Please use this identifier to cite or link to this item: http://repositorio.inesctec.pt/handle/123456789/6162
Title: Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach
Authors: Joana Isabel Paiva
Cardoso,J
Pereira,T
Issue Date: 2018
Abstract: Objective: The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. Materials and methods: The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39 pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). Results and discussion: SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917 +/- 0.0024 and a F-Measure of 0.9925 +/- 0.0019, in comparison with ANN, which reached the values of 0.9847 +/- 0.0032 and 0.9852 +/- 0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. Conclusion: The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.
URI: http://repositorio.inesctec.pt/handle/123456789/6162
http://dx.doi.org/10.1016/j.ijmedinf.2017.10.011
metadata.dc.type: article
Publication
Appears in Collections:C-BER - Articles in International Journals

Files in This Item:
File Description SizeFormat 
P-00N-52W.pdf560.39 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.