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Abstract. Linear Meld is a concurrent forward-chaining linear logic
programming language where logical facts can be asserted and retracted
in a structured way. The database of facts is partitioned by the nodes
of a graph structure which leads to parallelism if nodes are executed si-
multaneously. Communication arises whenever nodes send facts to other
nodes by fact derivation. We present an overview of the virtual machine
that we implemented to run Linear Meld on multicores, including code
organization, thread management, rule execution and database organi-
zation for efficient fact insertion, lookup and deletion. Although our vir-
tual machine is a work-in-progress, our results already show that Linear
Meld is not only capable of scaling graph and machine learning programs
but it also exhibits some interesting performance results when compared
against other programming languages.
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1 Introduction

Logic programming is a declarative programming paradigm that has been used
to advance the state of parallel programming. Since logic programs are declar-
ative, they are much easier to parallelize than imperative programs. First, logic
programs are easier to reason about since they are based on logical foundations.
Second, logic programmers do not need to use low level programming constructs
such as locks or semaphores to coordinate parallel execution, because logic sys-
tems hide such details from the programmer.

Logic programming languages split into two main fields: forward-chaining
and backwards-chaining programming languages. Backwards-chaining logic pro-
grams are composed of a set of rules that can be activated by inputing a query.
Given a query q(x̂), an interpreter will work backwards by matching q(x̂) against
the head of a rule. If found, the interpreter will then try to match the body of
the rule, recursively, until it finds the program axioms (rules without body). If
the search procedure succeeds, the interpreter finds a valid substitution for the
x̂ variables. A popular backwards-chaining programming language is Prolog [4],
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which has been a productive research language for executing logic programs in
parallel. Researchers took advantage of Prolog’s non-determinism to evaluate
subgoals in parallel with models such as or-parallelism and and-parallelism [8].

In a forward-chaining logic programming language, we start with a database
of facts (filled with the program’s axioms) and a set of logical rules. Then, we
use the facts of the database to fire the program’s rules and derive new facts
that are then added to the database. This process is repeated until the database
reaches quiescence and no more information can be derived from the program.
A popular forward-chaining programming language is Datalog [14].

In this paper, we present a new forward-chaining logic programming lan-
guage called Linear Meld (LM) that is specially suited for concurrent program-
ming over graphs. LM differs from Datalog-like languages because it integrates
both classical logic and linear logic [6] into the language, allowing some facts to
be retracted and asserted logically. Although most Datalog and Prolog-like pro-
gramming languages allow some kind of state manipulation [11], those features
are extra-logical, reducing the advantages brought forward by logic program-
ming. In LM, since mutable state remains within the logical framework, we can
reason logically about LM programs.

The roots of LM are the P2 system [12] and the original Meld [2,1]. P2 is
a Datalog-like language that maps a computer network to a graph, where each
computer node performs local computations and communicates with neighbors.
Meld is itself inspired by the P2 system but adapted to the concept of massively
distributed systems made of modular robots with a dynamic topology. LM also
follows the same graph model of computation, but, instead, applies it to par-
allelize graph-based problems such as graph algorithms, search algorithms and
machine learning algorithms. LM programs are naturally concurrent since the
graph of nodes can be partitioned to be executed by different workers.

To realize LM, we have implemented a compiler and a virtual machine that
executes LM programs on multicore machines3. We have implemented several
parallel algorithms, including: belief propagation [7], belief propagation with
residual splash [7], PageRank, graph coloring, N-Queens, shortest path, diameter
estimation, map reduce, quick-sort, neural network training, among others.

As a forward-chaining linear logic programming language, LM shares sim-
ilarities with Constraint Handling Rules (CHR) [3,10]. CHR is a concurrent
committed-choice constraint language used to write constraint solvers. A CHR
program is a set of rules and a set of constraints (which can be seen as facts).
Constraints can be consumed or generated during the application of rules. Some
optimization ideas used in LM such as join optimizations and using different
data structures for indexing facts are inspired by research done in CHR [9].

This paper describes the current implementation of our virtual machine and
is organized as follows. First, we briefly introduce the LM language. Then, we
present an overview of the virtual machine, including code organization, thread
management, rule execution and database organization. Finally, we present pre-
liminary results and outline some conclusions.

3 Source code is available at http://github.com/flavioc/meld.

http://github.com/flavioc/meld
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2 The LM Language

Linear Meld (LM) is a logic programming language that offers a declarative and
structured way to manage state. A program consists of a database of facts and
a set of derivation rules. The database includes persistent and linear facts. Per-
sistent facts cannot be deleted, while linear facts can be asserted and retracted.

The dynamic (or operational) semantics of LM are identical to Datalog. Ini-
tially, we populate the database with the program’s axioms (initial facts) and
then determine which derivation rules can be applied using the current database.
Once a rule is applied, we derive new facts, which are then added to the database.
If a rule uses linear facts, they are retracted from the database. The program
stops when quiescence is achieved, that is, when rules no longer apply.

Each fact is a predicate on a tuple of values, where the type of the predicate
prescribes the types of the arguments. LM rules are type-checked using the
predicate declarations in the header of the program. LM has a simple type system
that includes types such as node, int, float, string, bool. Recursive types such as
list X and pair X; Y are also allowed. Each rule in LM has a defined priority
that is inferred from its position in the source file. Rules at the beginning of the
file have higher priority. We consider all the new facts that have been not used
yet to create a set of candidate rules. The set of candidate rules is then applied
(by priority) and updated as new facts are derived.

2.1 Example

We now present an example LM program in Fig. 1 that implements the key
update operation for a binary tree represented as a key/value dictionary. We
first declare all the predicates (lines 1-4), which represent the kinds of facts we
are going to use. Predicate left/2 and right/2 are persistent while value/3

and replace/3 are linear. The value/3 predicate assigns a key/value pair to a
binary tree node and the replace/3 predicate represents an update operation
that updates the key in the second argument to the value in the third argument.

The algorithm uses three rules for the three cases of updating a key’s value:
the first rule performs the update (lines 6-7); the second rule recursively picks
the left branch for the update operation (lines 9-10); and the third rule picks
the right branch (lines 12-13). The axioms of this program are presented in lines
15-22 and they describe the initial binary tree configuration, including keys and
values. By having the update(@3, 6, 7) axiom instantiated at the root node
@3, we intend to change the value of key 6 to 7. Note that when writing rules
or axioms, persistent facts are preceded with a !.

Figure 2 represents the trace of the algorithm. Note that the program database
is partitioned by the tree nodes using the first argument of each fact. In Fig. 2a
we present the database filled with the program’s axioms. Next, we follow the
right branch using rule 3 since 6 > 3 (Fig. 2b). We then use the same rule again
in Fig. 2c where we finally reach the key 6. Here, we apply rule 1 and value(@6,

6, 6) is updated to value(@6, 6, 7).
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1 type left(node, node).
2 type right(node, node).
3 type linear value(node, int, int).
4 type linear replace(node, int, int).
5

6 replace(A, K, New), value(A, K, Old)
7 -o value(A, K, New). // we found our key
8

9 replace(A, RKey, RValue), value(A, Key, Value), !left(A, B), RKey < Key
10 -o value(A, Key, Value), replace(B, RKey, RValue). // go left
11

12 replace(A, RKey, RValue), value(A, Key, Value), !right(A, B), RKey > Key
13 -o value(A, Key, Value), replace(B, RKey, RValue). // go right
14

15 // binary tree configuration
16 value(@3, 3, 3). value(@1, 1, 1). value(@0, 0, 0).
17 value(@2, 2, 2). value(@5, 5, 5). value(@4, 4, 4).
18 value(@6, 6, 6).
19 !left(@1, @0). !left(@3, @1). !left(@5, @4).
20 !right(@1, @2). !right(@3, @5). !right(@5, @6).
21

22 replace(@3, 6, 7). // replace value of key 6 to 7

Fig. 1: Binary tree dictionary: replacing a key’s value.

2.2 Syntax

Table 1 shows the abstract syntax for rules in LM. An LM program Prog con-
sists of a set of derivation rules Σ and a database D. Each derivation rule R
can be written as BE ( HE where BE is the body of a rule and HE is the
head. Rules without bodies are allowed in LM and they are called axioms. Rules
without heads are specified using 1 as the rule head. The body of a rule, BE,
may contain linear (L) and persistent (P ) fact expressions and constraints (C).
Fact expressions are template facts that instantiate variables from facts in the
database. Such variables are declared using either ∀x.R or ∃x.BE. If using ∀x.R
variables can also be used in the head of the rule. Constraints are boolean ex-
pressions that must be true in order for the rule to be fired. Constraints use
variables from fact expressions and are built using a small functional language
that includes mathematical operations, boolean operations, external functions
and literal values. The head of a rule, HE, contains linear (L) and persistent
(P ) fact templates which are uninstantiated facts to derive new facts. The head
can also have comprehensions (CE) and aggregates (AE). Head expressions may
use the variables instantiated in the body.

Comprehensions Sometimes we need to consume a linear fact and then imme-
diately generate several facts depending on the contents of the database. To solve
this particular need, we created the concept of comprehensions, which are sub-
rules that are applied with all possible combinations of facts from the database.
In a comprehension { x̂; BE; SH }, x̂ is a list of variables, BE is the body of
the comprehension and SH is the head. The body BE is used to generate all
possible combinations for the head SH, according to the facts in the database.

The following example illustrates a simple program that uses comprehensions:

!edge(@1, @2).

!edge(@1, @3).
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!left(@3, @1)

!right(@3, @5)
value(@3, 3, 3)

replace(@3, 6, 7)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

value(@4, 4, 4) value(@6, 6, 6)

(a) Initial database. Replace axiom instan-
tiated at root node @3.

!left(@3, @1)
!right(@3, @5)
value(@3, 3, 3)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

replace(@3, 6, 7)

value(@4, 4, 4) value(@6, 6, 6)

(b) After applying rule 3 at node @3. Re-
place fact sent to node @5.

!left(@3, @1)
!right(@3, @5)
value(@3, 3, 3)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

value(@4, 4, 4) value(@6, 6, 6)
replace(@6, 6, 7)

(c) After applying rule 3 at node @5. Re-
place fact reaches node @6.

!left(@3, @1)
!right(@3, @5)
value(@3, 3, 3)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

value(@4, 4, 4) value(@6, 6, 7)

(d) After applying rule 1 at node @6. Value
of key 6 has changed to 7.

Fig. 2: An execution trace for the binary tree dictionary algorithm.

iterate(@1).

iterate(A) -o {B | !edge(A, B) | perform(B)}.

When the rule is fired, we consume iterate(@1) and then generate the com-
prehension. Here, we iterate through all the edge/2 facts that match !edge(@1,

B), which are: !edge(@1, @2) and !edge(@1, @3). For each fact, we derive
perform(B), namely: perform(@2) and perform(@3).

Aggregates Another useful feature in logic programs is the ability to reduce
several facts into a single fact. In LM we have aggregates (AE), a special kind
of sub-rule that works very similarly to comprehensions. In the abstract syntax
[ A ⇒ y; x̂; BE; SH1; SH2 ], A is the aggregate operation, x̂ is the list of
variables introduced in BE, SH1 and SH2 and y is the variable in the body
BE that represents the values to be aggregated using A. Like comprehensions,
we use x̂ to try all the combinations of BE, but, in addition to deriving SH1

for each combination, we aggregate the values represented by y and derive SH2

only once using y. As an example, consider the following program:

price(@1, 3).

price(@1, 4).

price(@1, 5).

count-prices(@1).

count-prices(A) -o [sum => P | . | price(A, P) | 1 | total(A, P)].
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Program Prog ::= Σ,D

Set Of Rules Σ ::= · | Σ,R
Database D ::= Γ ;∆

Rule R ::= BE ( HE | ∀x.R
Body Expression BE ::= L | P | C | BE,BE | ∃x.BE | 1
Head Expression HE ::= L | P | HE,HE | CE | AE | 1
Linear Fact L ::= l(x̂)

Persistent Fact P ::= !p(x̂)

Constraint C ::= c(x̂)

Comprehension CE ::= { x̂; BE; SH }
Aggregate AE ::= [ A ⇒ y; x̂; BE; SH1; SH2 ]

Aggregate Operation A ::= min | max | sum | count
Sub-Head SH ::= L | P | SH, SH | 1
Known Linear Facts ∆ ::= · | ∆, l(t̂)
Known Persistent Facts Γ ::= · | Γ, !p(t̂)

Table 1: Abstract syntax of LM.

By applying the rule, we consume count-prices(@1) and derive the ag-
gregate which consumes all the price(@1, P) facts. These are summed and
total(@1, 12) is derived. LM provides several aggregate operations, including
the minimum, maximum, sum, and count.

2.3 Concurrency

LM is at its core a concurrent programming language. The database of facts can
be seen as a graph data structure where each node contains a fraction of the
database. To accomplish this, we force the first argument of each predicate to be
typed as a node. We then restrict the derivation rules to only manipulate facts
belonging to a single node. However, the expressions in the head may refer to
other nodes, as long as those nodes are instantiated in the body of the rule.

Due to the restrictions on LM rules, nodes are able to run rules indepen-
dently without using other node’s facts. Node computation follows a don’t care
or committed choice non-determinism since any node can be picked to run as
long as it contains enough facts to fire a derivation rule. Facts coming from
other nodes will arrive in order of derivation but may be considered partially
and there is no particular order among the neighborhood. To improve concur-
rency, the programmer is encouraged to write rules that take advantage of the
non-deterministic nature of execution.

3 The Virtual Machine

We developed a compiler that compiles LM programs to byte-code and a multi-
threaded virtual machine (VM) using POSIX threads to run the byte-code. The
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goal of our system is to keep the threads as busy as possible and to reduce
inter-thread communication.

The load balancing aspect of the system is performed by our work scheduler
that is based on a simple work stealing algorithm. Initially, the system will parti-
tion the application graph of N nodes into P subgraphs (the number of threads)
and then each thread will work on their own subgraph. During execution, threads
can steal nodes of other threads to keep themselves busy.

Reduction of inter-thread communication is achieved by first ordering the
node addresses present in the code in such a way that closer nodes are clustered
together and then partitioning them to threads. During compilation, we take
note of predicates that are used in communication rules (arguments with type
node) and then build a graph of nodes from the program’s axioms. The nodes
of the graph are then ordered by using a breadth-first search algorithm that
changes the nodes of addresses to the domain [0, n[, where n is the number of
nodes. Once the VM starts, we simply partition the range [0, n[.

Multicore When the VM starts, it reads the byte-code file and starts all
threads. As a first step, all threads will grab their own nodes and assign the
owner property of each. Because only one thread is allowed to do computation
on a node at any given time, the owner property defines the thread with such
permission. Next, each thread fills up its work queue with the initial nodes. This
queue maintains the nodes that have new facts to be processed. When a node
sends a fact to another node, we need to check if the target node is owned by
the same thread. If that is not the case, then we have a point of synchronization
and we may need to make the target thread active.

The main thread loop is shown in Fig. 3, where the thread inspects its work
queue for active nodes. Procedure process node() takes a node with new can-
didate rules and executes them. If the work queue is empty, the thread attempts
to steal one node from another thread before becoming idle. Starting from a ran-
dom thread, it cycles through all the threads to find one active node. Eventually,
there will be no more work to do and the threads will go idle. There is a global
atomic counter, a global boolean flag and one boolean flag for each thread that
are used to detect termination. Once a thread goes idle, it decrements the global
counter and changes its flag to idle. If the counter reaches zero, the global flag is
set to idle. Since every thread will be busy-waiting and checking the global flag,
they will detect the change and exit the program.

Byte-Code A byte-code file contains meta-data about the program’s predi-
cates, initial nodes, partitioning information, and code for each rule. Each VM
thread has 32 registers that are used during rule execution. Registers can store
facts, integers, floats, node addresses and pointers to runtime data structures
(lists and structures). When registers store facts, we can reference fields in the
fact through the register.

Consider a rule !a(X,Y), b(X,Z), c(X,Y) -o d(Y) and a database with
!a(1,2), !a(2,3), b(1,3), b(5,3), c(1,2), c(1,3), c(5,3). Rule execution
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void work_loop(thread_id tid):

while (true):
current_node = NULL;
if(has_work(tid)):

current_node = pop_work(tid); // take node from the queue
else:

target_thread = random(NUM_THREADS);
for (i = 0; i < NUM_THREADS && current_node == NULL; ++i): // need to steal a node

target_thread = (target_thread + 1) % NUM_THREADS;
current_node = steal_node_from_thread(target_thread)

if(current_node == NULL):
become_idle(tid);
if(!synchronize_termination(tid)):

return;
become_active(tid);

else:
process_node(current_node, tid);

Fig. 3: Thread work loop.

proceeds in a series of recursive loops, as follows: the first loop retrieves an
iterator for the persistent facts of !a/2 and moves the first valid fact, !a(1,2),
to register 0; the inner loop retrieves linear facts that match b(1,Z) (from the
join constraint) and moves b(1,3) to register 1; in the final loop we move c(1,2)
to register 2 and the body of the rule is successfully matched. Next, we derive
d(2), where 2 comes from register 0. Fig. 4 shows the byte-code for this example.

PERSISTENT ITERATE a MATCHING TO reg 0
LINEAR ITERATE b MATCHING TO reg 1

(match).0=0.0
LINEAR ITERATE c MATCHING TO reg 2

(match).0=0.0
(match).1=0.1

ALLOC d TO reg 3
MVFIELDFIELD 0.1 TO 3.0
ADDLINEAR reg 3
REMOVE reg 2
REMOVE reg 1
TRY NEXT

NEXT
NEXT

RETURN

Fig. 4: Byte-code for rule !a(X,Y),

b(X,Z), c(X,Y) -o d(Y).

In case of failure, we jump to the pre-
vious outer loop in order to try the next
candidate fact. If a rule matches and the
head is derived, we backtrack to the inner
most valid loop, i.e., the first inner loop
that uses linear facts or, if there are no
linear facts involved, to the previous inner
loop. We need to jump to a valid loop be-
cause we may have loops with linear facts
that are now invalid. In our example, we
would jump to the loop of b(X,Z) and not
c(X,Y), since b(1,3) was consumed.

The compiler re-orders the fact expres-
sions used in the body in order to make

execution more efficient. For example, it forces the join constraints in rules to
appear at the beginning so that matching will fail sooner rather than later. It
also does the same for constraints. Note that for every loop, the compiler adds a
match object, which contains information about which arguments need to match,
so that runtime matching is efficient.

LINEAR ITERATE a MATCHING TO reg 0
MVFIELDREG 0.0 TO reg 1
MVINTREG INT 1 TO reg 2
reg 1 INT PLUS reg 2 TO reg 3
MVREGFIELD reg 3 TO 0.0
UPDATE reg 0
TRY NEXT

RETURN

Fig. 5: Byte-code for rule a(N) -o a(N+1).

Our compiler also detects cases
where we re-derive a linear fact
with new arguments. For example,
as shown in Fig. 5, the rule a(N)

-o a(N+1) will compile to code that
reuses the old a(N) fact. We use a
flags field to mark updated nodes
(presented next).
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Database Data Structures We said before that LM rules are constrained by
the first argument. Because nodes can be execute independently, our database is
indexed by the node address and each sub-database does not need to deal with
synchronization issues since at any given point, only one thread will be using
the database. Note that the first argument of each fact is not stored.

The database must be implemented efficiently because during matching of
rules we need to restrict the facts using a given match object, which fixes ar-
guments of the target predicate to instantiated values. Each sub-database is
implemented using three kinds of data structures:

– Tries are used exclusively to store persistent facts. Tries are trees where facts
are indexed by the common arguments.

– Doubly Linked Lists are used to store linear facts. We use a double linked
list because it is very efficient to add and remove facts.

– Hash Tables are used to improve lookup when linked lists are too long and
when we need to do search filtered by a fixed argument. The virtual machine
decides which arguments are best to be indexed (see ”Indexing”) and then
uses a hash table indexed by the appropriate argument. If we need to go
through all the facts, we just iterate through all the facts in the table. For
collisions, we use the above doubly linked list data structure.

prev
next

1
2

flags

prev
next

2
12

flags

prev
next

2
42

flags

0

1

3

2

Hash Table

...

9

Fig. 6: Hash table data structure for storing
predicate a(int,int).

Figure 6 shows an example for a
hash table data structure with 3 lin-
ear facts indexed by the second argu-
ment and stored as doubly linked list
in bucket 2. Each linear fact contains
the regular list pointers, a flags field
and the fact arguments. Those are all
stored continuously to improve data
locality. One use of the flags field
is to mark that a fact is already be-
ing used. For example, consider the
rule body a(A,B), a(C,D) -o ....
When we first pick a fact for a(A, B) from the hash table, we mark it as being
used in order to ensure that, when we retrieve facts for a(C, D), the first one
cannot be used since that would violate linearity.

Rule Engine The rule engine decides which rules may need to be executed
while taking into account rule priorities. There are 5 main data structures for
scheduling rule execution; Rule Queue is the bitmap representing the rules that
will be run; Active Bitmap contains the rules that can be fired since there are
enough facts to activate the rule’s body; Dropped Bitmap contains the rules
that must be dropped from Rule Queue; Predicates Bitmap marks the newly
derived facts; and Predicates Count counts the number of facts per predicate.
To understand how our engine works, consider the program in Fig. 7a.
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a, e(1) -o b.

a -o c.

b -o d.

e(0) -o f.

c -o e(1).

(a) Program

0 0 0 0 1 0 1 0 Rule Queue

Active Bitmap0 0 0 0 1 0 1 1

Facts: a, e(0)

Dropped Bitmap0 0 0 0 0 0 0 0

Predicates Bitmap0 0 0 0 0 0 0 0
abcde

0 0 0 1 0 0 0 1 Predicates Count
abcdef

f

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

Facts: c, e(0)

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0
abcde

0 0 0 1 0 1 0 0
abcdef

f

(b) Before and after applying the 2nd rule.

Fig. 7: Program and rule engine data structures.

We take the least significant rule from the Rule Queue bitmap, which is the
candidate rule with the higher priority, and then run it. In our example, since
we have facts a and e(0), we will execute the second rule a -o c. Because the
derivation is successful, we will consume a and derive c. We thus mark the c

predicate in the Predicates Bitmap and the first and second rules in Dropped

Bitmap since such rules are no longer applicable (a is gone). To update the
Rule Queue, we remove the bits marked in Dropped Bitmap and add the active
rules marked in Active Bitmap that are affected by predicates in Predicates

Bitmap. The engine thus schedules the fourth and fifth rules to run (Fig. 7b).

Note that every node in the program has the same set of data structures
present in Fig. 7. We use 32 bits integers to implement bitmaps and an array of
16 bits integers to count facts, resulting in 32 + 2P bytes per node, where P is
the number of predicates.

We do a small optimization to reduce the number of derivations of persistent
facts. We divide the program rules into two sets: persistent rules and non per-
sistent rules. Persistent rules are rules where only persistent facts are involved.
We compile such rules incrementally, that is, we attempt to fire all rules where
a persistent fact is used. This is called the pipelined semi-naive evaluation and
it originated in the P2 system [12]. This evaluation method avoids excessing re-
derivations of the same fact. The order of derivation does not matter for those
rules, since only persistent facts are used.

Thread Interaction Whenever a new fact is derived through rule derivation, we
need to update the data structures for the corresponding node. This is trivial
if the thread that owns the node derived the fact also. However, if a thread
T1 derives a fact for a node owned by another thread T2, then we may have
problems because T2 may be also updating the same data structures. We added
a lock and a boolean flag to each node to protect the access to its data structures.
When a node starts to execute, we activate the flag and lock the node. When
another thread tries to use the data structures, if first checks the flag and if
not activated, it locks the node and performs the required updates. If the flag
is activated, it stores the new fact in a list to be processed before the node is
executed.
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Indexing To improve fact lookup, the VM employs a fully dynamic mechanism
to decide which argument may be optimal to index. The algorithm is performed
in the beginning of the execution and empirically tries to assess the argument of
each predicate that more equally spreads the database across the values of the
argument. A single thread performs the algorithm for all predicates.

The indexing algorithm is performed in three main steps. First, it gathers
statistics of lookup data by keeping a counter for each predicate’s argument.
Every time a fact search is performed where arguments are fixed to a value, the
counter of such arguments is incremented. This phase is performed during rule
execution for a small fraction of the nodes in the program.

The second step of the algorithm then decides the candidate arguments of
each predicate. If a predicate was not searched with any fixed arguments, then
it will be not indexed. If only one argument was fixed, then such argument is set
as the indexing argument. Otherwise, the top 2 arguments are selected for the
third phase, where entropy statistics are collected dynamically.

During the third phase, each candidate argument has an entropy score. Before
a node is executed, the facts of the target predicate are used in the following
formula applied for the two arguments:

Entropy(A,F ) = −
∑

v∈values(F,A)

count(F,A = v)

total(F )
log2

count(F,A = v)

total(F )

Where A is the target argument, F is the multi-set of linear facts for the
target predicate, values(F,A) is set of values of the argument A, count(F,A = v)
counts the number of linear facts where argument A is equal to v and total(F )
counts the number of linear facts in F . The entropy value is a good metric
because it tells us how much information is needed to describe an argument. If
more information is needed, then that must be the best argument to index.

For one of the arguments to score, Entropy(A,F ) multiplied by the number
of times it has been used for lookup must be larger than the other argument.

The argument with the best score is selected and then a global variable
called indexing epoch is updated. In order to convert the node’s linked lists
into hash tables, each node also has a local variable called indexing epoch that
is compared to the global variable in order to rebuild the node database according
to the new indexing information.

Our VM also dynamically resizes the hash table if necessary. When the hash
table becomes too dense, it is resized to the double. When it becomes too sparse,
it is reduced in half or simply transformed back into a doubly linked list. This
is done once in a while, before a node executes.

We have seen very good results with this scheme. For example, for the all-
pairs shortest paths program, we obtained a 2 to 5-fold improvement in sequential
execution time. The overhead of dynamic indexing is negligible since programs
run almost as fast as if the indices have been added from the start.
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4 Preliminary Results

This section presents preliminary results for our VM. First, we present scalability
results in order to show that LM programs can take advantage of multicore
architectures. Next, we present a comparison with similar programs written in
other programming languages in order to show evidence that our VM is viable.

For our experimental setup, we used a machine with two 16 (32) Core AMD
Opteron (tm) Processor 6274 @ 2.2 GHz with 32 GBytes of RAM memory
and running the Linux kernel 3.8.3-1.fc17.x86 64. We compiled our VM using
GCC 4.7.2 (g++) with the flags -O3 -std=c+0x -march=x86-64. We ran all
experiments 3 times and then averaged the execution time.

Scalability Results For this section, we run each program using 1, 2, 4, 6, 8,
10, 12, 14 and 16 threads and compared the runtime against the execution of
the sequential version of the VM. We used the following programs:

– Greedy Graph Coloring (GGC) colors nodes in a graph so that no two adja-
cent nodes have the same color. We start with a small number of colors and
then we expand the number of colors when we cannot color the graph.

– PageRank implements a PageRank algorithm without synchronization be-
tween iterations. Every time a node sends a new rank to its neighbors and
the change was significant, the neighbors are scheduled to recompute their
ranks.

– N-Queens, the classic puzzle for a 13x13 board.
– Belief Propagation, a machine learning algorithm to denoise images.

Figure 8 presents the speedup results for the GGC program using 2 different
datasets. In Fig. 8a we show the speedup for a search engine graph of 12,000
webpages4. Since this dataset follows the power law, that is, there is a small
number of pages with a lots of links (1% of the nodes have 75% of the edges),
the speedup is slightly worse than the benchmark shown in Fig. 8b, where we
use a random dataset of 2,000 nodes with an uniform distribution of edges.

The PageRank results are shown in Fig. 9. We used the same search engine
dataset as before and a new random dataset with 5,000 nodes and 500,000 edges.
Although the search engine graph (Fig. 9a) has half the edges (around 250,000),
it scales better than the random graph (Fig. 9b), meaning that the PageRank
program depends on the number of nodes to be more scalable.

The results for the N-Queens program are shown in Fig. 10a. The program is
not regular since computation starts at the top of the grid and then rolls down,
until only the last row be doing computation. Because the number of valid states
for the nodes in the upper rows is much less than the nodes in the lower rows,
this may potentially lead to load balancing problems. The results show that our
system is able to scale well due to work stealing.

4 Available from http://www.cs.toronto.edu/~tsap/experiments/download/

download.html

http://www.cs.toronto.edu/~tsap/experiments/download/download.html
http://www.cs.toronto.edu/~tsap/experiments/download/download.html
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Fig. 8: Experimental results for the GGC algorithm.
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Fig. 9: Experimental results for the asynchronous PageRank algorithm.

Finally, we shown the results for the Belief Propagation (BP) program in
Fig. 10b. BP is a regular and asynchronous program and benefits (as expected)
from having multiple threads executing since the belief values of each node will
converge faster. The super-linear results prove this assertion.

Absolute Execution Time As we have seen, our VM scales reasonably well,
but how does it compare in terms of absolute execution time with other com-
peting systems? We next present such comparison for the execution time using
one thread.

In Fig. 11a we compare the LM’s N-Queens version against 3 other versions:
a straightforward sequential program implemented in C using backtracking; a
sequential Python [15] implementation; and a Prolog implementation executed
in YAP Prolog [5], an efficient implementation of Prolog. Numbers less than 1
mean that LM is faster and larger than 1 mean that LM is slower. We see that
LM easily beats Python, but is 5 to 10 times slower than YAP and around 15
times slower than C. However, note that if we use at least 16 threads in LM, we
can beat the sequential implementation written in C.

In Fig. 11b we compare LM’s Belief Propagation program against a sequen-
tial C version, a Python version and a GraphLab version. GraphLab [13] is a
parallel C++ library used to solve graph-based problems in machine learning.
C and GraphLab perform about the same since both use C/C++. Python runs
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(a) N-Queens program (13x13 board).
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Fig. 10: Experimental Results for N-Queens and Belief Propagation.

Size C Python YAP Prolog

10 16.92 0,62 5,42
11 21.59 0.64 6.47
12 10.32 0.73 7.61
13 14.35 0.88 10.38

(a) N-Queens problem.

Size C Python GraphLab

10 0.67 0,03 1.00
50 1.77 0.04 1.73
200 1.99 0.05 1.79
400 2.00 0.04 1.80

(b) Belief Propagation program.

Fig. 11: Comparing absolute execution times (System Time / LM Time).

very slowly since it is a dynamic programming language and BP has many math-
ematical computations. We should note, however, that the LM version uses some
external functions written in C++ in order to improve execution time, therefore
the comparison is not totally fair.

We also compared the PageRank program against a similar GraphLab version
and LM is around 4 to 6 times slower. Finally, our version of the all-pairs shortest
distance algorithm is 50 times slower than a C sequential implementation of the
Dijkstra algorithm, but it is almost twice as fast when compared to the same
implementation in Python.

5 Conclusions

We have presented a parallel virtual machine for executing forward-chaining
linear logic programs, with particular focus on parallel scheduling on multicores,
rule execution and database organization for fast insertion, lookup, and deletion
or linear facts. Our preliminary results show that the VM is able to scale the
execution of some programs when run with up to 16 threads. Although this is
still a work in progress, the VM fairs relatively well against other programming
languages. Moreover, since LM programs are concurrent by default, we can easily
get better performance from the start by executing them with multiple threads.

In the future, we want to improve our work stealing algorithm so that each
thread steals nodes that are a better fit to the set of nodes owned by the thread
(e.g. neighboring nodes). We also intend to take advantage of linear logic to
perform whole-program optimizations, including computing program invariants
and loop detection in rules.
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