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A B S T R A C T

Extreme summer temperatures in the Iberia Peninsula are analyzed from ERA5-Land reanalysis data based
on an extreme value mixture model combining a Normal distribution for the bulk distribution (i.e. for the
non-extreme values) and a Generalized Pareto Distribution for the extremes in the upper tail. This approach
allows to treat the threshold of temperature exceedances as being one of model parameters rather than fixed a
priori, enabling to take into account its corresponding uncertainty. Extreme value mixture models are estimated
individually for each location, and the analysis is performed separately for two distinct periods, namely from
1981 to 2000 and from 2000 to 2019, respectively. The results show significant differences in the extreme value
mixture models for the two periods, and in their corresponding 20-year return levels. The mean of the bulk
distribution of summer maximum temperature increases significantly, particularly in Eastern Iberia. The largest
differences in the tails of the data distribution between the two periods occur in the eastern Mediterranean
area, and are characterized by a significant increase in the threshold for temperature exceedances and in their
corresponding return levels.
1. Introduction

Excessive heat events are one of the largest direct cause of increased
weather-related mortality (Lee, 2014), with extreme high temperatures
being associated with a near universal increase in human mortality and
morbidity (Sheridan and Allen, 2015). Despite the decreased sensitivity
to heat in the developed world, associated with increased awareness
and improvement in life conditions (e.g. Sheridan and Allen, 2018
and DeCastro et al., 2011), climate change is expected to exacerbate
extreme high temperatures. Furthermore, demographic changes lead to
increasingly elderly populations, the most vulnerable to extreme heat
events. In addition to health concerns, extreme temperatures are also
associated with important economic impacts, for example in terms of
agriculture yields (Sun et al., 2019) or electricity demand (Hyndman
and Fan, 2009).

The Iberian Peninsula is traditionally exposed to extreme heat
events, but climate change has the potential to further intensify already
typically high temperatures. Climate projections indicate an increase in
the frequency and intensity of extreme heat events associated with the
increase in global mean temperature (e.g. Cardoso et al., 2019; Molina
et al., 2020; Suarez-Gutierrez et al., 2020; Carvalho et al., 2020 and
Lorenzo et al., 2021). Lisboa and Madrid are among the most vulnerable
European capitals to extreme heat in the future (Smid et al., 2019).
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This study aims to describe extreme temperature events in the Iberia
Peninsula.

Non-stationarity is a fairly common feature of climate records
(e.g. Milly et al., 2008 and Slater et al., 2020), and the analysis of
extreme temperatures in a non-stationary framework often considers
changes in time of indices or percentiles of the data distribution within
a given period, such as the warmest/coolest day (e.g. Ramos et al.,
2011; Fernández-Montes and Rodrigo, 2012 and Donat et al., 2013).
Traditional methods for the assessment of extreme events are based
on the assumption of long-term stationarity, enabling the use of past
information to infer the risk of future extreme events. An alternative
enabling the extrapolation to extremes outside the observation record
is to parameterize the tail of the data distribution by considering
a GEV (Generalized Extreme Value) distribution for block extremes
(e.g. Kharin et al., 2018) or GPD (Generalized Pareto) distribution for
excesses above a high threshold (e.g. Katz et al., 2002; Lucio et al.,
2010). Non-stationary is then taken into consideration by estimating
trends in the parameters of the extreme value distributions (e.g. Parey
et al., 2007; Brown et al., 2008) or by standardizing the variable in
order to produce extremes which are approximately stationary (Parey
et al., 2019).

Although the modeling of excesses above a threshold has the ad-
vantage of making a more efficient use of the available data, its main
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Fig. 1. Study area: (a) geographic location of the Iberia Peninsula (license CC0 1.0); (b) gridpoints of air temperature time series over the Iberia peninsula and location of
individual stations (∙).
Fig. 2. Empirical distribution of summer temperature (declustered) maxima for the station of Lisboa, and the corresponding distribution for the nearest ERA5 and ERA5-Land
gridpoints.
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challenge is the selection of such threshold, which needs to be set high
enough to describe a relevant extreme event while low enough to en-
sure an adequate sample size of extreme values. It is important to stress
that most approaches devised for threshold selection do not account for
the uncertainty associated with the threshold choice. This limitation is
overcome by extreme value mixture models, which treat the threshold
as being an unknown parameter which has to be estimated, enabling
the uncertainty on the threshold to be taken into account in subsequent
inferences (e.g. Behrens et al., 2004 and Scarrott and MacDonald, 2012;
Scarrott et al., 2016). Furthermore, in contrast with extreme value
models, mixture models do not ignore the non-extremal data, but rather
combine in the same modeling framework a GPD threshold model for
the extreme values with a model for the bulk distribution, thus allowing
to characterize the full data distribution.

In this paper, the complete distribution of extreme summer daily
temperatures in the Iberia Peninsula is analyzed by means of an ex-
treme value mixture model applied to homogeneous air temperature
time series on a regular spatial grid. The rest of the paper is organized
as follows: data is described in Section 2 and the modeling approach
is detailed in Section 3. The results are presented in Section 4 and the
conclusions of the study are given in Section 5.

2. Data

Temperature extremes in Iberia are assessed from Iberia reanalysis
data, resulting from the combination of models and observations, as
it allows to overcome the limitations in terms of length and spatial
coverage of available station records. Over North America, the com-
parison of atmospheric reanalysis and surface observations in terms
of extreme temperatures indicates that reanalysis data are broadly
able to replicate the spatial pattern of extreme temperature events in
terms of their climatological frequency, with the ERA5-Land reanalysis
having in general a lower match with station observations than the
ERA5 reanalysis (Sheridan et al., 2020). For the Iberia, ERA5 (Hersbach
et al., 2019) and ERA5-Land reanalysis (Muñoz Sabater, 2019) are here
compared with station data from the European Climate Assessment
(ECA&D) dataset. (Klein Tank et al., 2002).

2.1. Comparison of reanalysis and station data

The ERA5 reanalysis is available on a 0.25 × 0.25◦ grid, while
he ERA5-Land is available on a higher resolution 0.1 × 0.1◦ grid.
ig. 1 shows the ERA5-land grid and the location of individual stations.
ourly reanalysis time series of air temperature at 2 m above the

urface from January 1981 to December 2019 are obtained for the
ridpoint closest to each station. As the focus of the analysis is on
xtreme heat events, and to avoid non-stationarity due to the seasonal
ycle, only summer values from June to August (JJA) are considered.
urthermore, in order to reduce the serial dependence in daily tem-
erature values, the reanalysis data are declustered by computing the
aximum over clusters of 72 hourly values (3-days).

A total of 30 stations from the non blended ECA&D dataset with data
vailable for the 1981–2019 period are considered. For consistency, the
ame approach is adopted as for the reanalysis data. Daily tempera-
ure time series of maximum temperature are considered only for the
ummer period and maximum values are taken over 3-days clusters.

Fig. 2 shows the data distribution for an individual station (Lisboa)
nd for the nearest ERA5 and ERA5-Land reanalysis gridpoints. In
erms of range the higher resolution ERA5-Land distribution is closer
o the station data distribution than the ERA5 reanalysis. The range
nd median values for all the individual stations and the corresponding
eanalysis data are displayed in the Appendix (Table A.1).

Fig. 3 summarizes for all the stations the differences in terms of
edian and range between station and reanalysis summer temperature
ata. The differences are dominantly positive, indicating that the re-
nalysis temperature values are lower than the station ones. The largest
ifference between station and reanalysis summer maxima is found for
mountain station, Navacerrada, at 1894 m altitude. Differences are

n general smaller for ERA5-Land than ERA5 data.
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Fig. 3. Boxplots of differences in minimum, median and maximum values of summer temperatures between stations and nearest reanalysis time series. The ◦ indicates outlying
values which correspond to the mountain station of Navacerrada.
Fig. 4. Kolmogorov–Smirnov statistic (left) and overlapping index (right) for station and reanalysis empirical data distributions.
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Further comparison of the empirical distributions of station and
eanalysis data is carried out by computing the Kolmogorov–Smirnov
istance (Arnold and Emerson, 2011) and the overlapping index (Pa-
tore, 2018; Pastore and Calcagni, 2019). The Kolmogorov–Smirnov
tatistic reflects the distance between empirical cumulative distribution
unctions, while the overlapping index provides an estimate of the
ercentage of overlapping of the empirical distributions. The results are
isplayed in Table A.2 and summarized for all the stations in Fig. 4. On
verage ERA5 and ERA5-Land results are similar, but the distance to the
tation data is more frequently higher for ERA5 than ERA5-Land data.
he overlapping index is also lower in the case of ERA5 data.

.2. ERA5-Land reanalysis data

Taken into consideration the results of the previous section, the
RA5-Land reanalysis data is used for the study of summer temperature
axima in Iberia. The main advantage of ERA5-Land is its higher

patial resolution, corresponding to a total number of ∼ 6000 gridpoints
ver the Iberian Peninsula (compared to ∼ 1000 for ERA5).

Each one of these ∼ 6000 hourly time series of declustered summer
axima is analyzed individually. As an illustration, Fig. 5a shows

ne of the time series (8.4◦W, 41.6◦N). The analysis focuses on the
ata distribution (displayed in Fig. 5(b)), thus ignoring the temporal
ependence between observations (reflected in the autocorrelation and
artial autocorrelation functions shown in Fig. 5c–d).

. Models and methods

An extreme value mixture model combining a normal distribution

or the bulk and a GPD distribution for the upper tail is fitted to the
emperature data. The model takes the form (MacDonald et al., 2011):

(𝑥|𝜇, 𝜎, 𝑢, 𝜎𝑢, 𝜉, 𝜙𝑢) =

{ (1−𝜙𝑢)
 (𝑢|𝜇,𝜎) (𝑥|𝜇, 𝜎) 𝑥 ≤ 𝑢

(1 − 𝜙𝑢) + 𝜙𝑢𝐺(𝑥|𝑢, 𝜎𝑢, 𝜉) 𝑥 > 𝑢,
(1)

here  (𝜇, 𝜎) is the bulk normal distribution with mean 𝜇 ∈ R and
tandard deviation 𝜎 > 0. Furthermore, 𝐺(𝑢, 𝜎𝑢, 𝜉) denotes the GPD
istribution with threshold 𝑢 > 0, scale parameter 𝜎𝑢 > 0 and shape
arameter 𝜉 ∈ R. The parameter 𝜙𝑢 represents the tail fraction (thresh-
ld exceedance probability), 𝜙𝑢 = 𝑃𝑟(𝑋 > 𝑢). The tail fraction 𝜙𝑢 can be
ither treated as a model’s parameter as indicated in Eq. (1), or directly
btained from the bulk model. In the more general parameterized tail
raction case 𝜙𝑢 is an explicit parameter affecting both bulk and tail
stimates. In the bulk-based tail fraction case 𝜙𝑢 in Eq. (1) is replaced by
he survival probability of the bulk model assuming it continues above
he threshold, 𝜙𝑢 = 1− (𝑢|𝜇, 𝜎). This form has the advantage of using
he information from the larger sample of bulk data to estimate the
ail fraction, but it can make the tail fraction estimation susceptible
o misspecification of the bulk model. Either specification provides a
roper density, with the parameterized tail fraction approach including
he bulk model based tail fraction approach as a particular case (Hu and
carrott, 2018).

The return level 𝑞𝑡 for a return period 𝑇 , corresponding to the tem-
erature exceeded on average once every 𝑇 summer days is computed
rom the model parameters as

𝑡 = 𝑢 + 𝜎
𝜉
[(𝜙𝑢𝑇 )𝜉 − 1]. (2)

The analysis is illustrated for the data displayed in Fig. 5. The
parameters of an extreme value mixture model with normal distribution
for the bulk and GPD distribution for the upper tail are estimated
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Fig. 5. (a) Observed time series (8.4◦W, 41.6◦N) of summer daily temperatures from the period 1980–2020. (b) Empirical marginal distribution. (c) sample autocorrelation function
(ACF) and (d) sample partial ACF.

Fig. 6. Extreme value mixture model. Left: histogram of daily summer temperatures and fitted mixture model (solid curve); the vertical dashed line represents the estimated
threshold 𝑢. Right: quantile–quantile plot of observed and modeled values; dashed lines represent 95% confidence intervals, and dotted lines the threshold 𝑢. The solid (red) line
corresponds to the fitted extreme value mixture model..
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by maximum likelihood using the R-package evmix (Hu and Scarrott,
2018). Two different possibilities are considered for the tail fraction
𝜙𝑢, namely: it is either obtained directly from the bulk distribution
(bulk-based tail fraction) or estimated as an additional parameter (pa-
rameterized tail fraction). The results are displayed in Fig. 6. The
quantile–quantile plots (right) show that both estimated mixture mod-
els are an adequate representation of the upper tail data distribution.
The mixture model fits (left) are represented by the curve superimposed
on the data distribution. The vertical line indicates the estimated
threshold 𝑢 above which the GPD distribution is considered. The dis-
continuity at the threshold indicates that the GPD tail is heavier than
the one that would be represented by a normal distribution. Although
a constraint of continuity could have been included, the benefit is
typically limited and can even be damaging in case of bulk model
misspecification (Hu and Scarrott, 2018).

Furthermore, comparison of the upper and lower plots in Fig. 6
also shows that very similar results are obtained for the different tail
fraction options. The parameterized tail fraction gives slightly better
estimates, but the results are very similar for the highest quantiles.
Although a parameterized tail fraction could provide a tail fraction
estimate more robust to bulk model misspecification, the model esti-
mation is based on maximum likelihood and the optimization can be
sub-optimal due to local modes, leading to a poor model fit, even in the
case of parameterization of the tail fraction. The assessment of model
results for the data under consideration shows that the bulk-based tail
fraction provides more robust results for intermediate quantiles, and
very similar results for highest quantiles. Thus the strategy adopted in
this study is to consider the bulk-based tail fraction option, obtaining
the tail fraction from the normal survivor function. This enables the tail
estimation to benefit from the larger sample of bulk data compared to
the limited tail data. The model parameters obtained for the bulk-based
tail fraction estimation are presented in Table 1.

In order to assess potential non-stationary behavior in time, the
analysis is performed separately for two distinct periods, from 1981
to 2000, and from 2000 to 2019. The modeling results for the two
different time periods indicate a reasonable good fit (Fig. 7), although
confidence intervals can be wider, which is expected due to the smaller
number of observations than for the complete time period. Differ-
ence in the extreme value mixture models for the two periods are
described by the difference between estimated model parameters, with
the uncertainty of the difference computed as the square root of the
sum of squared uncertainties (Table 1). The estimated parameters of
the bulk data distribution are very similar for the two periods, but
the upper tail estimates are significantly different. The threshold for
temperature exceedances is significantly higher in the 2000–2019 than
in the 1981–2000 period and the GPD distribution is steeper.

Furthermore, return levels obtained from the extreme mixture mod-
els for each period (Fig. 8) reflect the significant difference in the upper
tail parameters from each period. Return levels for the later period are
higher and with a smaller return period than for the earlier period.
A conservative approach to take into account the uncertainty in the
threshold as well as in the remaining model parameters is to plug-in the
lower and upper bound values of each parameter in Eq. (2), yielding
corresponding lower and upper bounds for return levels. Table 2 shows
the values corresponding to 20-, 50- and 100-year return periods,
including uncertainty derived from the difference between upper and
lower bounds. This approach yields much larger uncertainties than the
simulated confidence intervals displayed in Fig. 8 as these are obtained
from the estimated parameters by Monte Carlo simulation and ignore
the parameter estimation uncertainty. The uncertainty increases with
the return period, as expected, and indicates that in this case the
differences in return levels between the two periods are not significant,
despite their differences in the tails of the mixture model estimated for

each period.
Table 1
Parameters of the extreme value mixture model with normal bulk distribution and
GPD distribution for the upper tail with bulk-based tail fraction. The corresponding
uncertainties are displayed in parentheses.

𝜇 𝜎 𝑢 𝜎𝑢 𝜉 𝜙𝑢

1981–2019 27.12 4.50 32.85 1.70 −0.21 0.10
(0.13) (0.10) (0.0032) (0.24) (0.10)

1981–2000 (P1) 27.06 4.55 31.27 2.08 −0.22 0.18
(0.19) (0.15) (0.0023) (0.28) 0.092

2000–2019 (P2) 27.24 4.55 33.06 1.54 −0.16 0.10
(0.19) (0.14) (0.0021) (0.31) (0.15)

P2-P1 0.18 0.0032 1.79 −0.55 0.062 −0.08
(0.26) (0.21) (0.0031) (0.42) (0.17)

Table 2
Return levels for 20-, 50- and 100-year return periods. The
corresponding uncertainties are displayed in parentheses.

𝑇 = 20 𝑇 = 50 𝑇 = 100

1981–2009 (P1) 33.6 34.9 35.7
(0.9) (1.6) (2.2)

2009–2019 (P2) 34.1 35.2 36.0
(0.5) (1.4) (2.2)

P2-P1 0.5 0.4 0.3
(1.0) (2.1) (3.1)

4. Results

Extreme value mixture models are estimated at every gridpoint
shown in Fig. 1b. Individual models are fitted for the two periods
considered before, 1981–2000 and 2000–2019. In general a bulk-based
tail fraction model is implemented based on the rational described in
Section 3. However in some cases the bulk distribution is not well
represented by a normal distribution, as indicated by bulk-mean point
estimates higher than the threshold. This occurs only for a few grid-
points (<1%) typically exhibiting a long right tail. In these few cases
the parameterized tail fraction model is adopted as it provides more
robust estimates. Furthermore, for five gridpoints a mixture model with
normal bulk and GPD for the upper tail (either with bulk-based or
parameterized tail fraction) is not an adequate representation of the
data distribution, therefore results for those gridpoints are not pre-
sented. The modeling results are displayed as maps of the fitted model
parameters in Section 4.1 and in terms of return levels in Section 4.2.

4.1. Extreme value mixture modeling

An extreme value mixture model with normal distribution for the
bulk and GPD distribution for the upper tail is estimated for each
gridpoint, and their corresponding parameter’s estimates are presented
as maps of the parameters at each point. The difference between the
two periods is represented in the map if significant taking into account
their corresponding uncertainties (as illustrated in Section 3), i.e. non-
significant differences (within the computed uncertainty) are displayed
as zero in the maps.

The mean and standard deviation of the normal bulk distribution
estimated for each gridpoint are displayed in Figs. 9 and 10, respec-
tively. The mean reflects the climatic regions of Iberia, with lower
mean values of the bulk distribution in the Pyrenees and in the north
of the Peninsula, and higher values in the southeast, particularly the
Andalusian plain, with highest values in the Guadalquivir valley. The
spatial pattern is similar for the two periods considered, but the map of
differences (Fig. 9(c)) shows in general an increase in the mean of the
distribution of maximum summer temperatures in Iberia. The largest
increase occurs in southeastern Mediterranean region and the smallest
increase in the north and western Iberia.

The estimated standard deviation of the normal bulk distribution

is lower in coastal areas and higher at in-land locations. Differences
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Fig. 7. Same as in Fig. 6 but for two distinct time periods: 1981–2000 (top) and 2000–2019 (bottom).
Fig. 8. Return levels from the estimated extreme value mixture model (solid curve) and simulated pointwise 95% confidence intervals (dashed curve); the dotted lines represent
he threshold level 𝑢 and the corresponding return period 1∕𝜙𝑢.
Fig. 9. Estimated mean of the normal distribution model: (a) 1981–2000, (b) 2000–2019, (c) difference.
between the two analyzed periods are not significant except in the west-
ern coast and northeast Iberia regions in which the standard deviation
increases slightly.

In terms of the parameters of the GPD distribution, the shape
parameter 𝜉 is predominantly negative (Fig. 11) in the two analyzed
periods. Thus the estimated extreme value distribution is in general
of the Weibull type, corresponding to a light tail with finite upper
bound. The difference in the shape parameter between the two periods
is small, typically representing a slight increase in localized areas of the
northeast and southern Iberia.

Fig. 12 shows the estimated threshold value for temperature ex-
ceedances. The spatial pattern tends to be similar to the mean, with
lowest values in the coldest regions of northern Spain and the Pyrenees.
However the spatial pattern of the differences in the threshold values
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Fig. 10. Estimated standard deviation of the normal distribution model: (a) 1981–2000, (b) 2000–2019, (c) difference.
Fig. 11. Estimated shape parameter of the GPD distribution (a) 1981–2000, (b) 2000–2019, (c) difference.
Fig. 12. Estimated threshold (𝑢) of the Generalized Pareto distribution: (a) 1981–2000, (b) 2000–2019, (c) difference.
Fig. 13. Estimated standard deviation, 𝜎𝑢, of the Generalized Pareto distribution: (a) 1981–2000, (b) 2000–2019, (c) difference.
is different than the one from the bulk mean, although it is also
predominantly positive. Highest increases in the exceedance threshold
occur in the southeastern Iberia area, particularly the upper Spanish
Mediterranean coast.

The scale parameter of the GPD distribution, 𝜎𝑢, displayed in Fig. 13,
is highest in the northern and western coast of the Iberia peninsula,
and increases there from the initial to the later period. A slight but
significant increase is also found in the flat areas of south Portugal and

central Iberia.
4.2. Return levels

Return levels corresponding to return periods of 20-, 50- and 100-
year are show in Figs. 14, 15 and 16, respectively. The return levels
computed for the later period are consistently higher than the cor-
responding return levels computed from the estimates based on the
earlier period. The southern Iberia is the most affected area in terms of
extreme temperatures. The spatial pattern is closely associated with the

relief of the peninsula, with highest return levels in the low-lying plains,
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Fig. 14. Return levels corresponding to a return period of 20 years: (a) 1981–2000, (b) 2000–2019, (c) difference.
Fig. 15. Same as Fig. 14 but for a return period of 50 years.
Fig. 16. Same as Fig. 14 but for a return period of 100 years.
otably in the Guadalquivir and in the Ebro depressions, and lowest
aximum temperatures in the mountainous areas of the Pyrenees and

f the Cantabrian mountains in the North. Although the spatial pattern
s consistent with the average of summer maximum temperatures, the
attern of return values shows very high summer temperatures in
he southwestern Iberia (central and south regions of Portugal). The
ifference in return levels computed from the data distributions for
he two periods is positive, showing largest increases in return levels
omputed from the two periods in the French Pyrenees area, Valencia
editerranean coast and western Iberia coast.

Fig. 17 displays the differences in the return levels for the two differ-
nt periods when taking into account the uncertainty in the threshold
stimate as well as in the remaining model parameters, as illustrated
n Section 3. With this conservative assessment the uncertainty on the
eturn values is large enough to prevent the detection of any significant
ifferences except for the lower 20-year return period.

. Discussion and conclusions

In the present study extreme temperature events are analyzed focus-
ng on declustered summer maxima from ERA5-Land reanalysis data.
emperature time series are considered individually, and an extreme
value mixture model with normal bulk and GPD upper tail is estimated
at each point. Although this approach has the disadvantage of ignoring
the spatial dependency (e.g. Coelho et al., 2008) it allows the straight-
forward assessment of the complete data distribution based on existing
tools for univariate data.

The comparison of reanalysis and station data in Section 2.1 in-
dicates that the ERA5-Land reanalysis is as close as or closest to
station data than ERA5 reanalysis. However, both reanalysis show
differences to the station data, most obvious in the highest altitude
station (Navacerrada). Trends in upper quantiles tend to be higher in
mountain stations (Barbosa et al., 2011) emphasizing the importance
of performing detailed study of extremes based on station rather than
reanalysis data for high-altitude stations.

The short length of the considered time series is another limitation
of this study. Despite the inevitable restricted size of the sample of
extreme events in ∼40 years time series, the use of the ERA-5 Land
reanalysis data allows to analyze homogeneous data on a regular grid
and obtain a spatial perspective on extreme summer temperature over
the Iberia domain. The sample size is further impacted by performing
the analysis separately for two different periods, from 1981 to 2000
and from 2000 to 2019. This arbitrary separation in time attempts to
somewhat handle eventual nonstationarities, by assuming a stationary



S. Barbosa and M.G. Scotto

w
i
m
h
s

Fig. 17. Difference in return levels for the two periods (as in (a) Figs. 14c, (b) 15c and (c) 16c) but taking into account uncertainty from threshold and model parameters estimates.
behavior within each of the time blocks and evaluating the differences
between the two periods. Although the modeling results are still reason-
able for the smaller sample in each period, as illustrated in Section 3,
≲20 years is a too short period to encompass the dominant variability
modes of the climate system. Here the extreme models derived from
each period are compared from a statistical point of view. The physical
explanation of eventual differences is not addressed in the current
study.

The fit of extreme value mixture models can be hindered by local
modes impacting the optimization results. Furthermore, the strategy
for handling the tail fraction depends on the specific data distribution.
Although graphical diagnostics are very useful and allow in general to
select the optimal strategy, its use in a large study such as this one
involving ∼6000 time series is not feasible. The approach adopted here

as to consider a bulk-based tail fraction, since the normal distribution
s in general a good approximation for the bulk distribution of maxi-
um summer temperatures. The assessment of the fits obtained showed
owever that this was not the case for every data distribution and in
ome cases (≲1%) the parameterized tail fraction option was consid-

ered. The selection of these cases was made by identifying outlying or
obvious misfits in the bulk-based tail estimates, which is not an entirely
satisfactory strategy. Still the impact of the specific tail fraction option
is typically very small for the highest quantiles, and tail-based results
such as return levels are quite robust.

A crucial aspect contributing to the robustness of the results is the
deliberate assessment of uncertainties. One of the main advantages of
extreme values mixture models is the possibility to avoid the issue
of threshold selection in the analysis of exceedances. By considering
the threshold as a parameter that is estimated rather than fixed a
priori allows to take into account in the extreme value analysis the
uncertainty associated with the threshold specification. Here a conser-
vative approach is taken by considering the widest possible range of
parameter values in the computation of return values from the model
estimates.

In terms of the bulk data distribution of maximum summer tem-
peratures, the mean reflects mainly the climatic regions of Iberia de-
termined by the Peninsula relief, and the standard deviation reflects
the contrast between coastal and in-land locations. In terms of the
tails of the distribution, it is represented by a GPD distribution with
negative shape parameter. The Weibull distribution is a reasonable
representation for temperature exceedances as it corresponds to a tail
with a finite upper end point and indeed air temperature is not expected
to attain indefinitely higher values. The scale parameter of the GPD
distribution typically exhibits an homogeneous spatial pattern, except
in the coastal regions of northern and western Iberia where it is slightly
higher. The threshold estimates exhibit a similar pattern to the average
of the bulk distribution.

The comparison of the results for the two different periods allows
to evaluate whether a similar description, in terms of extreme values,
is obtained from the two data distributions. The large uncertainties due

to the small size of the sample preclude the detection of any significant
differences between the two periods for high return periods. However,
significant differences are obtained in the extreme value mixture mod-
els for the two periods, and in the corresponding 20-year return levels.
The mean increases significantly, particularly in the Eastern Iberia.
This indicates a shift of the data distribution to the right, towards
higher values of maximum temperature, with no major changes in the
dispersion of the bulk data distribution. Changes in the tails of the
data distribution do not coincide with the areas with highest mean and
also highest threshold for temperature exceedances (south of Portugal,
Andalucia, Extremadura). Instead the largest differences between the
two period occur in the eastern Mediterranean region, corresponding to
significant changes in the threshold estimate and an increase in return
levels. An increase in the 20-year return levels is also identified in
western Iberia (driven by an increase in the threshold and scale of the
GPD distribution) and in the French Haute Garonne region (driven by
an increase in the threshold). Although these differences between the
two ∼20-year periods merely reflect the distinct descriptions of extreme
summer temperatures that are obtained from the observations available
for the two different periods, with no predictive value nor aiming to
support climate policies, the results indicate a detectable change in
extreme temperatures in Iberia.
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Table A.1
Summary statistics for station’s maximum declustered summer time series and for
nearest reanalysis gridpoints.

Station ERA5 ERA5-Land

min 18.7 16.6 17.7
Lisboa median 28.7 24.3 26.5
(−9.15 38.72) max 42.0 34.7 39.5

min 20.2 16.6 17.4
Badajoz median 36.0 34.5 35.0
(−6.17 38.88) max 45.4 43.7 43.9

min 17.5 16.5 16.6
Madrid median 33.0 33.5 32.8
(−3.68 40.41) max 40.7 41.0 40.3

min 23.2 20.3 19.6
Malaga median 31.6 28.8 28.8
(−4.49 36.67) max 44.0 38.1 38.8

min 4 12.3 10.6
Navacerrada median 23.8 29.1 26.2
(−4.01 40.78) max 32.0 36.2 33.7

min 12.6 12.5 12.4
Salamanca median 31.4 30.3 29.8
(−5.50 40.96) max 41.0 37.8 38.0

min 12.5 13.0 13.1
San Sebastian median 22.7 23.0 22.9
(−2.04 43.31) max 39.0 33.3 34.7

min 23.1 19.0 19.4
Tortosa median 33.3 28.1 29.0
(0.49 40.82) max 43.0 34.9 37.7

min 22.1 20.1 21.2
Valencia median 30.2 28.5 30.9
(−0.35 39.48) max 43.0 35.8 42.4

min 20 20.3 19.3
Zaragoza median 34.2 34.9 33.7
(−1.01 41.66), max 44.5 44.1 43.4

min 23.2 21.0 21.1
Alicante median 31.0 28.2 30.1
(−0.57 38.28) max 41.4 35.5 38.5

min 19.0 19.2 17.8
Barcelona median 29.2 28.1 27.0
(2.12 41.42) max 39.8 36.8 34.9

min 20.3 18.8 18.5
Albacete median 34.0 33.1 32.9
(−1.86 38.95) max 42.0 40.9 40.0

min 24.3 21.0 20.9
Cordoba median 37.7 36.1 36.0
(−4.85 37.84) max 46.9 44.9 45.2

min 14.2 12.8 12.3
Burgos median 29.5 27.9 26.4
(−3.63 42.36) max 38.8 38.4 36.2

min 19 18.4 18.4
Ciudad Real median 35.4 34.2 33.6
(−3.50 38.99) max 43.7 42.3 41.0

min 19.6 18.3 18.1
Granada median 34.8 31.8 31.1
(−3.63 37.14) max 43.5 40.1 39.0

min 18.8 19.0 17.9
Huesca median 32.6 32.8 31.4
(−0.33 42.08) max 42.6 41.7 40.6

min 15.7 14.1 13.7
Pamplona median 31.2 28.0 28.0
(−1.78 42.65) max 41.4 37.7 39.3

min 22.2 21.9 21.5
Sevilla median 37.0 35.7 35.4
(−5.88 37.42) max 46.6 43.9 43.8

min 13.8 13.4 12.7
Soria median 30.2 29.7 28.8
(−2.48 41.78) max 37.9 37.9 37.1
Table A.1 (continued).
Station ERA5 ERA5-Land

min 15.8 13.9 13.7
Valladolid median 32.0 31.0 30.2
(−4.77 41.65) max 40.2 40.2 39.4

min 16.6 13.9 13.9
Bilbao median 27.2 22.8 22.4
(−2.90 43.30) max 41.9 33.4 33.6

min 13.4 13.6 13.4
Santiago median 26.0 23.1 24.3
(−8.41 42.89) max 39.4 34.3 35.9

min 14.0 14.1 14.1
Vigo median 25.6 25.1 24.9
(−8.62 42.24) max 40.8 36.3 35.5

min 12.8 9.5 11.2
Ponferrada median 31.2 25.9 27.8
(−6.6 42.56) max 39.6 34.0 36.3

min 13.6 13.6 13.9
Zamora median 32.0 30.3 30.4
(−5.73 41.52) max 41.0 38.4 38.9

min 21.6 20.0 20.9
Reus median 30.2 30.0 29.5
(1.18 41.15) max 39.8 38.9 38.0

min 22.2 19.7 22.1
Murcia median 29.5 26.1 29.2
(−0.80 37.79) max 39.6 33.3 38.3

min 21.0 20.8 20.9
Jerez median 35.1 34.4 34.1
(−6.05 36.75) max 45.1 43.9 44.2

Table A.2
Kolmogorov–Smirnov statistic (left) and overlapping index (right) for station and
reanalysis empirical data distributions.

Kolmogorov–Smirnov statistic Overlapping index

ERA5 ERA5-Land ERA5 ERA5-Land

Lisboa 0.49 0.24 0.37 0.64
Badajoz 0.19 0.14 0.72 0.80
Madrid 0.07 0.06 0.89 0.92
Malaga 0.40 0.38 0.47 0.48
Navacerrada 0.55 0.27 0.31 0.61
Salamanca 0.14 0.18 0.78 0.72
San Sebastian 0.10 0.08 0.78 0.82
Tortosa 0.72 0.60 0.18 0.27
Valencia 0.37 0.15 0.50 0.77
Zaragoza 0.11 0.06 0.84 0.89
Alicante 0.50 0.18 0.36 0.73
Barcelona 0.18 0.34 0.71 0.52
Albacete 0.14 0.17 0.80 0.75
Cordoba 0.21 0.22 0.68 0.66
Burgos 0.18 0.28 0.73 0.59
Ciudad Real 0.16 0.25 0.76 0.64
Granada 0.40 0.47 0.46 0.39
Huesca 0.04 0.17 0.93 0.74
Pamplona 0.30 0.26 0.57 0.61
Sevilla 0.17 0.20 0.74 0.71
Soria 0.07 0.18 0.91 0.75
Valladolid 0.12 0.21 0.81 0.69
Bilbao 0.49 0.53 0.37 0.33
Santiago 0.31 0.18 0.55 0.72
Vigo 0.09 0.12 0.86 0.80
Ponferrada 0.52 0.32 0.35 0.54
Zamora 0.19 0.18 0.71 0.74
Reus 0.05 0.12 0.92 0.81
Murcia 0.64 0.12 0.24 0.81
Jerez 0.11 0.14 0.82 0.79
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