New formulations for the unit commitment problem: Optimal control and switching-time parameterization approaches

Thumbnail Image
Date
2017
Authors
Luís Roque
Fontes,FACC
Dalila Fontes
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The Unit Commitment Problem (UCP) is a well-known combinatorial optimization problem in power systems. The main goal in the UCP is to schedule a subset of a given group of electrical power generating units and also to determine their production output in order to meet energy demands at minimum cost. In addition, a set of technological and operational constraints must be satisfied. A large variety of optimization methods addressing the UCP is available in the literature. This panoply of methods includes exact methods (such as dynamic programming, branch-and-bound) and heuristic methods (tabu search, simulated annealing, particle swarm, genetic algorithms). This paper proposes two non-traditional formulations. First, the UCP is formulated as a mixed-integer optimal control problem with both binary-valued control variables and real-valued control variables. Then, the problem is formulated as a switching time dynamic optimization problem involving only real-valued controls. Copyright
Description
Keywords
Citation