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Abstract—The uncertainty associated with the increasingly wind 
power penetration in power systems must be considered when 
performing the traditional day-ahead scheduling of conventional 
thermal units. This uncertainty can be represented through a set 
of representative wind power scenarios that take into account 
the time-dependency between forecasting errors. To create 
robust Unit Commitment (UC) schedules, it is widely seen that 
all possible wind power scenarios must be used. However, using 
all realizations of wind power might be a poor approach and 
important savings in computational effort can be achieved if 
only the most representative subset is used. In this paper, the 
new hybrid metaheuristic DEEPSO and clustering techniques 
are used in the traditional stochastic formulation of the UC 
problem to investigate the robustness of the UC schedules with 
increasing number of wind power scenarios. For this purpose, 
expected values for operational costs, wind spill, and load 
curtailment for the UC solutions are compared for a didactic 10 
generator test system. The obtained results shown that it is 
possible to reduce the computation burden of the stochastic UC 
by using a small set of representative wind power scenarios 
previously selected from a high number of scenarios covering 
the entire probability distribution function of the  forecasting 
uncertainty.*  

Index Terms--Unit Commitment, Wind Power Uncertainty, 
Clustering Techniques, Metaheuristic Optimization. 

I. INTRODUCTION 

The increasing share of wind power in thermal-dominated 
generating systems is widely seen as a concern not only to the 
continuity of supply but also to its cost-effective operation. As 
a matter of fact, the operation of the system can become 
prohibitively costly and/or intolerably unreliable if wind 
power forecasts are very different from its actual realization. 
For example, if the wind power realization is less than the 
forecast, the system operator will need to start back-up 
thermal units at increased generating costs and risk load 
curtailments if the additional capacity is not enough to supply 
the excess load.  

The decision to start or shut down thermal units for the 
next operating hours must take into account their current 
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operation status and the inherent uncertainty of wind power 
forecast. Even if wind power could be accurately predicted, 
there might be hours where wind power is not used at its 
maximum output due to insufficient ramping capabilities of 
the generating units. Therefore, robust Unit Commitment 
procedures are necessary not only to keep operation costs at 
reasonable levels but also to avoid extreme control actions 
such as wind spilling and/or load curtailment.  

Recent research has been focusing on the development of 
stochastic methods to solve the UC problem. Wu et al. [1] 
presented a model to compute the cost of power system 
reliability based on stochastic optimization of long-term 
security-constrained UC. Zhao et al. [2] proposed a unified 
stochastic and robust UC model that takes advantage of both 
stochastic and robust optimization approaches relying on 
Benders’ decomposition to solve the model efficiently. Xiong 
et al. [3] proposed a new formulation for a stochastic UC 
problem that incorporates uncertainty related to the 
unavailability of generators and load uncertainty. Finally, 
Zhao et al. [4] proposed an expected value and chance 
constrained stochastic optimization approach for the UC 
problem with uncertain wind power output.  

The focus of this paper is to study the impact on the total 
operation costs of using a stochastic approach instead of the 
traditional deterministic approach. Basically, the stochastic 
approach consists of using several wind power scenarios to 
obtain a UC schedule, i.e. the state of the generating units for a 
given period of time, whereas the deterministic relies solely on 
the point forecast. The UC model proposed aims at 
minimizing the expected operational costs over a 24-hour 
period taking into account key technical constraints of 
generating units, such as minimum up and down times and 
ramping rates. Wind power spilling is also considered as well 
as load curtailment. The wind power scenarios used are 
obtained from the point forecast taking into account the 
temporal dependency between forecasting errors [5]. 
Furthermore, clustering techniques [6] are used to find the set 
of the most representative scenarios and underlying 
probabilities. The generation of UC solutions is guaranteed by 
the new hybrid metaheuristic DEEPSO [7], which is 
combination of the DE-EP-PSO algorithms, where DE stands 
for Differential Evolution, EP for Evolutionary Programming 
and PSO for Particle Swarm Optimization. 



The generation of candidate UC solutions by the 
metaheuristic DEEPSO contains a simple correction algorithm 
to make sure that the generating unit constraints, like 
minimum up and minimum down time, as well as minimum 
spinning reserve are enforced at all times. The evaluation of 
solutions consists on the computation of the optimal dynamic 
economic dispatch for all operating periods taking into 
account the ramping capabilities of the generating units. The 
Linear Programming [8] module of the software Gurobi 
Optimizer® [9] is used for computing the optimal dynamic 
economic dispatch.  

To illustrate the advantages of the methodology proposed, 
a didactic 10 generator test system [10] is used. This system 
has been extensively used in other unit commitment research 
studies. Deterministic and stochastic UC schedules are 
obtained and the respective expected operation costs over all 
wind power scenarios compared to make a probabilistic 
analysis on the wind power spilling and load curtailment risks. 

II. METHODOLOGY 

A. Unit Commitment Model 

The decision variables of the UC problem addressed in this 
paper are: 

 uik - the commitment status of each conventional 
generating unit k at each period of time i, being the value “1” 
the representation of the ON status and the value “0” the 
representation of the OFF status; 

 Pik - the active power produced by each conventional unit 
k at each period of time i. 

The objective function of the deterministic UC problem is 
defined as  
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where SUCk and PCk  are, respectively, the start-up cost and 
the production cost of generating unit k, LLi and WSi  are the 
load curtailment and the wind spilled of period i, respectively, 
and M1 and M2 are constants that have a large value, so that 
load curtailment and wind spill are only activated as a last 
resort. In this paper, the production cost of each generating 
unit consists of a 3 straight-line segments approximation [11] 
of the real quadratic curve. 

The constraints of this problem are now enumerated. The 
first constraint corresponds to the system power balance 
equation  
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where PLi and PWi are, respectively, the load and the wind 
power point forecast for the time period i. 

The generating units’ technical limits are modeled by 
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where PRi stands for the spinning reserve of time period i. The 
following constraint represents the active power production 
boundaries which are related to the physical limits of the 
generating units. 

 kikikikkik PuPPu ∀∀×≤≤× ,  (5) 

The system capability to accommodate wind power 
depends on the ramping capabilities of the generating units. 
The variation of the units’ power output is limited by the ramp 
up and ramp down rates, RUP and RDN, respectively, as 

 kkkiik RUPtPP ∀×∆≤− −1  (6) 

 kkikki RDNtPP ∀×∆≤−−1  (7) 

where ∆t is the duration of each individual operating period 
during the planning schedule, which, in this paper, is equal to 
1 hour. The last constraints refer to the minimum up and 
minimum down time of the generating units. Since ∆t=1, then 

 kiikkikki uuTUPXON ∀∀≥−×− −− ,0)()( 11  (8) 

 kikiikkki uuTDNXOFF ∀∀≥−×− −− ,0)()( 11  (9) 

where XONi−1k and XOFFi−1k are the number of consecutive 
periods that unit k has been in the ON and OFF status until 
period i−1, respectively; TUPk and TDNk are the minimum up 
and down time of unit k, respectively. Note that when the unit 
changes the status, XON and XOFF must be zeroed. 

The stochastic formulation is similar to the deterministic 
one: the only difference lies in (2), where, instead of 
minimizing the cost of only one operation scenario, the 
probability of each scenario is used to compute an expected 
cost, which is also minimized. 

B. DEEPSO 

The new hybrid DEEPSO [3] metaheuristic is a variant of 
the EPSO (Evolutionary Particle Swarm Optimization). It can 
either be interpreted as a PSO with self-adaptive properties or 
an EP method with a self-adaptive recombination operator. 
DEEPSO won in 2014 a competition organized by the IEEE 
PES for meta-heuristics in solving the OPF problem. 

The general DEEPSO procedure [3] is equal to EPSO. The 
difference between the two metaheuristics lies in equation 
used to create new individuals: the Movement Rule. In EPSO, 
the equations used to create a new individual, X t, from its 
ancestor, X t−1, from its best ancestor Xb, the best ancestor ever 
found by the population, Xgb, and its current velocity Vt, are 
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 ttt VXX += −1   (11) 
where t denotes the current generation, the superscript * 
indicates that the corresponding parameter undergoes 
evolution under a mutation process, and C is a n x n diagonal 
matrix of random variables that follow a Bernoulli distribution 
with success probability P. Matrix C is randomly sampled 
every iteration. Typically, the mutation of a generic weight w 
of an EPSO individual follows a simple additive rule as 



 ( )1,0* Nww τ+=   (12) 
where τ is the mutation rate, which must be set by the user, 
and N(0,1) is a number sampled from the standard Gaussian 
distribution. Note that the mutated weight must not become 
negative or greater than 1. 

The DEEPSO movement rule is based on the replacement 
of the memory term in (10) by the perception term as  
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where Xr is an individual different from X t−1. Individual Xr 
can be obtained according to the following strategies: 

1. sampled from all individuals of the current generation: 
Sg; 

2. sampled from the matrix B of individual past bests: Pb; 

3. sampled as a uniform recombination from the 
individuals of the current generating: Sg-rnd; 

4. sampled as a uniform recombination within the matrix 
B: Pb-rnd. 

Note that the computation of the movement rule must take 
into account the difference between the fitness of Xr and of 
Xt−1. If Xr is better than X t−1, then the individual must be 
attracted to Xr and, hence, the computation of the new velocity 
is according to (13); otherwise, the position of Xr and X t−1 in 
(13) must be swapped in order to repel the individual from Xr, 
i.e. move away from a worst position. For the cases where 
uniform recombination is used, i.e. for strategies 3 and 4, the 
verification of the relative position of Xr and X t−1 in (13) must 
be done for every dimension of the optimization problem by 
comparing the fitness of the individuals selected to build Xr 
and the fitness of Xt−1. 

C. Unit Commitment using DEEPSO 

DEEPSO is a metaheuristic developed for real valued 
spaces. Each individual represents of DEEPSO represents a 
possible UC solution. The dimension of the individuals is NG 
× NT, where NG is the number of units and NT is the number of 
operation periods. Given the mixed-integer nature of the UC 
problem, a simple rounding procedure was used: even though 
the search was carried out in a real valued space, the 
respective solution is rounded off to obtain an integer one. 

Special functions are also used to guarantee that the UC 
constraints are enforced. These functions, which are labeled 
Function A and Function B, are applied after the rounding 
process and every time a new UC solution is obtained.  

1) Function A 
This function verifies whether constraints (3) and (4) are 

satisfied. In the case of the deterministic UC, the point 
forecast is used when (3) and (4) are verified whereas the 
average hourly wind power is used for the case of the 
stochastic UC.  

If constraint (3) is violated, a non-committed unit is 
selected and its status changed to ON. The selection of the unit 
to be started up can be made randomly or by using a priority 
list. The priority to start up units is defined according to 
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The unit with the smallest msuk is started up first. Only one 
of the two selection procedures is used to start up a unit and 
each of the procedures has a 50% change of being selected. 
Units are started up until constraint (3) is verified. After this 
first procedure, constraint (4) is analyzed. If this constraint is 
not satisfied, units are removed from the schedule, either 
randomly or using a priority list. Accordingly, a unit is 
selected to be shut down if the following metric  
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is the smallest for all units with the ON status. Units are then 
progressively shut down, with a 50% probability of being 
selected randomly or by using the metric defined by (15), until 
constraint (4) is fulfilled. Function A is stopped only if 
constraints (3) and (4) are simultaneously fulfilled. If not, this 
function is rerun. 

2)  Function B 
This function is used to repair the solutions that have 

generating units with minimum up and/or minimum down 
time constraints violated, i.e., it guarantees that (5) is 
enforced. Hence, this function starts by analyzing the schedule 
of each generating unit and check whether the minimum up 
and down times are verified. If they are not, the status of the 
unit is changed from OFF to ON for the minimum necessary 
periods of time that cause the violation of inequation (5). 

3) Greedy Improvement of the Global Best 
At the end of the every generation of DEEPSO, a simple 

algorithm is run to obtain a new Xgb. The idea is to apply a 
small and greedy modification to Xgb, by using the metric 
defined in (14), and generate a new UC solution. If the fitness 
of this new UC solution is better than the fitness of Xgb, then 
the new global attractor is replaced. The idea is to speed up the 
search process and generate additional diversity to escape 
from local optima. 

Pseudo-algorithm 1:  Greedy Update of Xgb 
Begin 

If there are periods with load curtailment 
Select randomly one period with load curtailment  

Start up the unit with the lowest msu (14) 
Else if there are periods with wind spill  

Select randomly one period with wind spill  
Shut down the unit with the highest msu (14)  

Else 
Select randomly one period 

Shut down the unit with the highest msu (14)  
Apply Function A and Function B and generate a new UC 
solution 
Evaluate the new UC solution 
If fitness of the new UC solution is better than the fitness of 
Xgb  

 Replace Xgb with the new solution 
End 



TABLE I. SYSTEM DATA  

Unit 
P  

(MW) 
P  

 (MW) 

Ramp Up 
(MW/h) 

Ramp Down 
(MW/h) 

P0 
 (MW) 

1 150 455 230 230 300 
2 150 455 230 230 300 
3 20 130 82.5 82.5 - 
4 20 130 82.5 82.5 - 
5 25 162 105 105 - 
6 20 80 - - - 
7 25 85 - - - 
8 10 55 - - - 
9 10 55 - - - 
10 10 55 - - - 

 

4) Generation of the Initial Population 
The generation of the initial population follows a heuristic 

process. Firstly, the minimum wind power at each period is 
obtained from all wind power scenarios. After that, this value 
is subtracted from the hourly load to obtain a net load. Units 
are then started up from t = 1 to t =24 to supply the net load 
plus the spinning reserve requirements using the priority list 
defined by the metric (14).  

Function A and B are then applied to obtain a feasible UC 
solution. This solution is then artificially included in the 
population. The remaining individuals are obtained randomly. 
If these individuals represent infeasible solutions, Function A 
and B are applied. 

D. Scenario Clustering Technique 

The initial set of scenarios used in this paper refers to a 
day-ahead wind power forecasts in 2006, for a wind farm 
located in the state of Illinois. Time series of day-ahead 
deterministic point forecasts were obtained from the National 
Renewable Energy Laboratory’s Eastern Wind Integration and 
Transmission Study [12]. To conceive wind power scenarios, 
wind power data (forecasted and realized) were used to train 
the uncertainty estimation model, as well as to generate 
scenarios of the forecasted wind power, according to the 
methodology introduced by Pinson et al. [5], which is 
equivalent to producing scenarios under a Monte Carlo 
process. 

The scenario reduction method is based on a clustering 
technique [6]. It begins with the original large set of wind 
power scenarios; then, one finds, in the T-dimension space, 
the region with the highest probability density for the wind 
power. A cluster of scenarios in this region is defined and 
replaced by a best matching unit – its focal scenario, a 
representative element with a probability given as the 
probability of drawing any scenario within its cluster out of 
the whole sample set. This cluster is removed and the process 
is repeated until a stopping criterion is met.  

This way, a set of clusters is defined, each associated to a 
focal element together with a probability value of its cluster. 
Here the 10% tolerance has been used during the scenario 
aggregation process. 

 

Figure 1.  Illustration of the five most probable wind scenarios (Sc) and the 
point forecast (PF). 

 
Figure 2.  Hourly load. 

III.  CASE STUDY 

A set of experiments were conducted to investigate the 
efficacy of the stochastic UC approach against the 
deterministic approach. For this purpose, a wind farm was 
added to the 10 generator system [10] and experiments were 
conducted for two different wind penetration scenarios: 250 
MW and 750 MW wind capacities. Wind power point 
forecasts for one operational day (24-hour) plus a set of 1000 
equiprobable wind scenarios were also used. These scenarios 
were assigned to 406 clusters using the clustering technique 
previously described. Figure 1 shows the shape of the five 
most probable scenarios obtained with the clustering 
technique as well as the point forecast for that particular day. 

 
Figure 3.  Expected operation cost for the 250 MW and 750 MW cases and 

for all UC solutions. 
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Figure 4.  Expected wind spill for the 250 MW and 750 MW cases and for 

all UC solutions. 

All relevant data of the 10 generator system can be found 
in [10]. As a simple illustration, Figure 2 shows the system 
hourly load. Table I contains additional data that is not 
available in [10], namely, the data used for the ramp rates of 
the generating units and the power production at the beginning 
of the commitment horizon (t=0). It was also assumed that the 
spinning reserve is 10% of the hourly load. Constants M1 and 
M2 of (1) were set to 1×1015 and 1×1010, respectively, in order 
to spill wind before curtailing load. The DEEPSO strategy 
used was Pb-rnd with mutation rate τ = 0.6, communication 
probability P = 0.7, and a population of 20 individuals. 
DEEPSO was stopped after 500 generations. 

Twenty-one UC solutions were obtained by DEEPSO. One 
of these UC solutions was obtained using the point forecast, 
i.e. by using the traditional deterministic approach. The 
remaining UC solutions were obtained using the stochastic 
approach by considering 20 different subsets of the 406 
clusters of wind power scenarios. These subsets were obtained 
by ordering the clusters of scenarios by their underlying 
probability and selecting scenarios from the most probable one 
to the less probable until a given predefined number is 
reached. For instance, the subset that contains the lowest 
number of scenarios contains only the 5% most probable 
scenarios from all 406, i.e. 20 scenarios, whereas the subset 
with the greatest number contains all 406 scenarios. The 
percentage of the scenarios included in the subset is used as its 
id. 

The optimal dynamic economic dispatch considering wind 
spill and load curtailment for all 21 UC solutions was 
computed for all 406 wind scenarios to investigate the effect 
of using a stochastic UC approach instead of a deterministic 
approach on the expected operation cost (i.e. the startup cost 
plus the power production cost weighted by the corresponding 
scenario probability), on the expected wind power spill, and 
on the expected load curtailment.   

The methodology was implemented in Java. All 
simulations were carried out in an Intel Core i7-2600 @ 3.40 
GHz. The average time required to run the methodology 
proposed for the case of the point forecast was 64 minutes 
whereas the time required for all 406 scenarios was 186 
minutes. 

Figure 3 shows the expected operation cost for the 250 
MW and 750 MW cases for all 21 UC solutions produced by 
DEEPSO, where PF stands for the UC solution obtained using 
the point forecast. First of all, this figure shows that the 
expected operation cost decreases as more wind power is 
added to system. This observation is consistent with the 
assumption that that wind power has zero cost: by integrating 
more wind, conventional generating units are replaced. 

Secondly, Figure 3 reveals a steady increase of the 
expected operation cost as more wind scenarios are used by 
DEEPSO to generate UC solutions. This cost then stabilizes 
after a given subset of scenarios, exhibiting only slight 
variations as more scenarios are used. Beyond this threshold, 
which in the case of 250 MW is 15% and 25% in the 750 MW 
case, one can see that the expected operation cost does not 
increase nor decrease significantly by adding more wind 
scenarios to the generation of UC solutions process. The small 
differences observed can be explained by the inherent 
characteristics of metaheuristics-based optimization which do 
not guarantee that the global optimum has been reached.  

As a matter of fact, metaheuristics can be trapped in local 
optima in some cases. The former statement is corroborated 
the bad performing UC solution obtained when using the 25% 
most probable scenarios for the 205 MW case. To avoid this 
problem, DEEPSO needs to be run a considerable number of 
times for all cases and subset of scenarios such that several 
UC solutions are obtained for both the deterministic and 
stochastic approaches. These UC solutions would be analyzed 
individually and average values computed. However, this type 
of approach is cumbersome and very time consuming and is 
not necessary if the overall behavior or trend of the expected 
operation cost as more wind scenarios are used is to be 
compared. 

Figure 4 depicts the average wind power spilled for the 
two wind power capacity cases and for all 21 UC solutions. In 
the 250 MW case, there is no wind power spilled for all 
scenarios whereas there will always be wind spill for the 750 
MW case. In the former case, the expected wind spilled 
gradually decreases as more wind scenarios are used by 
DEEPSO to build the UC solution. The expected wind spilled 
stabilizes after using 25% of the most probable scenarios, 
leading to the conclusion that that, for this case, there is no 
additional information gain by including more scenarios in the 
generation of UC solutions. Note that the computational effort 
increases as more scenarios are used by DEEPSO since the 
optimal dynamic economic dispatch for each scenario must be 
computed using Linear Programming for each new UC 
solution. Hence, considerable computational effort savings can 
be obtained if the number of scenarios is optimally estimated 
beforehand. Finally, there were some runs where DEEPSO has 
provided local optimum solutions, namely, in the cases of the 
subsets that contained 55% and 95% of the most probable 
scenarios. 

Table II presents the expected load curtailment for the 21 
UC solutions. The analysis of these results allows concluding 
for this particular day that the deterministic UC approach can 
be a risky option since it leads to the highest expected load 
curtailment. However, this value can be greatly reduced by 
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using the stochastic approach with only 5% of the most 
probable wind scenarios: this approach resulted in a reduction 
on the expected load curtailment by more than 670 times in 
the case of 250 MW and by more than 2320 for the case of 
750 MW. 

TABLE II.  EXPECTED LOAD CURTAILMENT (MW) 

Subset  
(%) 

Expected Load  
Curtailment (MW) Subset  

(%) 

Expected Load  
Curtailment (MW) 

Case 
250 MW 

Case 
750 MW 

Case 
250 MW 

Case 
750 MW 

PF 24.95 195.42 55 - - 
5 3.72E-02 8.42E-02 60 - - 
10 3.72E-02 2.01E-02 65 - - 
15 - 2.32E-02 70 - - 
20 - - 75 - - 
25 2.80E-03 - 80 - - 
30 - - 85 - - 
35 - - 90 - - 
40 - - 95 - - 
45 - - 100 - - 
50 - - 

   
 

 Note that the expected load curtailment for the 250 MW 
case is only zero after using the 30% most probable scenarios 
whereas 20% of scenarios is sufficient to eliminate the risk of 
load curtailment in the 750 MW case. Note that, in the 250 
MW case, there are UC solutions that were obtained using less 
than 30% of the most probable scenarios and still results in 
zero expected load curtailment: this indicates that the UC 
solution obtained for the 30% subset of scenarios is 
suboptimal. 

While the former analysis was conducted for a single 
operational day, it can be concluded that the stochastic 
approach can greatly mitigate of the risk of high operational 
costs and adverse control measures such wind spill or load 
curtailment. Note that, in this case, it is possible to greatly 
reduce the risk of load curtailment only by using the 5% most 
probable scenarios (i.e. 20 scenarios out of the 406) in the 
generation of the UC schedule. 

IV.  CONCLUSIONS 

The presence of wind power in the generation portfolio of 
a system introduces a margin of uncertainty at least an order of 
magnitude larger than the uncertainty in load. Furthermore, 
ramp events in the wind speed are likely to cause considerable 
stress to the system, especially when it is based on slow 
reacting thermal units.  

Many researchers agree that some form of stochastic 
optimization could be an answer to this concern. However, 
two problems remain: the large computational demand of 
stochastic programming when the number of scenarios is large 
and the selection of a representative small set of scenarios.  

This paper presented a comparison between deterministic 
and stochastic approaches for Unit Commitment in a system 
with wind power generation, and provided results from 
experiments for a succession of a growing number of wind 
power scenarios. The relevance of the work presented may be 

summarized as follows: given that an adequate scenario 
reduction and clustering is performed, the stochastic 
programming problem may be solved with a reduced set of 
well-chosen equivalent scenarios, preserving the quality of the 
solution when compared to solving the problem for a very 
large set of scenarios. 

The results of the tests presented clearly show that: 
• a stochastic formulation provided UC solutions more 

robust than the ones from a deterministic solution 
based on a point forecast 

• a well-chosen subset as small as of 5% out of 
1000 wind scenarios (generated by a Monte 
Carlo process from a wind-to-power model) may 
provide a high quality result by a considerable 
reduction of the expected load curtailment in the 
whole subset of scenarios 

• the increase adoption of more scenarios does not 
add significant quality to the solutions. 

Finally, the efficiency of the solving method is also a key 
factor in the practical feasibility of the method. The adoption 
of an efficient meta-heuristic such as DEEPSO allowed the 
tests to be fully performed although the paper is not 
proposing, as a result, that such should be the algorithmic tool 
to adopt in a professional environment. 
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