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Abstract—The uncertainty associated with the increasingly id
power penetration in power systems must be consided when
performing the traditional day-ahead scheduling ofconventional
thermal units. This uncertainty can be representedhrough a set
of representative wind power scenarios that take i@ account
the time-dependency between forecasting errors. Tareate
robust Unit Commitment (UC) schedules, it is widelyseen that
all possible wind power scenarios must be used. Hewer, using
all realizations of wind power might be a poor appoach and
important savings in computational effort can be ahieved if
only the most representative subset is used. In #hipaper, the
new hybrid metaheuristic DEEPSO and clustering techiques
are used in the traditional stochastic formulationof the UC
problem to investigate the robustness of the UC seldules with
increasing number of wind power scenarios. For thipurpose,
expected values for operational costs, wind spilland load
curtailment for the UC solutions are compared for adidactic 10
generator test system. The obtained results showrhdt it is
possible to reduce the computation burden of the sthastic UC
by using a small set of representative wind powercenarios
previously selected from a high number of scenariosovering
the entire probability distribution function of the forecasting
uncertainty.

Index Terms-Unit Commitment, Wind Power Uncertainty,
Clustering Techniques, Metaheuristic Optimization.

l. INTRODUCTION

The increasing share of wind power in thermal-dat&d
generating systems is widely seen as a concerantpto the
continuity of supply but also to its cost-effectivperation. As
a matter of fact, the operation of the system canoime
prohibitively costly and/or intolerably unreliablg wind
power forecasts are very different from its actellization.
For example, if the wind power realization is l¢kan the
forecast, the system operator will need to startkiugp
thermal units at increased generating costs arid ldad
curtailments if the additional capacity is not eglodo supply
the excess load.

The decision to start or shut down thermal unitstfe
next operating hours must take into account theirent
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operation status and the inherent uncertainty ofdwiower
forecast. Even if wind power could be accuratelgdpsted,
there might be hours where wind power is not usedisa
maximum output due to insufficient ramping capdaieti of
the generating units. Therefore, robust Unit Comeiit
procedures are necessary not only to keep operatists at
reasonable levels but also to avoid extreme cordotibns
such as wind spilling and/or load curtailment.

Recent research has been focusing on the develomhen
stochastic methods to solve the UC problem. Wul.efla
presented a model to compute the cost of powerersyst
reliability based on stochastic optimization of determ
security-constrained UC. Zhao et al. [2] proposedndied
stochastic and robust UC model that takes advardghgeth
stochastic and robust optimization approaches nglyon
Benders’ decomposition to solve the model effidientiong
et al. [3] proposed a new formulation for a stotihablC
problem that incorporates uncertainty related toe
unavailability of generators and load uncertaingmally,
Zhao et al. [4] proposed an expected value and ceghan
constrained stochastic optimization approach fog thWC
problem with uncertain wind power output.

th

The focus of this paper is to study the impactrantbtal
operation costs of using a stochastic approacleadsof the
traditional deterministic approach. Basically, teechastic
approach consists of using several wind power smEn#o
obtain a UC schedule, i.e. the state of the geingranits for a
given period of time, whereas the deterministiesesolely on
the point forecast. The UC model proposed aims at
minimizing the expected operational costs over ah@dr
period taking into account key technical constsairtf
generating units, such as minimum up and down tiares
ramping rates. Wind power spilling is also considieas well
as load curtailment. The wind power scenarios uaes
obtained from the point forecast taking into acdotime
temporal dependency between forecasting errors [5].
Furthermore, clustering techniques [6] are usefihtbthe set
of the most representative scenarios and underlying
probabilities. The generation of UC solutions isugunteed by
the new hybrid metaheuristic DEEPSO [7], which
combination of the DE-EP-PSO algorithms, where Edhds
for Differential Evolution, EP for Evolutionary Ryoamming
and PSO for Particle Swarm Optimization.

is



The generation of candidate UC solutions by the M
metaheuristic DEEPSO contains a simple correctigorighm D Uik xR < (PL -PW)-(LL -WS) D (4)
to make sure that the generating unit constraitite k=t

minimum up and minimum down time, as well as mimmu WNerePR stands for the spinning reserve of time pericthe
spinning reserve are enforced at all times. Theuatian of °llowing constraint represents the active powendprction
solutions consists on the computation of the optilyaamic Poundaries which are related to the physical linutsthe
economic dispatch for all operating periods takimgo 9generating units.

account the ramping capabilities of the generatinigs. The —

Linear Programgin% [8F]) module of thge softwagrlz Glrob Ui X P < Be s uie B i, D ®)
Optimizef® [9] is used for computing the optimal dynamic The system capability to accommodate wind power
economic dispatch. depends on the ramping capabilities of the gemgratnits.
The variation of the units’ power output is limitbg the ramp

To illustrate the advantages of the methodologypsed, up and ramp down rateRUP andRDN respectively, as

a didactic 10 generator test system [10] is uséis $ystem

has been extensively used in other unit commitmesgarch R, —Py <AtXxRUR [, (6)
studies. Deterministic and stochastic UC schedudes
obtained and the respective expected operatiors costr all R —Rc <AtxXRDN. - [y (7

wind power scenarios compared to make a probabilisivhereAt is the duration of each individual operating pério

analysis on the wind power spilling and load clrient risks. during the planning schedule, which, in this pagegqual to

1 hour. The last constraints refer to the minimum and
minimum down time of the generating units. Sintel, then

A. Unit Commitment Model

The decision variables of the UC problem addresséus (XON4 ~TUR)*(Ui-s =) 20 0D (8)
paper are: (XOFF_y =TDN¢) X (Ui —Ui) 20 0;,0¢  (9)

ux - the commitment status of each conventiondfn€ré XON-i and XOFF._y are the number of consecutive
generating unik at each period of time being the value *1” Periods that unik has been in the ON and OFF status until
the representation of the ON status and the vafiettfe Periodi-1, respectivelyTUPR, andTDN, are the minimum up
representation of the OFF status: and down time of unik, respectively. Note that when the unit

] ~_ changes the statusONandXOFF must be zeroed.
Pi - the active power produced by each conventionél un ) L L
k at each period of timie The stochastic formulation is similar to the detieistic
o . o ~one: the only difference lies in (2), where, insteaf
The objective function of the deterministic UC pish is  minimizing the cost of only one operation scenarioe

1. METHODOLOGY

defined as probability of each scenario is used to computegpected
T cost, which is also minimized.
min ;;Uik x PC (R ) + Ui X (1- Uiy ) X SUG, (1) B. DEEPSO
+LL xM; +WS XM, The new hybrid DEEPSO [3] metaheuristic is a varin

the EPSO (Evolutionary Particle Swarm Optimizatidhran
whereSUG and PG, are, respectively, the start-up cost anelither be interpreted as a PSO with self-adaptieperties or
the production cost of generating ukijtLL; andWS are the an EP method with a self-adaptive recombinationratpe
load curtailment and the wind spilled of peripdespectively, DEEPSO won in 2014 a competition organized by tieH
and M; andM, are constants that have a large value, so tH3ES for meta-heuristics in solving the OPF problem.

load curtallment and wind spill are only activatesl a I_ast The general DEEPSO procedure [3] is equal to EFB6.
resort. In this paper, the production cost of egeherating . Tl
. . : - . difference between the two metaheuristics lies guatgion
unit consists of a 3 straight-line segments appnakion [11] d individuals: th IEPSO
of the real quadratic curve used to cr_eate new individuals: the Moyemgnt Rul&P 0,
) the equations used to create a new individigl,from its
The constraints of this problem are now enumerafed. ancestorX_;, from its best ancestot,, the best ancestor ever
first constraint corresponds to the system powedarioe found by the populatiorXy, and its current velocity,, are

equation . . . .
Vi =W XV + W, X(Xb _Xt—1)+Wm XCX(ng _Xt—l) (10)

M

Zuik xR =(PL -PW)-(LL -WS) 0 2 X =X +V4 (11)

K=t where t denotes the current generation, the superscript *
where PL; and PW are, respectively, the load and the winihdicates that the corresponding parameter undsrgoe
power point forecast for the time period evolution under a mutation process, &dé a n x n diagonal
matrix of random variables that follow a Bernodltribution
with success probability?. Matrix C is randomly sampled
M — every iteration. Typically, the mutation of a ganewxeightw
D Uy xR 2(PL -PW +PR )= (LL; -WS) 0; (3) ofan EPSO individual follows a simple additiveerais
k=1

The generating units’ technical limits are moddigd



w =w+N(03) (12) msy = PCk!H( !+ SUG (14)

wherez is the mutation rate, which must be set by the,use R xTUR
and N(0,1) is a number sampled from the standangs&an K
distribution. Note that the mutated weight must hetome
negative or greater than 1.

The unit with the smalleshsy is started up first. Only one
of the two selection procedures is used to stara umit and
each of the procedures has a 50% change of belagtest

The DEEPSO movement rule is based on the repladcemenits are started up until constraint (3) is vexfi After this
of the memory term in (10) by the perception teem a first procedure, constraint (4) is analyzed. I&thonstraint is

. . . . not satisfied, units are removed from the schedeither
Vi =W XV + Woy X (X, = X)W XCx(XG = Xi1) (13)  randomly or using a priority list. Accordingly, aniti is
where X, is an individual different fronX,_;. Individual X, selected to be shut down if the following metric
can be obtained according to the following straegi P xTDN
k k

1. sampled from all individuals of the current gerien: msd :—(—r (15)

Sg; PG\

2. sampled from the matrB of individual past bests: Pb; is the smallest for all units with the ON statusiits are then

3. sampled as a uniform recombination from the progressively shut down, with a 50% probability lwfing

Lo Qs selected randomly or by using the metric defined1), until

individuals of the curre.nt generatlng_. Sg_ rnd,. ) ) constraint (4) is fulfilled. Function A is stoppeshly if
4. sampled as a uniform recombination within théria  constraints (3) and (4) are simultaneously fuldilléf not, this

B: Pb-rnd. function is rerun.
Note that the computation of the movement rule ralet 2)  Function B
into account the difference between the fitnesXoand of This function is used to repair the solutions thave

Xi-1. If X, is better thanX,, then the individual must be yenerating units with minimum up and/or minimum dow
attracted tdX; and, hence, the computation of the new veloCityne constraints violated. ie.. it guarantees (&) is

is according to (13); otherwise, the positiongfandX.. in enforced. Hence, this function starts by analyziregschedule
(13) must be swapped in order to repel the indasidomX,, ot each generating unit and check whether the miminup
..e. move away from a worst position. For the caségre anq down times are verified. If they are not, ttetus of the
uniform recombination is used, i.e. for stratedieand 4, the |jnit is changed from OFF to ON for the minimum reseey

verification of the relative position of, andX.; in (13) must hariods of time that cause the violation of inet 5
be done for every dimension of the optimizationbtem by P qra(s).

comparing the fitness of the individuals selecteduild X, 3) Greedy Improvement of the Global Best
and the fitness of .. At the end of the every generation of DEEPSO, gm
. . . algorithm is run to obtain a neX,, The idea is to apply a
C. Unit Commitment using DEEPSO small and greedy modification tqlﬂgb, by using the metric
DEEPSO is a metaheuristic developed for real value@éfined in (14), and generate a new UC solutiothéffitness
spaces. Each individual represents of DEEPSO repiesa of this new UC solution is better than the fitne$Xgy, then
possible UC solution. The dimension of the indiwilduisNg  the new global attractor is replaced. The idea speed up the
x Nr, whereNg is the number of units arid is the number of search process and generate additional diversitgstmpe
operation periods. Given the mixed-integer naturéhe UC  from local optima.
problem, a simple rounding procedure was used: dwangh .
the search was carried out in a real valued sptwe, Pseudo-algorithm 1: Greedy Update dKgp
respective solution is rounded off to obtain aedet one. Begin
If there are periods with load curtailment
Selectrandomly one period with load curtailment
Start up the unit with the lowesnsu(14)
Else ifthere are periods with wind spill
Selectrandomly one period with wind spill

Special functions are also used to guarantee tieatJC
constraints are enforced. These functions, whiehlabeled
Function A and Function B, are applied after thanding
process and every time a new UC solution is obtkine

1) ~ Function A Shut downthe unit with the higheshsu(14)
This function verifies whether constraints (3) gddl are  E|se

satisfied. In the case of the deterministic UC, thant Selectrandomly one period

forecast is used when (3) and (4) are verified eh®rthe Shut downthe unit with the higheshsu(14)

average hourly wind power is used for the case h& t Apply Function A and Function B and generate a new UC
stochastic UC. solution

If constraint (3) is violated, a non-committed uigt  Evaluatethe new UC solution
selected and its status changed to ON. The seatentithe unit  If fitness of the new UC solution is better than itreess of
to be started up can be made randomly or by usipigoaty Xgb
list. The priority to start up units is defined aoding to ReplaceXg, with the new solution
End




TABLE I. SYSTEM DATA

Unit P p | Ramp Up Ramp Down P,
(MW) | (MW) (MW/h) (MW/h) (MW)
1 150 455 230 230 300
2 15C 45k 23C 23C 30C
3 20 130 82.5 82.5 -
4 2C 13C 82.F 82.5 -
5 25 162 10t 10& -
6 20 80 - - -
7 25 8t - - -
8 10 55 - - -
9 1C 58 - - -
10 10 55 - - -
4) Generation of the Initial Population

The generation of the initial population followsauristic
process. Firstly, the minimum wind power at eachogeis
obtained from all wind power scenarios. After thiats value
is subtracted from the hourly load to obtain aloet. Units
are then started up frotr= 1 tot =24 to supply the net load
plus the spinning reserve requirements using tharityr list
defined by the metric (14).

Function A and B are then applied to obtain a fdadiC
solution. This solution is then artificially inclad in the
population. The remaining individuals are obtainaddomly.
If these individuals represent infeasible solutjdasnction A
and B are applied.

D. Scenario Clustering Technique

The initial set of scenarios used in this papeereto a
day-ahead wind power forecasts in 2006, for a wfamun
located in the state of lllinois. Time series ofy-@dead
deterministic point forecasts were obtained from National
Renewable Energy Laboratory’s Eastern Wind Intégmadnd
Transmission Study [12]. To conceive wind powemse®s,
wind power data (forecasted and realized) were tsdthin
the uncertainty estimation model, as well as toegse
scenarios of the forecasted wind power, accordmght
methodology introduced by Pinson et al. [5], whigh
equivalent to producing scenarios under a MonteloCa
process.

The scenario reduction method is based on a diogter
technique [6]. It begins with the original larget s wind
power scenarios; then, one finds, in the T-dimenspace,
the region with the highest probability density tbe wind
power. A cluster of scenarios in this region isimked and
replaced by a best matching unit — its focal sdeneaa
representative element with a probability given the
probability of drawing any scenario within its diess out of
the whole sample set. This cluster is removed hadtocess
is repeated until a stopping criterion is met.

This way, a set of clusters is defined, each aatatito a
focal element together with a probability valueitsf cluster.
Here the 10% tolerance has been used during thearsce
aggregation process.
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Figure 1. lllustration of the five most probable wind sceonar{Sc) and the
point forecast (PF).
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Figure 2. Hourly load.

Ill.  CASESTUDY

A set of experiments were conducted to investighte
efficacy of the stochastic UC approach against
deterministic approach. For this purpose, a winunfavas
added to the 10 generator system [10] and expetimeeare
conducted for two different wind penetration scesar250
MW and 750 MW wind capacities. Wind power point
forecasts for one operational day (24-hour) pleetaof 1000
equiprobable wind scenarios were also used. Them®asos
were assigned to 406 clusters using the clustagobnique

reviously described. Figure 1 shows the shapeheffive
ost probable scenarios obtained with the clusierin
technique as well as the point forecast for thaiqdar day.
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Figure 3. Expected operation cost for the 250 MW and 750 MAses and
for all UC solutions.



2.60 Figure 3 shows the expected operation cost for2t@

. MW and 750 MW cases for all 21 UC solutions produbg

= DEEPSO, where PF stands for the UC solution obdiairsing

& 250 the point forecast. First of all, this figure showsat the

2245 bl b 1 expected operation cost decreases as more windrpgwe

?32 aw LN | added to system. This observation is consistenh e

§ ' assumption that that wind power has zero costniggrating

5 23 TN T e e more wind, conventional generating units are reggac

230 LSRR LLLRLRLLLRLLRR Secondly, Figure 3 reveals a steady increase of the

PEARASRIIBBEERRELSS g expected operation cost as more wind scenariosiseé by

Subset Scenarios DEEPSO to generate UC solutions. This cost thehilizies
after a given subset of scenarios, exhibiting oslight
variations as more scenarios are used. Beyondhiéshold,
Figure 4. Expected wind spill for the 250 MW and 750 MW caagd for which in the case of 250 MW is 15% and 25%_|n the Mw
all UC solutions. case, one can see that the expected operatiordgestnot
increase nor decrease significantly by adding mened
All relevant data of the 10 generator system cafobad scenarios to the generation of UC solutions procHss small
in [10]. As a simple illustration, Figure 2 showstsystem differences observed can be explained by the inhkere
hourly load. Table | contains additional data thetnot characteristics of metaheuristics-based optiminatiich do
available in [10], namely, the data used for thmpaates of not guarantee that the global optimum has beeregac
g}etl?:Eg;r?:gi]?ml:ermshiﬂczi;R:O%Oﬁ?/;;srojggtfsnsﬁrﬂi%lr':rr::ar;q[h As a matter of fact, metaheuristics can be trappddcal
spinning reserve is 10% of thé hourly load. Cortstatil and %ptima in some cases. The former statement is d
. . : : _ummtso
M2 of (1) were set to 1x20and 1x16, respectively, in order the bad performing UC solution obtained when usireg25%

N S most probable scenarios for the 205 MW case. Tadatis
to spill wind before. curta|I|ng load. The DEEPSO‘T"HQY problem, DEEPSO needs to be run a considerable emuoib
used was Pb-rnd with mutation rate= 0.6, communication

probability P = 0.7, and a population of 20 individualstimes for all cases and subset of scenarios suathstveral
DEEPSO was stobp'ed after 500 generations UC solutions are obtained for both the determinisind
' stochastic approaches. These UC solutions woulhbbzed
Twenty-one UC solutions were obtained by DEEPSQe Oindividually and average values computed. Howetves, type
of these UC solutions was obtained using the pioirgcast, of approach is cumbersome and very time consumiagis
i.e. by using the traditional deterministic apptwacthe not necessary if the overall behavior or trendhef éxpected
remaining UC solutions were obtained using the hetstic operation cost as more wind scenarios are used ibet
approach by considering 20 different subsets of 406 compared.
clusters of wind power scenarios. These subsets a®ained Fi . . .
. ; . . gure 4 depicts the average wind power spilled tfar
e ol seearos B el 91 two wid power capacty cases and for al 21 Ucgals. I
tpo the Ieyss probable guntil a given predefinedﬂnum'lse the 25.0 MW case, there .iS no wind power spilled ditir
reached. For instance. the subset that containslomest SCEnarnos whereas there will always be wind spilithe 750
number'of scenarios é:ontains only the 5% most mﬂebaMW case. In the former case, the expected windlespil
scenarios from all 406, i.e. 20 scenarios, whetkassubset %rgg;aslg tdegrglgster:ls S% mcl)rg ww_:% scenarltoz afemb‘ged
with the greatest number contains all 406 scenarit®e o bul © solution. The expected vapte

N . . .- stabilizes after using 25% of the most probablenaies,
%ercentage of the scenarios included in the sibssed as its leading to the conclusion that that, for this cdbkere is no

additional information gain by including more sceos.in the
The optimal dynamic economic dispatch consideriimpw generation of UC solutions. Note that the comportet effort
spill and load curtailment for all 21 UC solutiongas increases as more scenarios are used by DEEPSE thic
computed for all 406 wind scenarios to investight effect optimal dynamic economic dispatch for each sceratist be
of using a stochastic UC approach instead of armi@tistic computed using Linear Programming for each new UC
approach on the expected operation cost (i.e.tdréup cost solution. Hence, considerable computational effarings can
plus the power production cost weighted by theemponding be obtained if the number of scenarios is optimedimated
scenario probability), on the expected wind powgall,sand beforehand. Finally, there were some runs whereRX¥E has
on the expected load curtailment. provided local optimum solutions, namely, in theesof the
. . ubsets that contained 55% and 95% of the mostapteb
The methodology was implemented in Java. AE

simulations were carried out in an Intel Core iD262 3.40 cenarios.

GHz. The average time required to run the methapolo Table Il presents the expected load curtailmenther21

proposed for the case of the point forecast wasnbutes UC solutions. The analysis of these results allowrscluding

whereas the time required for all 406 scenarios W86 for this particular day that the deterministic Ugpeoach can

minutes. be a risky option since it leads to the highesteetgud load
curtailment. However, this value can be greatlyuoed by

250 MW =750 MW



using the stochastic approach with only 5% of thestm summarized as follows: given that an adequate scena

probable wind scenarios: this approach resultea rieduction
on the expected load curtailment by more than @neg in
the case of 250 MW and by more than 2320 for thee i
750 MW.

TABLE Il. EXPECTEDLOAD CURTAILMENT (MW)

Expected Load Expected Load
Subset | Curtailment (MW Subset | Curtailment (MW
(%) Case Case (%) Case Case
250 MW | 750 MW 250 MW | 750 MW
PF 24.9¢ 195.4. 55 - -
5 3.72E-02| 8.42E-02 60 - -
1C 3.72E-02 | 2.01E-02 65 - -
15 - 2.32E-02 70 - -
2C - - 75 - -
25 2.80E-03 - 80 - -
30 - - 85 - -
3E - - 9C - -
40 - - 95 - -
45 - - 10C - -
50 - -

Note that the expected load curtailment for the REN
case is only zero after using the 30% most probsd#aarios
whereas 20% of scenarios is sufficient to eliminbgerisk of
load curtailment in the 750 MW case. Note thatthia 250
MW case, there are UC solutions that were obtairsétg less
than 30% of the most probable scenarios and sslllts in
zero expected load curtailment: this indicates i UC
solution obtained for the 30% subset of scenariss
suboptimal.

While the former analysis was conducted for a singi3]

operational day, it can be concluded that the sistah
approach can greatly mitigate of the risk of higlerational
costs and adverse control measures such wind apitbad
curtailment. Note that, in this case, it is possith greatly
reduce the risk of load curtailment only by usihg % most
probable scenarios (i.e. 20 scenarios out of thg) 40 the
generation of the UC schedule.

IV. CONCLUSIONS

The presence of wind power in the generation plwtfaf
a system introduces a margin of uncertainty at ea®rder of
magnitude larger than the uncertainty in load. farrnore,
ramp events in the wind speed are likely to caossiderable
stress to the system, especially when it is basedslow
reacting thermal units.

Many researchers agree that some form of stochast

optimization could be an answer to this concernweieer,
two problems remain: the large computational demahd
stochastic programming when the number of scenarilesge
and the selection of a representative small setefiarios.

This paper presented a comparison between detstiini

and stochastic approaches for Unit Commitment gystem
with wind power generation, and provided resultemnir
experiments for a succession of a growing numbewiafl
power scenarios. The relevance of the work predemtey be

reduction and clustering is performed, the stodhast
programming problem may be solved with a reducedoke
well-chosen equivalent scenarios, preserving traditglof the
solution when compared to solving the problem foveay
large set of scenarios.

The results of the tests presented clearly shotv tha

e a stochastic formulation provided UC solutions more
robust than the ones from a deterministic solution
based on a point forecast

» a well-chosen subset as small as of 5% out of
1000 wind scenarios (generated by a Monte
Carlo process from a wind-to-power model) may
provide a high quality result by a considerable
reduction of the expected load curtailment in the
whole subset of scenarios

» the increase adoption of more scenarios does not
add significant quality to the solutions.

Finally, the efficiency of the solving method is@ala key
factor in the practical feasibility of the methdthe adoption
of an efficient meta-heuristic such as DEEPSO aldvhe
tests to be fully performed although the paper @& n
proposing, as a result, that such should be thaitiignic tool
to adopt in a professional environment.
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