software component may of-
fer at each stage depends on its own evolution and history.
Software components act as evolving structures which may
change from on mode of operation to another, entailing cor-
responding updates in what counts, at each mode or stage,
as a valid description of their behaviour. For example, a
component in a sensor network may be unable to restart a
particular equipment if in an alarm stage of operation, but
not in a normal one. On the other hand, the way it computes
the result of sensoring a number of hardware control de-
vices may change from one mode to another (changing, for
example, the pallete of weights used to compute a weighted
sum of measurements). This lead us to consider not only
standard algebraic specification techniques to specify ser-
vices or components interfaces, but also modal and hybrid
languages to express the systems’ evolution and reconfigu-
ration.

For the choice of a formal framework we considered
the mathematical structures suitable to model software sys-
tems; the languages in which such models can be specified

2

and, finally, the relationship between the (semantic) struc-
tures and the (syntactic) formulation of requirements as sen-
tences in the specification language. A quite canonical, even
if not very popular, formulation resorts to the notion of an
institution [2] which, as an abstract representation of a logi-
cal system, encompasses syntax, semantics and satisfaction,
and provides ways to relate, compare and combine specifi-
cation logics. It is remarkable how institutions not only pro-
vide a standard, mathematically solid basis for the approach
discussed here, but also pave the way to suitable tool sup-
port. The HETS tool [8] is the working platform for the
course.

Paper structure. In the sequel we explore such an alter-
native approach to formal methods introduction in a Soft-
ware Engineering curriculum. Section 2 collects the result
of an assessment questionnaire in which the design of the
new course was partially based. The course rationale is in-
troduced in section 3 and illustrated through the discussion
of a case-study from the last course unit in section 4. Fi-
nally, section 5 concludes.

2 Curriculum assessment

In order to assess the impact of formal methods edu-
cation at undergraduate level, a questionnaire was given
to a sample of 25 young professionals who have recently
completed a MSc degree in Informatics at Universidade do
Minho, Portugal. The sample was balanced in terms of gen-
der, age (ranging from 26 to 34 years), and background. All
of them are currently employed.

Students were asked to focus exclusively on their un-
dergraduate studies when answering the questionnaire. A
working assumption was that the temporal gap between
their conclusion of an undergraduate degree and the mo-
ment in which they participate in this research (of at least
2 years, but greater than that in most cases) would provide
the necessary critical distance.

The questionnaire consisted of 8 open questions. The
first two identify academic background and professional
status; the other six intended to assess their own undergrad-
uate education in formal methods and the impact it has (or
has not) in their current activities. This study has, of course,
limited statistical relevance. But it does provide an indica-
tor with respect to a number of topics addressed by almost
all the responses, even if with different emphasis.

A first question asked for an enumeration of both pos-
itive and negative aspects of previous formal education in
formal methods. On the positive side the most consensual
answers mentioned the development of abstract reasoning
and the acquisition of skills to “become more agile in solv-
ing hard problems” and methodic in programming, avoid-
ing, as an answer puts it, “developing software by patching
solutions”. A curious answer from a successful software

engineer put it plain: “I’m not afraid of working with sym-
bols and formulas, like most software engineers I encounter
are”. On the negative side, most answers refer the impact
of a steep learning curve, especially to less mathematical-
oriented students; the lack of (explicit) interrelation among
different components of the formal methods curriculum;
and the significant gap with respect to software testing.

The questionnaire explored known difficulties and asked
for concrete suggestions for curricular improvement. Most
frequent suggestions were:
- Increased tool support;
- Project work supported by good case studies;
- Bigger emphasis on applicational areas;
- Methods able to cope with all aspects of systems’ require-
ments (avoiding a multitude of notations and tools);
- A closer connection to classical courses on logic and alge-
bra.

The questionnaire also brought evidence of the relevance
of formal methods education to subsequent studies or pro-
fessional practice. The positive impact is unanimously re-
ferred, even if most people are not using formal methods in
their professional activity. The answers are, in our opinion,
quite expressive: “It gave me (and still gives) the agility to
approach a problem in a methodic way” or “the algebraic
specification skills play a central role in my day-to-day re-
search”. An engineer employed by a big company stresses
“I had very few opportunities to apply a full-blown formal
method in my professional practice. Most of the times I did
apply fragments of some formal methods to small things,
such as data models for instance. However, I find that the
mindset I developed during my studies helps me every day
to deal with complex problems to apply the right amount of
abstraction and even to express myself better.”

3 Designing an alternative course

The course rationale. The course was designed based on
the authors’ own lecturing experience and the analysis of
the questionnaires mentioned above. The rationale was to
explore a uniform framework for specifying system’s re-
quirements either functional (i.e. relative to the meaning of
individual services or operations) or behavioural (i.e. rela-
tive to its overall evolution and reaction to external stimu-
lus), and emphasise a strong connection between modelling
and verification.

The course has a standard typology: a lecture per week
(1 hour), an exercise class devoted to pen-and-pencil reso-
lution of exercises previously proposed and their discussion
(2 hours) and a laboratory session with the HETS system (1
hour). Students work on groups of two elements.

The course develops around a triangle whose vertices
and repeatedly revisited: models, languages in which such
models and their properties are expressed and the satisfac-

3

tion relation between them which enables property verifica-
tion and design assessment. Another methodological option
concerned the adoption of a generic framework, in which
progressively more elaborated requirements could be repre-
sented, in contrast to one with a narrower scope or clearly
oriented to a particular specification style. This has the ad-
vantage of focusing students and enhancing their ability to
work at higher abstraction levels.

This favoured the choice of an institutional approach and
the HETS framework. HETS is able to handle specifications
in different logical systems and to relate them through the
relationships connecting the underlying logics. Actually,
the notion of an institution was introduced by Goguen and
Burstall in the late 1970s (with the seminal journal paper
[2] being printed rather late) in response to the population
explosion of specification logics. Its original intention was
to provide an abstract framework for specification of, and
reasoning about, software systems.

The course structure. As mentioned above, the course
targets reconfigurable systems. They involve components
which may evolve in time through a number of different
stages or modes of operation, to which correspond differ-
ent configurations of the services made available through
its interface. The envisaged teaching/learning process de-
velops around three specification stages: algebraic, modal
and hybrid. The idea is to cover the whole spectrum of basic
specification logics in three course units, all of them shar-
ing HETS as the common tool support. A fourth unit in the
syllabus explores a number of case-studies in the project of
reconfigurable systems. The course illustration in section 4
is taken from this last unit. Before that, let us review the
rationale under each of them.

The algebraic stage. At a first stage each system config-
uration is specified axiomatically as a “stand-alone” alge-
braic theory; its model being a concrete algebra satisfying
such a theory. Component’s functionality is therefore given
in terms of input-output relations modeling operations on
data. This stage covers the classical stuff on algebraic spec-
ification, namely the concepts of signature, sentence, equa-
tion and equational reasoning, model and satisfaction of an
equation. The envisaged learning outcome is the ability to
master these concepts and capturing informal requirements
about component’s functionality by defining a (syntactic)
universe of discourse and formulating properties as axioms.

The modal stage. The second stage emphasises the re-
active nature of the systems at hands. Component’s evo-
lution is modelled by a transition system: a configuration
changes in response to a particular event in the system.
Modal logics are introduced as specification languages for
state transition systems. Modal formulas are evaluated in-
side such systems, at a particular state, and modal opera-
tors disclose access to information stored at other states ac-
cessible from the current one via a suitable transition. The

main learning outcome is to make students familiar with the
modal framework and the meaning of modalities as a lan-
guage to specify transition structures.

The hybrid stage. The third stage starts with a cru-
cial observation: functional and transitional behaviour are
strongly interconnected in practice as the functionality of-
fered by the system, at each moment, may depend on the
stage of its evolution. This entails the need for
- enriching the basic modal language with the ability to refer
to individual states, regarded as possible system’s configu-
rations or modes of operation;
- distinguishing global behaviour (in the underlying transi-
tion system) from local behaviour expressed, at each state,
by a particular specification.

The first requirement leads to the introduction of nomi-
nals as explicit references to specific states of the underly-
ing transition system. Conceptually this leads to exposing
students to another basic and pervasive notion in Computer
Science, that of naming. Hybrid logics [1] are the appropri-
ate tool for this last stage in the course. The need for formu-
lating specific local requirements, on the other hand, leads
to imposing extra structure upon states. Actually, different
states are interpreted as different modes of operation and
each of them is equipped with an algebraic specification of
the corresponding functionality. Technically, specifications
become structured state-machines, where states are speci-
fied as algebras, rather than as sets.

Tool support. The institution-based framework adopted
in the course allows for a smooth integration of these three
stages supported by the HETS platform. HETS acts a “moth-
erboard” of logics where different “expansion cards” can be
plugged in. These pieces are individual logics (with their
particular analysers and proof tools) as well as logic trans-
lations. To make them compatible, logics are formalised as
institutions and translations as comorphisms.

Actually, institutions provide a systematic way to relate
logics and transport results from one to another [7], which
means that a proving strategy/tool for one logic can be used
to reason about specifications written in another one. A fun-
damental study of how an hybrid language can be systemat-
ically endowed in an arbitrary institution was the object of
the authors recent research [6, 9]. This so-called hybridis-
ation method was implemented in the HETS platform [8],
becoming part of its official release from August 2013. This
provides for free the proof support environment needed for
this course. It should be stressed, however, that, in despite
of the crucial role played by institution theory in this ap-
proach, no familiarity with institutions is required from stu-
dents.

4

off

inactive

cruise

overrride

Figure 2. The transition structure.

4 A glimpse of a course session

The course contents and methodology is better intro-
duced through the presentation of a typical problem ad-
dressed first in the exercises class and latter in the labora-
tory, in the last stage of the course. For space limitations
we focus only on a fragment of the original problem. The
example, small but self-contained, is taken from a descrip-
tion of requirements for an automatic cruise control (ACC)
system summarised in [3] as follows:

“The mode class CruiseControl contains four
modes, Off, Inactive, Cruise, and Override. At any
given time, the system must be in one of these modes.
Turning the ignition on causes the system to leave Off
mode and enter Inactive mode, while turning the cruise
control level to const when the brake is off and the en-
gine running causes the system to enter Cruise mode.
(...) Once cruise control has been invoked, the sys-
tem uses the automobile’s actual speed to determine
whether to set the throttle to accelerate or decelerate
the automobile, or to maintain the current speed (...)To
override cruise control (i.e., enter Override), the driver
turns the lever to off or applies the brake”.

These requirements are captured by the state machine de-
picted in Figure 2 and expressed in hybrid propositinal logic
(HPL); local properties are given as propositions. The set
ofHPL formulas is defined by

ϕ,ψ ::= p | i | ¬ϕ|[λ]ϕ |@iϕ |ϕ ∧ ψ |ϕ ∨ ψ |ϕ⇒ ψ

where λ ranges over a set Λ of modal operators. Models
of this logic are state-machines with an additional func-
tion state : Nom → S which assigns to each nomi-
nal a state. This allows explicit reference to particular
states in a specification. Thus, models are tuples P =
〈S, state, (Rλ)λ∈Λ, (Ps)s∈S〉 where S is a set of states,
Rλ ⊆ S × S is the accessibility relation associated to the
modality λ and Ps : Prop → {>,⊥} is the function that

assigns the propositions on the state s ∈ S. The satisfaction
relation is defined as in standard modal logic (e.g. P |=s p
iff Ps(p) = >; P |=s [λ]ϕ iff P |=s′ ϕ for any s′ such that
(s, s′) ∈ Rλ) adding the following cases related to nomi-
nals:

• P |=s @iϕ iff P |=state(i) ϕ;

• P |=s i iff state(i) = s.

Moreover, we abbreviate formulas ¬[λ]¬ϕ and 〈λ〉ϕ∧ [λ]ϕ
to 〈λ〉 and 〈λ〉◦ϕ, respectively.

Back to the example, a modality next is introduced to
denote the state-machine accessibility relation. Nominals
in set {off , inactive, override, cruise} correspond to the
operation modes mentioned in the requirements. The first
element students can formally capture within the logic is
the transition structure, as in, for example,

• (T1) @off 〈next〉 inactive
• (T2) @override (〈next〉 off ∧ 〈next〉 inactive ∧ 〈next〉 cruise)

Local properties can also be expressed resorting to the sat-
isfaction operator @i, for each nominal i, to refer to the
corresponding state. For instance, the requirement that the
ignition is off when the system is in the off mode, while it
is on and the engine running (EngRunning) in the cruise
mode, is modelled by

• (L1) @off (¬IgnOn)
• (L2) @cruise(IgnOn ∧ EngRunning)

Symbols EngRunning and IgnOn , with a self-explanatory
designation, are propositions whose validity is discussed in
each configuration (state). Others are used in the sequel.
Definitional properties can also be captured, as in

• (A1) LeverOff ⇔¬ LeverCons
• (A4) HighSpeed⇒¬ CruiseSpeed ∧ ¬ LowSpeed

The second step in the case study is to equip each state of
the underlying transition system with a first-order structure,
to model its local functionality. Therefore, hybrid struc-
tures are enriched with a family of first-order structures
indexed by the set of states, i.e., they become structures

M = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (Ms)s∈S〉
where first-order structures in the family (Ms)s∈S are de-
fined over the same signature and universe, say M . Each
Ms models the system’s behaviour at state s ∈ S. Note
that at state s each first order formula is evaluated in the
structure Ms. Properties are now expressed in a hybrid first
order languageH whose detailed presentation we omit here
(but see [5]). We focus instead on the sort of properties
students are supposed to formulate. An algebraic specifi-
cation is used to model system’s functionality. This entails
the need for introducing data types able to support the en-
visaged notions of time, speed and acceleration.

5

spec TIMESORT =INT

with sort Int 7→ time, ops 0 7→ init, suc 7→ after end
spec SPEEDSORT =INT with sort Int 7→ speed end
spec ACELLSORT =INT with sort Int 7→ accel end

Operation Pedal models the accelerations applied by the
driver at each moment. On the other hand, Automatic cap-
tures accelerations applied on the engine by the ACC, and
CurrentSpeed records the current speed. Finally, constant
MaxCruiseSpeed represents the maximum speed allowed
on the ACC mode:

spec ACCSIGN =
TIMESORT and SPEEDSORT and ACELLSORT

then ops Pedal : time→ accel;
Automatic : time→ accel;
Speed : speed × accel→ speed;
CurrentSpeed : time→ speed;
MaxCruiseSpeed : speed

Students are asked to identify properties that globally hold,
in all possible configurations, and the ones which model lo-
cal requirements. In the first group we have, for example,

∀ s : speed; a : accel; t : time
• (G1) Speed(s, a) ≥ 0
• (G2) CurrentSpeed(t) = 0 ∧ Pedal(t) ≥ 0⇒
CurrentSpeed(after(t)) ≥ 0
• (G3) Pedal(t) > 0⇔ CurrentSpeed(t) <CurrentSpeed(after(t))
• (G4) Speed(s, a) = s⇔ a = 0
• (G5) CurrentSpeed(after(t)) =Speed(CurrentSpeed(t),Pedal(t))

Local properties refer to specific configurations. For exam-
ple, in state off , Speed and Pedal are null and no other
operation in the interface react. Thus,

∀ t : time; s : speed; a : accel
• (L1

off) @off CurrentSpeed(t) = 0
• (L2

off) @off Speed(s, a) = 0

On the other hand, in state inactive, the speed and acceleration
depend on the accelerations automatically introduced in the sys-
tem, i.e,

∀ s : speed; a : accel
• (L1

inactive) @inactiveSpeed(s, a) = s+ a

∀ t: time; s : speed; a : accel
• (L1′

cruise) @cruise[CurrentSpeed(t) > MaxCruiseSpeed⇒
Automatic(after(t)) < 0]
• (L2′

cruise) @cruise[CurrentSpeed(t) ≤ MaxCruiseSpeed⇔
Automatic(after(t)) = 0]
• (L3

cruise) @cruiseSpeed(s, a) = s+ a
• (L4

cruise) @cruisePedal(t) ≥ 0⇒ Pedal(t) = Automatic(t)

An interesting feature in this example is that properties
local to states override and off do coincide. The system’s
behaviour on both states only differs in what concerns the
definition of the allowed transitions. Actually, students may
now be invited to revisit the specification of the transition
system presented above. It turns out that some propositions
may be re-stated by means of properties of local states. For
instance,

∀ t: time;
• (L1) @cruise[CurrentSpeed(t) = 0⇒
〈next〉◦(inactive ∧ CurrentSpeed(after(t)) = 0)]

Finally, in the laboratory session students are invited to
translate hybrid to first order specifications and use HETS
to animate them, as represented in Fig. 3. On translating to
FOL we end up with the following signature:

ops
Speed∗ : st∗ × speed × accel→ speed;
Pedal∗ : st∗ × time→ accel;. . .

pred
next : st∗ × st∗; IgnOn∗ : st∗; . . .

where global properties are universally quantified, and local
properties take as an argument the respective nominal. For
instance, global properties (G1) and (G2) are translated into

∀ s : speed; w : st∗; a : accel;t : time
• (G1∗) ≥∗(w ,Speed*(w, s, a), 0∗(w))
• (G2∗)CurrentSpeed

∗(w,t) = 0∗(w) ∧ ≥∗(w, Pedal*(w,t), 0∗(w)).

and local properties (L1
off) and (L4

cruise), into

∀ t : time
• (L1∗

off)CurrentSpeed*(off ,t) = 0∗(off)

• (L4∗
cruise)≥∗(cruise,Pedal*(cruise,t),0∗(cruise))⇒

Pedal(cruise,t) = Automatic*(cruise,t).

Two exercises. The ACC case study, a fragment of which
was discussed above, is one of the worked examples ad-
dressed in an exercises class followed by a laboratory in a
total of 3 hours of contact time with the lecturer. The ses-
sion was prepared by a simpler exercise proposed the week
before. Students were expected to work this exercise at
home and use the laboratory slot of the previous week to
test their specifications. Similarly, after the session devoted
to the ACC case study a follow up exercise is proposed.
Again, students are expected to work out the specification
by their own and use the lectures in the following week to
discuss their proposals and analyse them in HETS. We close
this section by a brief presentation of these two exercises.

6

Figure 3. A HETS session.

Mode
 sum

Mode
 mult

plus

a ≥ b

a < b

plus

Figure 4. The adaptable calculator.

Warming up exercise: a reconfigurable calculator.

Exercise. An ‘adaptable calculator’, depicted in
Fig. 4 offers a single binary operation over naturals,
denoted by ?. When the first argument is larger that the
second, ? behaves as addition; otherwise it behaves as
a multiplication. Additionally, an event plus should
reconfigure ? into the addition state.

Specifying this calculator requires as a first step the iden-
tification of two operation modes, saymult and sum. Then
two modalities, shift and plus, are added to cater for
state transitions. The latter corresponds to the plus button,
while the former aggregates the two conditions on the argu-
ments. The problem statement also suggests that transitions
can be triggered by a property of the arguments involved.
Therefore, one may add two propositions, ALargeOrEqB
and ASmallerB, characterising when the first argument is
smaller or larger than the second one. Therefore,

ALargeOrEqB ⇒ sum and ASmallerB ⇒ mult

Again, the calculator dynamics can be specified as follows:

@mult〈shift〉sum, @sum〈shift〉mult and [plus]sum

Typically, these propositions can be further characterised,
for example,

ALargeOrEqB⇔¬ASmallerB

and events related through, e.g.

[plus][shift]p⇔[plus]p

The next step adds structure to both execution modes,
based on the following first-order signature:
sorts Nat ;
ops 0 :→ nat ; suc : nat → nat ; p : nat → nat ; ? :

nat × nat → nat ;
pred ≥ : nat × nat ; < : nat × nat ;

over which the common knowledge about the data handled
by the calculator and invariant properties of the ? operation
(e.g. its commutativity and associativity) are stated, e.g.

∀ n, k : Nat
p(suc(n)) = n; ∧ ≥ (suc(n)), n) ∧ < (n, suc(n))
?(n, k) = ?(k, n) ∧?(n, ?(k, l)) = ?(?(n, k), l)

Then local properties of the ? operation are specified in H,
for example,

∀ n : Nat
@sum ? (n, 0) = n ∧ @sumsuc(n) = ?(n, suc(0))
@mult ? (n, 0) = 0 ∧ @mult ? (n, suc(0)) = n

Finally, students are supposed to revisit the specification
dynamics to express the original transition propositions in
terms of state values, leading to e.g.

(∀n:Nat : ?(n, 0) = n)⇒ [shift](∀n:Nat : ?(n, 0) = 0)

7

fifolifo

Figure 5. The plastic buffer.

∀ n,k : Nat(
≥ (n, k)⇒ ?(n, k) = z

)
⇒ @mult ? (n, k) = z(

< (n, k)⇒ ?(n, k) = z)⇒ @sum ? (n, k) = z
[plus] ? (n, k) = z ⇒ @sum ? (n, k) = z

Follow up exercise: a plastic buffer.
Exercise. An ‘plastic buffer’ (Fig. 5) is a versa-

tile data structure with two distinct modes of execu-
tion: in one of them it behaves as a stack; in the other
as a queue. Reconfiguration is triggered by the num-
ber of items stored, which measures the difference be-
tween the rates associated to the incoming and outcom-
ing data streams: when this value is larger than limit,
the buffer turns into a stack; otherwise into a queue.

This has a similar structure to the warming up example,
acting as a consolidation exercise of the whole unit.

5 Concluding

The paper introduced the rationale for a somehow not
very standard introductory course on Formal Methods.
From an institution-based framework, kept implicit along
the lectures, the course aims at conducting students through
two orthogonal paradigms (equational and hybrid) which
are then combined in common specification framework.

In [6] the authors introduced a method to hybridize ar-
bitrary institutions. The approach underlying the course
proposed here is actually based on a particular instance of
such a general method. However, other possible ’hybridiza-
tions’ (eg. of institutions of multialgebras or partial alge-
bras) are suitable to explore a wide range of exercises in
a similar spirit. Moreover, the course skills may be eas-
ily expanded into new directions: for instance, functional
and imperative programming languages may be presented
as institutions (see [11]) whose hybridization may be used
to develop reconfigurable algorithms. In [10], the authors
have also presented the logic underlying ALLOY [4] in an
institutional setting. This paves the way to hybridising AL-
LOY and combining in the course the use of the traditional

ALLOY model finder with theorem proving (in HETS) in an
integrated way.
Acknowledgements. On-going collaboration with Răzvan Dia-
conescu is greatly acknowledged. This work is funded by ERDF
- European Regional Development Fund through the COMPETE
Programme and by National Funds through FCT within project
FCOMP-01-0124-FEDER-028923. M. Martins was also sup-
ported by the project PEst-OE/MAT/UI4106/2014.

References

[1] Patrick Blackburn. Representation, reasoning, and relational
structures: a hybrid logic manifesto. Logic Journal of IGPL,
8(3):339–365, 2000.

[2] Joseph A. Goguen and Rod M. Burstall. Institutions: abstract
model theory for specification and programming. J. ACM,
39:95–146, 1992.

[3] C. L. Heitmeyer, J. Kirby, and B. G. Labaw. The SCR
Method for Formally Specifying, Verifying, and Validating
Requirements: Tool Support. In ICSE, pages 610–611, 1997.

[4] Daniel Jackson. Software Abstractions (Logic, Language,
and Analysis). MIT Press, 2nd edition, 2011.

[5] Alexandre Madeira, José M. Faria, Manuel A. Martins, and
Luı́s S. Barbosa. Hybrid specification of reactive systems:
An institutional approach. In G. Barthe et al, editors, Soft-
ware Engineering and Formal Methods, volume 7041 of
LNCS, pages 269–285. Springer, 2011.

[6] Manuel A. Martins, Alexandre Madeira, Răzvan Dia-
conescu, and Luı́s S.Barbosa. Hybridization of institutions.
In A. Corradini et al editors, Algebra and Coalgebra in
Computer Science, volume 6859 of LNCS, pages 283–297.
Springer, 2011.

[7] Till Mossakowski. Foundations of heterogeneous specifica-
tion. In M. Wirsing et al, editors, Recent Trends in Algebraic
Development Techniques 2002, volume 2755 of LNCS, pages
359–375. Springer, 2003.

[8] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The
heterogeneous tool set, Hets. In O. Grumberg and M. Huth,
editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems , volume 4424 of LNCS, pages 519–522.
Springer, 2007.

[9] Renato Neves, Alexandre Madeira, Manuel A. Martins, and
Luı́s S. Barbosa. Hybridisation at work. In R. Heckel and
S. Milius, editors, Algebra and Coalgebra in Computer Sci-
ence, volume 8089 of LNCS, pages 340–345, 2013.

[10] Renato Neves, Alexandre Madeira, Manuel A. Martins, and
Luı́s S. Barbosa. An institution for alloy and its translation to
second-order logic. In Thouraya Bouabana-Tebibel and Stu-
art H. Rubin, editors, IRI (best papers), Advances in Intelli-
gent Systems and Computing, pages 45–75. Springer, 2013.

[11] Donald Sannella and Andrzej Tarlecki. Foundations of Al-
gebraic Specification and Formal Software Development.
Monographs on Theoretical Computer Science, an EATCS
Series. Springer, 2012.

8

	Introduction
	Curriculum assessment
	Designing an alternative course
	A glimpse of a course session
	Concluding

