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H I G H L I G H T S  

• e-carsharing can ensure access to fair, reliable, sustainable, and modern mobility. 
• Design a two-stage stochastic DLMP-based model under EV rental demand uncertainty. 
• e-carsharing planning disregarding the DSO perspective is the most profitable. 
• Operation may not be possible in real cases due to the high-power flows via V2G. 
• The design of joint planning can be a win–win situation for e-carsharing and DSO.  
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A B S T R A C T   

Electric vehicle (EV) sales and shared mobility are increasing worldwide. Despite its challenges, e-carsharing has 
an opportunity to still profit in periods of low rental demand compared to traditional carsharing. The purpose of 
this paper is to assess the profitability of an e–carsharing company based on distribution local marginal price 
(DLMP) and vehicle-to-grid (V2G) that cooperates with the distribution system operator (DSO) through a two- 
stage stochastic model. The AC optimal power flow (ACOPF) is modeled using second-order cone program
ming (SOCP) linearized by the global polyhedral approximation. The IEEE 33 bus test system and a real Kernel 
distribution for the EV rental demands are used in four planning cases in the GAMS environment. The results 
indicate that the proposed methodology does not affect EV user satisfaction. Moreover, the planning disregarding 
the power grid perspective is the most profitable, but the operation may not be possible in real applications due 
to the high-power flows via V2G. Finally, the e–carsharing planning considering the DSO perspective increased 
the charging cost by 1.66 % but also reduced the DLMP peak, losses, and peak demand by 2.5 %, 1.5 %, and 5.1 
%, respectively. One important conclusion is that the technical benefits brought to the DSO by the e–carsharing 
company could be turned into services and advantages for both agents, increasing profit and mitigating negative 
impacts, such as higher operational costs.   

1. Introduction 

1.1. Motivation 

The global electric vehicle (EV) fleet has increased considerably in 
recent years, and registrations increased by 41 % in 2020 compared to 
2019 [1]. In parallel, the sharing economy is another growing business 
model, especially concerning shared mobility, known as carsharing [2]. 
This type of service is offered by some companies, such as Zipcar, 

Car2Go, and Didi [3–5]. There are three types of operating systems for e- 
carsharing companies: round-trip, one-way, and free-floating. The first 
requires users to return vehicles to the station of origin. The one-way 
system allows users to return vehicles to any company station. Finally, 
the last system allows users to return the vehicle anywhere [6–8]. 

Shared mobility can bring opportunities for agents who decide to 
operate in this new business model. EV manufacturers can improve 
people’s perception of the company, as they offer the use of cutting-edge 
technology at an affordable price. In addition, the e-carsharing company 
(shared mobility companies that use EVs) can captivate potential 
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buyers. On the other hand, power utilities running this business can 
identify places where e-carsharing stations bring benefits to the power 
grid without jeopardizing the service to the customers. Moreover, dis
tribution system operators (DSOs) can provide energy and ancillary 
services to the grid through e-carsharing charging optimization [9]. 
Hence, e-carsharing could ensure access to affordable, reliable, sus
tainable, and modern mobility [10]. 

However, the e–carsharing service depends on some factors to 
guarantee its profitability, such as the size of the city, the local popu
lation density, moving traffic, parking situation, population de
mographics, agreement with the administration, and demand 
uncertainty [11]. Thus, to increase the development of e–carsharing, it is 
important to evaluate other ways to guarantee the company’s 
profitability. 

Vehicle-to-Grid (V2G) defines a system capable of bidirectionally 
controlling the power flow between the power grid and EVs [12,13]. 
V2G can attenuate peaks and fill valleys of energy consumption and 
provide support to the power grid through ancillary services, such as 
voltage and frequency control [14–17]. It is noteworthy that constant 
battery charging and discharging in V2G can decrease the battery life
time [18,19]. In this way, charging stations (CSs) can manage energy 
through a smart grid, charging EVs during low consumption times and 
supplying energy through EVs to the power grid during high consump
tion times [20–23]. For e-carsharing companies, V2G may represent an 
opportunity to increase profit. 

The implementation of V2G requires price signals, such as time of use 
(TOU) or real-time pricing (RTP). Although these techniques reflect the 
power grid’s state in time (load variation), they do not have information 
on nodal load. A technique that considers the load nodal and time 

variation widely applied in transmission systems is the local marginal 
price (LMP). In addition, LMP can be decomposed into three compo
nents: the marginal cost of energy, losses, and congestion [24,25]. 

Another recent trend is related to the concept of Energy as a Service 
(EAAS), which defines a business model where customers pay for an 
energy service without having to make any investment in infrastructure 
or generation (e.g., diesel or solar) [26]. Through V2G, the e–carsharing 
company can help the DSO reduce peak consumption and postpone in
vestments in network reinforcement. However, in places where EVs are 
not yet widespread, the DSO needs to wait for EVs to reach higher 
penetrations to have a reliable service. Thus, the e-carsharing business 
model can play an important role in accelerating the sustainable energy 
transition. Moreover, the DSO can enjoy the benefits of V2G without 
necessarily expecting high EV penetration. Finally, the V2G provided by 
e–carsharing companies can be more reliable than those of individual 
users, as they can guarantee the energy supply through preestablished 
agreements. 

1.2. Literature review 

The e-carsharing operation is widely studied in the literature. Some 
authors assess different carsharing systems, such as one–way and round- 
trip. Leuven et al. [27] proposed a two-stage stochastic model to 
investigate the main drivers of vehicle replacement in a round-trip 
carsharing system and how it affects profit. Moreover, a sample 
average approximation is used to find solutions within an acceptable 
computation time. Yoon et al. [28] examine the factors that influence the 
use of carsharing systems in Beijing and the potential for carsharing 
systems that integrate EVs. Additionally, the authors explore how 

Nomenclature 

Sets 
ω ∈ Ωω Set of scenarios 
∊ ∈ Ω∊ Set of EVs 
ρ, i, j ∈ Ωρ Set of nodes 
δ ∈ Ωδ Set of rental demands 
t ∈ Ωt Set of periods in short-term (hours) 
y ∈ Ωy Set of periods in long-term (years) 
S(j) Set of tail buses of lines whose head bus is j 

Parameters 
pi

ρ,∊ Initial positions of vehicles 
SoCi

∊ Initial vehicle state-of-charge 
ζe

t,ρ Energy tariff 
ζr Vehicle rental tariff 
ζrl Vehicle relocation tariff 
ζg Energy cost at slack bus 
Eb Vehicle battery energy 
effcha Charger efficiency 
Pc Maximum charging/discharging power 
pω Scenario probability 
pev Vehicle purchase price 
pcs Charging station installation price 
pch Charger price 
By Budget at year y 
Chmin

ρ Minimum number of chargers in position ρ 
Chmax

ρ Maximum number of chargers in position ρ 
DO

t,δ,ρ,y,ω Rental demand origin in position ρ at time t 
DD

t,δ,ρ,y,ω Rental demand destination to position ρ at time t 
Dd

δ,y,ω Rental demand trip duration 

dr Electric vehicle energy consumption 
Pd

t,i,y,ω Active power demand at bus i in period t 
Qd

t,i,y,ω Reactive power demand at bus i in period t 
ri,j,y Resistance of line (i, j)
xi,j,y Reactance of line (i, j)

First Stage Variables 
CSρ,y {0,1} Charging stations position at year y 
E∊,y {0,1} Vehicles purchased at year y 
Chρ,y ℤ Number of chargers in position ρ at year y 

Second Stage Variables 
evr

δ,∊,y,ω {0,1} Accepted demand δ by vehicle ∊ 
evcha

t,ρ,∊,y,ω [-1,1] Vehicle charging power when connected 
evd

t,ρ,∊,y,ω {0,1} Vehicle that departure for relocation 
eva

t,ρ,∊,y,ω {0,1} Vehicle that arrived from relocation 
evcon

t,ρ,∊,y,ω {0,1} Vehicle connection status on the power grid 
evmov

t,∊,y,ω {0,1} Vehicle movement status 
SoCt,∊,y,ω R+ Vehicle state-of-charge 
revy,ω ℝ Revenue of year y 
Pev

t,ρ,y,ω ℝ Total charging power at position ρ 
Pi,j,t,y,ω ℝ Active power injected at the head bus of line (i, j) in 

period t 
Qi,j,t,y,ω ℝ Reactive power injected at the head bus of line (i, j) in 

period t 
vi,t,y,ω R+ Squared voltage magnitude at bus i in period t 
li,j,t,y,ω R+ Squared current in line (i, j) in period t 
Pg

t,i,y,ω R+ Active power generation at bus i in period t 
Qg

t,i,y,ω R+ Reactive power generation at bus i in period t  
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different factors impact how carsharing is utilized for one-way trips 
compared with round trips. The results indicate that the most statisti
cally significant factor in attracting carsharing customers is the cost gap 
for both one-way and round trips. However, one-way systems are the 
most widely deployed, giving good convenience for both users and op
erators. Furthermore, other authors investigate the optimal tariff and 
price discount for e–carsharing profit maximization. Li et al. [29] pre
sented a discrete-event simulation approach based on an framework for 
a one-way e–carsharing system. The proposed method considers the 
impact of road congestion on travel speed and designs a detailed 
charging process for EVs to approximate the real world. Their findings 
suggest that dynamic pricing can increase profit, and the optimal 
configuration avoids EV overstock. Zhang et al. [30] introduce a car
sharing personalized price discounting scheme problem for one-way 
reservation-based services, considering user acceptance of the dis
counted price and various levels of service that the system provides to 
the users. Finally, some authors study different reallocation mecha
nisms, such as operator-based and user-based mechanisms. Huang et al. 
[31] compare the efficiency of operator-based and user-based relocation 
methods in a one-way station-based e–carsharing system. For this, the 
authors proposed an ε–optimal and iterated local search algorithm to 
handle the nonlinear demand. Moreover, Qin et al. [32] formulated a 
set-packing model for the one-way e-carsharing relocation problem and 
designed a branch-and-cut-and-price algorithm to solve it. The authors 
designed a bidirectional label-setting algorithm to deal with the pricing 
subproblem and implement two acceleration techniques. Operator- 
based relocation is easier to implement, but user-based relocation with 
dynamic tariffs can achieve higher profits and fewer relocation costs 
[33]. All these operation topics could lead to different decisions, which 
affect the e–carsharing profit. Therefore, it is important to consider 
e–carsharing operation decisions in long-term planning. However, un
like carsharing, long-term planning for e-carsharing involves additional 
complications, such as CS building and EV autonomy. 

Thus, some authors investigated the CS’s siting and sizing with EV 
fleet sizing planning for a one–way e-carsharing business model. Huang 
et al. [7] presented a mixed integer nonlinear program model solved by a 
golden section line search method that size the shared EV fleet and CS 
capacity as well as its operation. The model and solution method are 
tested in a large-scale case study in China. Hua et al. [8] proposed an 
innovative framework to deploy a one-way shared EV under demand 
uncertainty in a case study in New York. For this, the authors developed 
a multistage stochastic model and an accelerated solution algorithm to 
address the curse of dimensionality. To address a larger-scale problem, 
these authors simplify the EV energy aspect and do not consider the 
power grid. However, such analysis can lead to high investment costs in 
power grid reinforcement. 

Predicting EV charging behavior can be used to allocate CSs as well 
as to estimate their charging impact on the power grid. Ullah et al. [34] 
employed four different ensemble machine-learning algorithms for 
predicting EV charging times. The prediction experiments were based on 
2 years of real-world charging event data from 500 EVs in Japan’s pri
vate and commercial vehicles. However, shared EVs have a different 
operating pattern than private EVs because of their high mobility. 
Therefore, the operator can take advantage of the controlled fleet to 
charge at the most convenient time. Shared EVs are important for esti
mating rental demand since they affect not only the company’s profit 
but also the EV charging time. In this sense, Alencar et al. [35] charac
terized three distinct carsharing systems that operate in Vancouver 
(Canada) and nearby regions. The author’s study uncovers patterns of 
users’ habits and demands. Feng et al. [36] analyzed users’ usage pat
terns based on GPS data provided by a carsharing company in Beijing. 
The results reveal that the carsharing program presents multiple usage 
patterns to meet the different travel needs of users. 

Moreover, some authors focus on small regions to investigate the 
impacts of shared EV charging on the power grid in optimization 
models. Wang et al. [37] proposed an expansion planning model for 

distribution networks considering shared EV charging stations. A sto
chastic model is proposed to create the shared EV load demand. Fan et al. 
[38] proposed a joint distribution network expansion planning frame
work integrated with shared EVs, but the optimal CS allocation and EV 
relocation were neglected. In addition, those authors do not investigate 
the impacts of service provision by e-carsharing, such as V2G, and how 
its integration with the DSO affects the company’s profit. Finally, Xie 
et al. [6] proposed a bilevel problem that optimizes the decisions of 
e–carsharing, taking into account the price elasticity of customers, EV 
mobility, and demand bidding in a distribution power market. However, 
the authors do not consider uncertainties in rental demand. 

Finally, distribution locational marginal pricing (DLMP) has been 
used in the recent literature because it reflects the state of the power grid 
with more precision. Wei et al. [39] developed a DLMP-based industrial 
park demand management method. The numerical case studies indicate 
that their proposed methodology performs better than the traditional 
dispatch model. Moreover, in the EV context, Patnam and Pindoriya 
[40] developed an EV aggregator scheduling framework using DLMP, 
and bilevel optimization was formulated to minimize power grid 
congestion. Finally, Wang et al. [41] proposed a tri-level bidding and 
dispatching framework based on a competitive distribution operation 
with DLMP for the demand response of residential loads and EVs. 

The recent literature shows that no authors investigate how the 
interaction between e-carsharing and the DSO affects the company’s 
profit. Another point that also needs investigation is how other services, 
such as V2G, affect the company’s profitability. Finally, most authors 
deal with the problem as deterministic. The demand uncertainty is of 
major importance in this context, impacting the long-term planning and 
daily operation of e-carsharing and consequently its profitability. 

1.3. Main contributions 

Most of the works found in the literature that approach shared EVs 
and DSO simplify the analysis of one of the agents. When the focus of the 
work is on e-carsharing, the power grid is generally modeled as a DCOPF 
(when not neglected). On the other hand, when the focus is on the 
operation of the power grid, e-carsharing is simplified, disregarding its 
operation and meeting the demands. To the authors’ best knowledge, 
the present work is the first to carry out an analysis that contemplates 
important aspects of both agents (e–carsharing company and DSO), 
simultaneously. 

Thus, this work intends to contribute to the assessment of the plan
ning of an e-carsharing company regarding its profitability, considering 
its interaction with the DSO (we assume a regulated market, that is, 
customers cannot choose their energy supplier. Thus, the power utility is 
also the system operator. For this, an AC optimal power flow (ACOPF) is 
formulated by second-order cone programming (SOCP). However, 
solving both the e-carsharing problem and ACOPF with the SOCP 
formulation is difficult not only because of the nonconvexity but also 
because of their intrinsic numeric instability due to the constraint [6]. 
This problem can be avoided with linearization techniques, which are 
well-known in the literature, such as Big-M, piecewise linearization, and 
the polyhedral global approximation [42,43]. Thus, we have used the 
global polyhedral approximation to linearize the ACOPF with the SOCP 
formulation, allowing us to model the whole problem as a MILP 
problem. 

The scenarios of uncertainty in the EV rental demand are based on 
kernel distribution from real data. Therefore, the problem is formulated 
with two-stage stochastic programming. The first-stage variables are the 
position of CSs, the number of chargers per CS, and the size of the EV 
fleet. The second-stage variables refer to both the operation of the 
company’s EVs (charging and rental) and the power grid. The TOU and 
RTP tariffs are widely used as energy tariffs in the literature. To date, 
these types of tariffs have a good application for private EVs, which tend 
to have stricter origins and destinations. Although these tariffs reflect 
the state of the network, they are the same for an entire concession area 
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(assuming a regulated market). The authors consider that DLMP has a 
good application in the context of shared mobility. Thus, EVs on con
stant trips can take advantage of cheaper prices in different parts of the 
city to reduce charging costs and provide services for the DSO. Finally, 
four different planning cases are proposed to assess the decisions of the 
e-carsharing and the DSO w/o V2G and w/o power grid constraints. 

Specifically, this work contributes to the literature in the following 
ways:  

● Raise a discussion on the feasibility of cooperation between an e- 
carsharing company and the DSO. The design of this joint planning 
business model can be a win–win situation for both agents. The 
company can increase profitability, while the DSO can mitigate the 
impact on the power grid with V2G;  

● We design a two-stage stochastic DLMP-based model that considers 
both DSO and e–carsharing operating constraints under EV rental 
demand uncertainty. Solve the ACOPF with a SOCP formulation 
linearized by the global polyhedral approximation in the shared 
mobility context. 

1.4. Paper structure 

The paper is organized as follows: In addition to this introductory 
section, Section II presents the stochastic problem formulation, divided 
into objective function and first-stage and second-stage constraints. 
Section III presents the case study, with information about the e-car
sharing company and the distribution network. In section IV, the results 
are discussed, and the main conclusions are developed in section V. 

2. Stochastic e-carsharing problem formulation 

The objective of this work is to maximize the e-carsharing company’s 
profit through the optimization of the position and capacity of the CS, as 
well as the fleet of EVs and their operation. An ACOPF with V2G is also 
considered. The planning proposal is modeled as a two-stage stochastic 
programming model taking into account two scenarios (low and high 
probability). Finally, the energy tariff is based on the energy marginal 
cost of the power grid – DLMP – without EVs. The siting, sizing, and e- 
carsharing operation problem is formulated as mixed-integer linear 
programming (MILP). The ACOPF is formulated using the SOCP relax
ation and further linearized using the global polyhedral formulation. 
Hence, the final problem is cast as an MILP formulation. Fig. 1 sum
marizes the proposed methodology in a flowchart, presenting the model 
and the inputs as the output variables. 

The problem considers e-carsharing operating in a one-way system. 
More precisely, customers can rent a vehicle for a tariff ζr at its origin 
and drop it off at its destination. The transportation network is not 
considered in this work. In addition, the actual demand data do not have 
the drivers’ path, as it violates the privacy agreement. The company has 
CSρ,y charging stations, Chρ,y chargers per station, and E∊,y of an EV fleet. 
The model considers a set of Ωy years and Ωt time intervals in the 
planning. It is noteworthy that the decisions of the first stage refer to one 
year, while the decisions of the second stage refer to one operating day. 
Finally, the model has a set of scenarios Ωω with pω probabilities. 

2.1. Objective function 

The objective of this work is to evaluate the interaction of the e- 
carsharing operation with the DSO. For this, two main objective func
tions are modeled, as shown in (1a) and (1b). In this first objective 
function, only the interests of the e-carsharing operator are considered. 
Hence, the first main objective is to maximize profit from vehicle rental 
(obfrental) and minimize charging costs (obfcha) and relocation costs 
(obfrelo), respectively. The second main objective also considers the 
perspective of the DSO, which aims to maximize the e–carsharing profit 

while minimizing the cost of energy generation (obfecost). It is worth 
noting that in (1b), there is joint decision–making between the two 
agents, the e-carsharing operator, and the DSO. Moreover, the first-stage 
variables are not represented in the objective function. To maximize 
profit, the model needs to invest in CSs, chargers, and EVs. Hence, only 
constraints for the first-stage variables are needed. In the following, the 
objective functions that define the main objective functions are 
presented. 

OF1 = obf rental − obf cha − obf relo (1a)  

OF2 = obf rental − obf cha − obf relo − obf ecost (1b) 

Eq. (2a) gives the rental profit due to a given trip acceptance (evr
δ,∊,y,ω) 

and its duration (Dd
δ,t,y,ω). The EV charging cost is given by (2b), in which 

the energy tariff (ζe
t,ρ) is the DLMP regarding the time and position. Eq. 

(2c) shows the operator-based relocation cost of the vehicles. It is worth 
mentioning that without relocation, more vehicles are needed to meet 
the demand. Thus, if the relocation tariff is a reasonable price (less than 
the rental tariff), the company can increase profit and meet demand. 
Finally, (2d) gives the dispatch cost from the primary energy source at 
the slack bus. 

obf rental = 365
∑

Ωω

pω
∑

Ωy

∑

Ωδ

∑

Ω∊

evr
δ,∊,y,ωDd

δ,y,ωζr (2a)  

obf cha = 365
∑

Ωω

pω
∑

Ωy

∑

Ωt

∑

Ωρ

∑

Ω∊

evcha
t,ρ,∊,y,ωPcζe

t,ρ (2b)  

obf relo = 365
∑

Ωω

pω
∑

Ωy

∑

Ωt

∑

Ωρ

∑

Ω∊

evd
t,ρ,∊,y,ωζrl (2c) 

Fig. 1. Proposed methodology flowchart.  
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obf ecost = 365
∑

Ωω

pω
∑

Ωy

∑

Ωt

∑

Ωρ

Pg
t,ρ,y,ωζg (2d)  

2.2. First stage constraints: siting and sizing 

The first-stage constraints of this work refer to the investment cost in 
CSs, chargers, and the EV fleet. The CS installation cost considers all the 
costs involved in CS construction (land purchase, earthworks, electrical 
installation, infrastructure construction, etc.), except for the cost of the 
chargers. The cost of the charger could be included in the CS installation 
cost. However, this modeling allows limiting the number of chargers 
given that each CS may have different physical space limitations [34]. 
Eq. (3a) is the generalized form of the e-carsharing financial balance. 
The general idea of the equation is that the expenses of year y (left side) 
must be less than the budget available at year y plus the remaining 
amount invested from previous years (right side). For example, once an 
EV is purchased, it does not need to be purchased again the following 
year. Finally, note that for y = 1, (3a) shows that the total expenses must 
be less than the initial budget only. The origin and destination of de
mands are randomly generated. Thus, the first-stage optimal variables 
may differ for each year due to the e-carsharing operation. Hence, (3b), 
(3c), and (3d) are nonanticaptivity constraints, which prevent the model 
from removing the CSs, chargers, and EVs once installed/bought, 
respectively. Note that if y = 1, (3b), (3c), and (3d) indicate that CSρ,y, 
Chρ,y, and E∊,y, respectively, must only be an integer. The space avail
ability in urban areas can be a limiting factor in planning. In this sense, 
(3e) limits the chargers to be installed only where CS was installed. In 
addition, the number of chargers is also limited to a minimum (Chmin

ρ ) 
and maximum (Chmax

ρ ) amount, which depends on the position ρ. 
∑

Ωρ

(
CSρ,ypcs +Chρ,ypch)+

∑

Ω∊

E∊,ypev ≤
∑y

φ=1
Bφ (3a)  

CSρ,y ≥ CSρ,y− 1 (3b)  

Chρ,y ≥ Chρ,y− 1 (3c)  

E∊,y ≥ E∊,y− 1 (3d)  

Chmin
ρ CSρ,y ≤ Chρ,y ≤ Chmax

ρ CSρ,y (3e)  

2.3. Second stage constraints: e-carsharing operation 

This section presents the operating constraints of e–carsharing, 
which are cast as follows. The set of Equations (4) referring to the daily 
operation of e-carsharing (second stage) also presents the year index. 
Thus, in addition to the first-stage variable linkage, the model can also 
execute the operation according to parameters that can change annu
ally, such as rental demand or energy consumption. Eq. (4a) refers to the 
balance of EVs connected to the CS. The term 

∑
Ωδ

evr
δ,∊,y,ωDD

t,δ,ρ,y,ω are all 
the accepted demands that arrive at destination ρ at time t, while the 
term 

∑
Ωδ

evr
δ,∊,y,ωDO

t,δ,ρ,y,ω is all the accepted demands that depart from 
destination ρ at time t. Moreover, the vehicles arriving and departing 
from relocation are added and subtracted in (4a), respectively. Eq. (4b) 
defines the initial position of EVs (pi

ρ,∊) only if the CS has been installed 
in the first stage. Moreover, Eq. (4c) indicates that EVs must finish the 
day in the same initial position to complete an operation cycle. It is 
worth noting that the EV’s initial position could be a first-stage opti
mization variable. Thus, the e-carsharing operator could identify the 
best initial position to maximize profit in all scenarios. To simplify, we 
assigned random initial positions to the EVs. Eq. (4d) shows that a rental 
demand from or to position ρ can only be accepted if the CS at position ρ 
has been built in the first stage. Eq. (4e) defines that the number of EVs 
connected must be less than or equal to the number of chargers in the 

station. It is worth mentioning that all spots have a charger, which can 
connect only one EV each time. Therefore, the CS capacity is equal to the 
number of chargers. Eq. (4f) defines that each demand must only be 
accepted once and by one EV. Eq. (4g) defines that if purchased in the 
first stage, a vehicle must be either moving, connected, or relocating. 
The reallocation duration time is simplified as a 1-time interval for any 
position, as indicated in (4h). 

evcon
t,ρ,∊,y,ω = evcon

t− 1,ρ,∊,y,ω +
∑

Ωδ

evr
δ,∊,y,ωDD

t,δ,ρ,y,ω

−
∑

Ωδ

evr
δ,∊,y,ωDO

t,δ,ρ,y,ω + eva
t,ρ,∊,y,ω − evd

t,ρ,∊,y,ω

(4a)  

evcon
tin ,ρ,∊,y,ω = pi

ρ,∊CSρ,y (4b)  

evcon
tend ,ρ,∊,y,ω = pi

ρ,∊CSρ,y (4c)  

evr
δ,∊,y,ω ≤ CSρ,y (4d)  

∑

Ω∊

evcon
t,ρ,∊,y,ω ≤ Chρ,y (4e)  

∑

Ω∊

evr
δ,∊,y,ω ≤ 1 (4f)  

evmov
t,∊,y,ω +

∑

Ωρ

(
evcon

t,ρ,∊,y,ω + evd
t,ρ,∊,y,ω + eva

t,ρ,∊,y,ω

)
= E∊,y (4g)  

∑

Ωρ

evd
t,ρ,∊,y,ω =

∑

Ωρ

eva
t+1,ρ,∊,y,ω (4h) 

Eq. (4i) defines the state of charge (SoC) of an EV battery. The battery 
energy consumption (dr) is constant for both rental and relocation. Note 
that the charging power (evcha

t,ρ,∊,y,ω) varies from − 1 to 1 when V2G is 
considered and from 0 to 1 when V2G is not considered. Using a single 
variable for vehicle charging makes it easier in terms of implementation 
and computational effort, as an equation to avoid simultaneous charging 
and discharging is not needed. On the other hand, it has drawbacks due 
to simplification, such as the use of charger efficiency for both charging 
and discharging. Eqs. (4j) and (4k) impose equal operating states in the 
SoC at the beginning and the end of each day to complete a daily cycle. 
Eq. (4k) is relaxed with ≥, but it holds at SoCi

∊ to reduce the charging 
cost. The total charging power of each CS at position ρ is presented in 
(4l). Finally, (4m) defines that an EV can only charge if it is connected. 
Note that to disable V2G, the lower limit must be set to zero instead of 
− evcon

t,ρ,∊,y,ω. 

SoCt,∊,y,ω = SoCt− 1,∊,y,ω −

(

evmov
t,∊,y,ω +

∑

Ωρ

evd
t,ρ,∊,y,ω

)
dr

Eb +
∑

Ωρ

evcha
t,ρ,∊,y,ωPceff cha

Eb

(4i)  

SoCtin ,∊,y,ω = SoCi
∊ (4j)  

SoCtend ,∊,y,ω ≥ SoCi
∊ (4k)  

Pev
t,ρ,y,ω =

∑

Ω∊

evcha
t,ρ,∊,y,ωPceff cha (4l)  

− evcon
t,ρ,∊,y,ω ≤ evcha

t,ρ,∊,y,ω ≤ evcon
t,ρ,∊,y,ω (4m)  

2.4. Second stage constraints: AC OPF 

This section presents the set of constraints related to the operation of 
the power grid. The constraints of an ACOPF are complex, nonlinear, 
and nonconvex. The branch flow model (BFM) with the SOCP formu
lation is used to relax the original problem. Finally, the global 
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polyhedral approximation is used to linearize the problem. Thus, the 
problem reads as follows. 

Eqs. (5a) and (5b) present the balance of active and reactive power, 
while (5c) and (5d) present the respective power flow limits. The DMLP 
is given by the dual variable associated with the active power balance 
(Eq. (5a)). The voltage calculation at each node is given by (5e), and its 
limits are presented in (5f). Finally, (5g) is a nonconvex equality that 
defines the branch flow at the head node of each line. Although the BFM 
guarantees the same voltages and power flows as the traditional AC 
power flow, the problem is more computationally tractable when (5g) is 
linearized [44]. Thus, replacing = for ≤, the second-order cone equa
tion becomes convex, given by the canonical form of (5h). It was proven 
in [45] that in distribution systems, (5h) holds in the optimal solution 
under some mild conditions. The polyhedral global approximation is 

developed for second-order cone equations in the form of 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + x2

2

√

≤ x3 

[46]. Thus, (5h) is decomposed into Eqs. (5i) and (5j). Applying the 
technique of [46] in Eqs. (5i) and (5j), one can obtain the set of linear 
constraints of (5k) and (5l), where ξ1

i,j,ϰ,t,y,ω, η1
i,j,ϰ,t,y,ω, ξ2

i,j,ϰ,t,y,ω, η2
i,j,ϰ,t,y,ω, 

and φ are auxiliary variables and ϰ is a positive integer, which is used to 
adjust the approximation accuracy. According to [46], if (5h) is satis
fied, then (5k) and (5l) must hold. Thus, (5h) can be replaced by (5k) and 
(5l). 

Pi,j,t,y,ω − ri,j,yli,j,t,y,ω +Pg
t,i,y,ω − Pd

t,i,y,ω − Pev
t,ρ,y,ω =

∑

k∈S(j)

Pj,k,t,y,ω : ζe
t,ρ (5a)  

Qi,j,t,y,ω − xi,j,yli,j,t,y,ω +Qg
t,i,y,ω − Qd

t,i,y,ω =
∑

k∈S(j)

Qj,k,t,y,ω (5b)  

Pmin
i,j,t,y,ω ≤ Pi,j,t,y,ω ≤ Pmax

i,j,t,y,ω (5c)  

Qmin
i,j,t,y,ω ≤ Qi,j,t,y,ω ≤ Qmax

i,j,t,y,ω (5d)  

vj,t,y,ω = vi,t,y,ω − 2
(
ri,j,yPi,j,t,y,ω + xi,j,yQi,j,t,y,ω

)
+
(

r2
i,j,y + x2

i,j,y

)
li,j,t,y,ω (5e)  

vmin
j,t,y,ω ≤ vj,t,y,ω ≤ vmax

j,t,y,ω (5f)  

li,j,t,y,ωvi,t,y,ω = P2
i,j,t,y,ω +Q2

i,j,t,y,ω (5g)  

‖

2Pi,j,t,y,ω
2Qi,j,t,y,ω

li,j,t,y,ω − vi,t,y,ω

‖ ≤li,j,t,y,ω + vi,t,y,ω (5h)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
2Pi,j,t,y,ω

)2
+
(
2Qi,j,t,y,ω

)2
√

≤ Wi,j,t,y,ω (5i)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Wi,j,t,y,ω

)2
+
(
li,j,t,y,ω − vi,t,y,ω

)2
√

≤ li,j,t,y,ω + vi,t,y,ω (5j)  

⎧
⎨

⎩

ξ1
i,j,0,t,y,ω ≥ 2Pi,j,t,y,ω, ξ1

i,j,0,t,y,ω ≥ − 2Pi,j,t,y,ω

η1
i,j,0,t,y,ω ≥ 2Qi,j,t,y,ω, η1

i,j,0,t,y,ω ≥ − 2Qi,j,t,y,ω  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1
i,j,φ,t,y,ω = cos

(
π

2φ+1

)

ξ1
i,j,φ− 1,t,y,ω + sin

(
π

2φ+1

)

η1
i,j,φ− 1,t,y,ω

η1
i,j,φt,y,ω ≥ − sin

(
π

2φ+1

)

ξ1
i,j,φ− 1t,y,ω + cos

(
π

2φ+1

)

η1
i,j,φ− 1,t,y,ω

η1
i,j,φ,t,y,ω ≥ +sin

(
π

2φ+1

)

ξ1
i,j,φ− 1,t,y,ω − cos

(
π

2φ+1

)

η1
i,j,φ− 1,t,y,ω  

φ = 1,⋯, ϰ  

⎧
⎪⎨

⎪⎩

ξ1
i,j,ϰ,t,y,ω ≤ Wi,j,t,y,ω

η1
i,j,ϰ,t,y,ω ≤ tan

(
π

2ϰ+1

)

ξ1
i,j,ϰ,t,y,ω

(5k)  

⎧
⎨

⎩

ξ2
i,j,0,t,y,ω ≥ Wi,j,t,y,ω, ξ2

i,j,0,t,y,ω ≥ − Wi,j,t,y,ω

η2
i,j,0,t,y,ω ≥ li,j,t,y,ω − vi,t,y,ω, η2

i,j,0,t,y,ω ≥ −
(
li,j,t,y,ω − vi,t,y,ω

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ2
i,j,φ,t,y,ω = cos

(
π

2φ+1

)

ξ2
i,j,φ− 1,t,y,ω + sin

(
π

2φ+1

)

η2
i,j,φ− 1,t,y,ω

η2
i,j,φt,y,ω ≥ − sin

(
π

2φ+1

)

ξ2
i,j,φ− 1t,y,ω + cos

(
π

2φ+1

)

η2
i,j,φ− 1,t,y,ω

η2
i,j,φ,t,y,ω ≥ +sin

(
π

2φ+1

)

ξ2
i,j,φ− 1,t,y,ω − cos

(
π

2φ+1

)

η2
i,j,φ− 1,t,y,ω  

φ = 1,⋯, ϰ  

⎧
⎪⎨

⎪⎩

ξ2
i,j,ϰ,t,y,ω ≤ li,j,t,y,ω + vi,t,y,ω

η2
i,j,ϰ,t,y,ω ≤ tan

(
π

2ϰ+1

)

ξ2
i,j,ϰ,t,y,ω

(5l)  

3. Case study 

Four scenarios are proposed for the case study, denoted Cases 1A, 1B, 
2A, and 2B. Case 1 is the benchmark case. In Case 1A, e-carsharing 
planning is carried out only with EV charging optimization, without 
considering the V2G and power grid constraints. Case 1B is similar to 1A 
but with V2G. Cases 1A and 1B problem formulations are given by (6a), 
with the optimality gap set as 0.1 %. Case 2A contains the power grid 
constraints, but without V2G. Finally, Case 2B considers V2G and the 
power grid constraints. Cases 2A and 2B problem formulations are given 
by (6b), with the optimality gap also set as 0.1 %. Table 1 presents a 
summary of the main aspects of each case. 

max(OF1)

s.t. (3), and (4) 
max(OF2)

s.t. (3), (4), (5a) – (5f), (5k), and (5l) 
It is assumed that all EVs are the same, as are the chargers. The rental 

tariff and relocation cost are constant, while the energy tariff is based on 
the DLMP from the grid without any EV. Table 2 summarizes the pa
rameters for the e–carsharing model [47,48]. The authors in [35] pro
vide a real database with 644,511 vehicle rental trips over five months. 
The data contain the trip start time (tripstart), trip duration (tripd), trip 
end time (tripend), trip start and end locations, distance traveled per trip, 
SoC at the end of a trip and date of the trip. An algorithm was developed 
to treat this database, as shown in Table 3. The algorithm extracts the 
trip start time probability density function (PDF) based on the kernel 
distribution to generate scenarios, as shown in Fig. 2. As the analysis of 
the operation in this study is for one day (24 h), we use the average PDF 
of the week to avoid biased daily data. In addition, it is observed that 
most trips last less than 1 h. As the time interval of our model is 1 h, it 
was considered that trips can take between one and two hours, with the 
same probability. The travel route is not given, as it is confidential 
customer data. Hence, the origin and destination are randomly gener
ated through a uniform integer distribution contained in the set of po
sitions Ωρ. It is noteworthy that for real cases, an in-depth study is 
needed to create the region’s start trip PDF. 

The 33-bus IEEE system is used as the power grid, whose topology is 
shown in Fig. 3. The line data are obtained from [49]. All cable limits are 

Table 1 
Case studies summary.   

Optimization without V2G Optimization with V2G Power Grid 

Case 1A ✓ ⨯ ⨯ 
Case 1B ⨯ ✓ ⨯ 
Case 2A ✓ ⨯ ✓ 
Case 2B ⨯ ✓ ✓  
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set to 5 MVA to avoid overload. The energy cost of the slack bus (bus 1) 
ζg is set to $20/MWh. The voltage lower and upper bounds are set to 
0.95 and 1.05 pu, respectively. Different load shapes for each bus could 
highlight the DLMP. However, in this case study, the different buses and 
line capacities are sufficient conditions to change the DLMP. Thus, we 

use the same load shape for all the buses, as shown in Fig. 4. 

4. Results 

The model is developed in GAMS using the CPLEX solver [50]. Due to 
high computational time, it is considered to be only one year for the 
planning horizon (Ωy = 1). A set of five scenarios has been simulated, 
although, for the sake of simplicity, only two scenarios are presented. 
The scenarios are defined as low and high rental demand, with a total of 
20 and 50 daily trips and 20 % and 80 % probability, respectively. The 
main objective of the scenarios is to observe the uncertainty in total 
daily demand. Thus, one can evaluate e-carsharing decisions in both 
cases. Table 4 presents the main decision variables’ results. The rental 
profit is the same in all cases. 

The case with V2G and no power grid constraints (Case 1B) is the one 
with the highest profit, given that there is no limit to the company’s 
interaction with the power grid. Moreover, when power grid constraints 
are considered (Case 2B), the company’s profit decreases compared with 
Case 1B. Cases 1A and 2A present the same behavior. It is worth 
mentioning that the decision in the first stage (number of chargers) 
changed according to the operation mode (with or without V2G) and the 
power grid constraints. This only happened to reduce charging costs 
because the meeting demand remained the same. This indicates that the 
company’s mode of operation could affect the siting and sizing of CSs 
according to the agent planning perspective. Moreover, the relocation 
mechanism was used as a way to maximize profit, meeting rental de
mand instead of moving the EVs to charge in positions where the energy 
tariff was cheaper. However, if there is a trade-off between relocation 
and charging costs, EVs could take advantage of low rental demand to 
move and charge at locations with low tariffs and discharge at locations 
with high tariffs. 

Regarding the scenarios, the demand was not met in either scenario 
or case due to the budget limit of the first stage. However, one can notice 
that the meeting demand was the same in all scenarios and cases, which 
shows that the proposed methodology does not affect the user’s expe
rience. Therefore, the rental and energy tariffs ratio must be carefully 
assessed, otherwise, there will be no business model shift. It is also noted 
that the total daily losses in the case with V2G are slightly lower than in 
the case without V2G, which highlights its benefits for the DSO. 

Finally, the profits in decreasing order are Case 1B > Case 2B > Case 
1A > Case 2A. Case 1B was expected to present the highest profit, given 
that there are no constraints for power injection into the grid. On the 
other hand, Case 2A was also expected to present the lowest profit, since 
there is no flexibility of V2G and there are power grid constraints. 
However, Cases 1A and 2B have a less straightforward interpretation. If 
the electrical grid is operating close to its limit, the power flows will be 
more limited, preventing EVs from injecting more energy into the grid 
and leading to a higher charging cost. Although Case 1A does not have 
V2G, its profit may be higher due to fewer constraints. 

Fig. 5 presents the power on the slack bus in Cases 2A and 2B with 
scenarios 1 and 2 (S1 and S2). Most of the EV charge is concentrated at 
night in Case 2A when rental demand and charging cost are low. In this 
case, the EV charging optimization benefits are smaller for the DSO. As 

Table 2 
E-carsharing parameters summary.  

Parameter Value 

Electric vehicle price (pev) [$] 30,000 
Charging station price (pcs) [$] 100,000 
Charger price (pch) [$] 1,000 
Initial budget (By=1) [$] 3,000,000 
Maximum/minimum number of chargers per station (Chmax

ρ /Chmin
ρ ) 10/1 

Rental tariff (ζr) [$/h] 4 
Relocation cost (ζrl) [$/h] 2 
Charger power (Pc) [kW] 7.2 
EV energy battery (Eb) [kWh] 40 
EV energy consumption (dr) [kWh/h] 4.4 
Charger efficiency (effcha) [%] 95  

Table 3 
Algorithm for scenario generation.  

Scenario generation Algorithm 

1 Input data 
2 Collects the parameter tripstart 
3 Selects the base time: week or day 
4 Treat the parameters according to the selected base time 
5 Estimate the Kernel distribution based on tripstart  

6 f̂ h(x) =
1
nh
∑n

i=1
K
(x − xi

h

)

7 Defines the number of demands δ 
8 for each year y 
9 for each scenario ω 
10 for each demand δ 
11 Defines the origin/destination based on uniform integer distribution within the 

set Ωρ 

12 Defines the tripstart based on the Kernel distribution f̂ h(x)
13 Defines the tripd based on uniform integer distribution within [1,2] 
14 tripend = tripstart + tripd 
15 end for 
16 end for 
17 end for  

Fig. 2. Carsharing start trip probability density function.  

Fig. 3. IEEE 33 bus system.  

Fig. 4. Demand load shape.  
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in this case study, few trips are being considered, and the intensity of 
vehicle use is small compared to the battery capacity, so the total 
discharge throughout the day is low. Thus, the charging demand is also 
low. Despite the rental demand during the day (8 h ~ 24 h), some parked 
EVs take advantage of the high DLMP to discharge into the grid, 
reducing the substation demand (slack bus) in Case 2B. On the other 
hand, this discharge during the day is compensated at night, when the 
EVs charge (with more intensity than Case 2A). 

Fig. 6 presents a comparison of the total EV charging load between 

Cases 1A and 1B and Cases 2A and 2B. The charging power peaks are 
more accentuated (both positive and negative) in cases where there are 
no power grid constraints. On the other hand, with the power grid 
constraints, the total load curve is smoother. In this way, if the e-car
sharing operator is coordinated with the DSO, a coordinated charge 
(with or without V2G) can be used to postpone investments in network 
reinforcement and still keep meeting the rental demand. 

Fig. 7 shows the DLMP at bus 18 (farthest from the substation). Note 
that the DLMP change is very small in Case 2A, while there is a greater 
variation in Case 2B for both scenarios. This behavior is repeated in all 
the system buses, as shown in the summary in Table 5. Despite the 
average DLMP remaining constant, the maximum and minimum DLMPs 
decreased in Case 2B compared to Case 2A. This reinforces the idea of 
the benefits of coordinated planning of both agents. 

On the other hand, if the e-carsharing company operates using a flat 
tariff, its charging cost would remain the same regardless of the time of 
day. This could lead to a further increase in the DLMP at peak con
sumption times, as there would be no incentive to charge during off- 
peak times. Furthermore, a relatively large EV fleet (not only e-car
sharing but also EV taxis) charging at the same time at a single CS can 
significantly influence the DLMP. Thus, energy costs would be passed on 
to all consumers in that region, even those who do not use e-carsharing. 

Therefore, V2G increased the company’s profit (not as much as in 
case 1B), reduced the total system losses, reduced the DLMP, and flat
tened the substation demand. Although the difference between the 
profits of Cases 1A and 2A and Cases 1B and 2B are relatively low, this 
may indicate that cooperation between agents is beneficial. However, 
assuming the company took a selfish stance and proceeded with Case 1B 
planning to maximize profit. The DSO may not be able to operate as 
planned. Thus, there may be a blackout due to the unexpected increase 

Table 4 
Decisions summary.   

Case 1A Case 1B Case 2A Case 2B 

Total profit [$] 55,570 55,662 55,569 55,635 
Total rental profit [$] 69,788 69,788 69,788 69,788 
Total charging cost [$] 1,662 1,570 1,663 1,597 
Total relocation cost 

[$] 
12,556 12,556 12,556 12,556 

First stage decisions 
Number of charging 

stations 
23 23 23 23 

Number of chargers 37 36 36 35 
Number of electric 

vehicles 
20 20 20 20 

Total acquisition cost 
[$] 

2,937,000 2,936,000 2,936,000 2,935,000 

Second stage decisions  
Scenarios  
1 2 1 2 1 2 1 2 

Meeting demand [%] 40 70 40 70 40 70 40 70 
Total daily losses 

[MW] 
– – – – 2.81 4.11 2.76 4.06 

Simulation time [s] 58 217 2,945 23,838  

Fig. 5. Power on the slack bus.  

Fig. 6. EV charging and discharging power.  

Fig. 7. Distribution local marginal price at bus 18.  

L. Bitencourt et al.                                                                                                                                                                                                                              



Applied Energy 330 (2023) 120347

9

in load or even load shedding if considering a smart grid with proper 
control. Both situations are disadvantageous for the e-carsharing com
pany and the DSO, which highlights the importance of cooperation be
tween them. 

5. Conclusions 

The recent literature shows that previous works do not consider both 
the operational characteristics of an e-carsharing company and the DSO 
in carsharing planning. Other aspects that could help sustain the prof
itability of e-carsharing planning are also neglected, such as V2G and 
DLMP. Thus, this work proposes a model for siting and sizing CSs and the 
EV fleet of an e-carsharing company under demand uncertainty. The 
ACOPF was modeled using SOCP relaxation and linearized by the 
polyhedral global approximation. For this, two-stage stochastic pro
gramming was used to model the problem. To the authors’ best 
knowledge, our work is the first to carry out an analysis that contem
plates a detailed operation of the e-carsharing and DSO simultaneously. 
Finally, four cases were proposed to assess the company’s profitability in 
different EV charging situations and agents’ planning perspectives in the 
GAMS environment. 

The results indicate that planning considering V2G and ignoring the 
power grid constraints is the most profitable. The charging cost, in this 
case, is approximately 1.66 % less than the case with power grid con
straints. However, in a real application, there is a probability of this case 
not occurring, since the power grid may not be able to cope with high 
power flows due to V2G. Thus, e-carsharing designers should consider 
an analysis of the power grid for proper design to limit potential prob
lems. On the other hand, coordinated planning with the DSO showed 
reductions of approximately 2.5 %, 1.5 %, and 5.1 % in the DLMP peak, 
losses, and peak demand, respectively. Although they were not included 
in this work, the benefits that e–carsharing brought to the DSO (at the 
expense of profit) could be converted into financial compensation. Thus, 
the provision of services to the DSO could work as a buffer for the 
company in periods of low rental demand, making its profit more sus
tainable. Furthermore, the realization of this scenario is more plausible 
in real applications, as the operation is within the limits of the power 
grid. 

Despite dealing with demand uncertainty, this article considered 
only two scenarios and a small number of daily trips due to the high 
computational effort. Another simplification considered is the travel 
time and the route of the users. As the model is for car rental, it is 
important to maintain users’ privacy. However, applications in which 
routes are also controlled (such as taxis and buses), considering the 
transport network, can influence the optimization results. Moreover, 
customer satisfaction was not modeled. Instead, the meeting rental de
mand was evaluated in terms of total demand, which was not affected by 
the proposed methodology. Finally, for this work, we choose a small test 
system to show that by using the proposed methodology, the 
e–carsharing company can provide valuable services to the DSO (i.e., 
peak shaving and voltage regulation) in exchange for a low increase in 
EV charging cost. 

Therefore, future improvements to reduce computational time 
involve improving the model through decomposition techniques, such 

as Bender’s decomposition or dynamic programming. In addition, the 
model can also be adapted for applications with controlled routes, 
considering the transport network, traffic, and Dijkstra’s algorithm. 
Finally, we are considering in our future works using the IEEE-123 test 
system, to make different analyses, such as load imbalance due to EV 
charging. 
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