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Abstract—The worldwide Web has dramatically evolved in
recent years. Web pages are dynamic, expressed by programs
written in common programming languages given rise to sophisti-
cated Web applications. Thus, Web browsers are almost operating
systems, having to interpret/compile such programs and execute
them. Although JavaScript is widely used to express dynamic
Web pages, it has several shortcomings and performance inef-
ficiencies. To overcome such limitations, major IT powerhouses
are developing a new portable and size/load efficient language:
WebAssembly.

In this paper, we conduct the first systematic study on
the energy and run-time performance of WebAssembly and
JavaScript on the Web. We used micro-benchmarks and also real
applications in order to have more realistic results. Preliminary
results show that WebAssembly, while still in its infancy, is start-
ing to already outperform JavaScript, with much more room to
grow. A statistical analysis indicates that WebAssembly produces
significant performance differences compared to JavaScript.
However, these differences differ between micro-benchmarks and
real-world benchmarks. Our results also show that WebAssembly
improved energy efficiency by 30%, on average, and showed
how different WebAssembly behaviour is among three popular
Web Browsers: Google Chrome, Microsoft Edge, and Mozilla
Firefox. Our findings indicate that WebAssembly is faster than
JavaScript and even more energy-efficient. Additionally, our
benchmarking framework is also available to allow further
research and replication.

Index Terms—Energy Efficiency, Green Software, Runtime,
WebAssembly, Web Browsers

I. INTRODUCTION

Over the last decades, the internet has been a significant

and powerful resource. It has transformed how we work, play,

communicate, and socialize. The majority of these operations

are performed using Web browsers, the most frequently used

software tools for accessing the internet. They can do much

more than rendering a Web page [1]. As the Web platform

has matured, complex and demanding Web applications, such

as music editing and streaming, video editing, encryption,

and game development, have emerged. The number of web

applications has been growing drastically both for desktop and

mobile devices. In fact, they can have a considerable and non-

negligible impact on sustainability.

JavaScript (JS) is an ”easy-to-use object scripting language

designed for creating live online applications that link together

objects and resources on both clients and servers”, according

to Netscape and Sun in 1995 [2]. For more than two decades,

JS has been the de facto standard client-side Web scripting
language [2]. Even though JS technology has improved by

utilizing sophisticated Virtual Machines (VM) providing both

Just-In-Time (JIT) compilation and GPU support, JS was not

designed with performance in mind. Recent studies analyzed

the performance of 27 programming languages performing

the same ten software problems: JS ranks 15 in the reported

ranking. It is 6.5 times slower and 4.45 times more energy
greedy than the C language (the fastest and greenest in that

ranking) [3], [4], [5]. In mobile devices, results are a bit more

conflicting when JS is compared against Java and C++ [6]. For

numerical computations, JS is within a factor of 2 compared

to C when it comes to runtime performance. [7].

As the only embedded language on the Web, JS falls short

in efficiency and security, especially as a compilation target.

To overcome such limitations, major IT powerhouses are

developing a new portable and size/load efficient bytecode lan-

guage: WebAssembly (abbreviated Wasm) [8]. According to

W3C, Wasm is the fourth language for the Web which allows

code to run in the browser [9]. The other three languages -

HTML, CSS, and JavaScript - were developed in the previous

century, already! In fact, the introduction of Wasm is an

important contribution aiming at improving both the run-time

performance [8] and the security of Web applications [10]. As

any bytecode format, Wasm is not a new language to directly

write our applications. Instead, it is a compilation target that

allows C/C++, Rust or TypeScript developers to build their

applications, compile to Wasm and execute it on a browser.

As a consequence of its modern design, the Wasm de-

velopers outline an expected run-time performance gain of

around 30% on the Google Chrome browser compared to

JS performance [8]. Being a pretty new language/system,

however, it is important to fully assess its impact on the

websites and browsers we use daily. Because internet browsing

is one of the main tasks performed in non-wired devices

(smartphones/tablets/laptops) the impact of Wasm on the

energy consumption of applications/Web browsers is also a

critical aspect that may influence its adoption/success [11].

Unfortunately, there is no work analysing in detail the energy

consumption of Wasm applications when compared to an

equivalent JavaScript alternative.

In this paper we present the first detailed study on the impact

on the energy efficiency of Wasm. We consider two real-
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world Wasm applications developed with benchmark goals: the

WasmBoy console emulator [12] and the PSPDFKit portable
document format (PDF) viewer/editor [13]. The WasmBoy

emulator was directly written in JavaScript (Typescript) and

compiled into Wasm. The PSPDFKit editor was developed in
C/C++ and this code was compiled both into a low level and

optimized subset of JavaScript (asm.js) and into Wasm. Thus,
we are able to compare the JS and Wasm implementations of

both benchmarks. Moreover, we also analyse the performance

of ten Wasm/JS micro-benchmarks.

We designed an empirical study to understand the perfor-

mance of Wasm, both in terms of its execution time and energy

consumption. With this study we wish to answer the following

research questions:

• RQ1 Is Wasm currently more energy efficient than JS,
and if so, are they significantly different?
Since Wasm is designed to become the universal com-

pilation target for the web, it is important to assess

whether it is also already more energy efficient than the

existing solutions. It is also important to understand how

significant the difference is, since it may influence its

early adoption, or not.

• RQ2 Is Wasm currently faster than JS?
Wasm is a low-level language whose instructions are in-

tended to compile almost directly to hardware. Collecting

run-time results from real-world applications let us know

if its advanced architecture makes it faster than the JIT

JS compilation.

• RQ3 Does Wasm present the same performance between
micro-benchmarks and real-world applications, in terms
of energy consumption and runtime?
There are several micro-benchmarks that test Wasm

versus JS run-time performance [8]. We would like to

consider not only such micro-benchmarks, but also larger

real-world benchmarks, in order to have more real and

trustworthy performance measurements.

• RQ4 Does Wasm present the same performance between
different browsers, in terms of energy consumption and
runtime?
Web browsers are the most widely used software tool

to access the internet. Since the developers of all major

browsers are also involved in the creation of Wasm, it is

important to study which browser spends less energy and

has the best runtime when running Wasm bytecode.

This paper is organized as follows: Section II briefly

presents the Wasm ecosystem. In Section III we describe the

design and execution of our study. Section IV analyses in detail

the energy consumption and runtimes of our benchmarks.

In Section V we present the threats to validity, while in

Section VI we discuss related work. Finally, in Section VII

we give our conclusions.

II. WEBASSEMBLY’S ECOSYSTEM

The Wasm ecosystem was developed by the companies

that offer the four most widely used Web browsers, namely

Google, Microsoft, Mozilla, and Apple. Wasm is a low-level,

compiled assembly-like language that can run with near-native

performances on all major browsers. According to Mozilla

Tech, ”WebAssembly is one of the biggest advances to the
Web platform over the past decade.” and, over time, many

current productivity applications (e.g., email, social networks,

word processing) and JS frameworks will likely adopt Wasm

to substantially decrease load times and increase run-time

performance [14].

The primary concern of Wasm is speed, safety, and porta-

bility. Wasm has significant outgrowths for the Web platform

since it allows applications written in most major program-

ming languages to efficiently run on the web. Wasm is intended

to be the de facto Web compilation target for languages such
as C/C++, Rust, Haskell, etc. Thus, it increases Web software

portability while significantly improving speed [15]. Moreover,

Wasm is developed to operate alongside JS, making this

combination a powerful tool because JS can focus on DOM

manipulation, while Wasm can handle CPU-intensive tasks.

Although Wasm included a human readable format (WAT),

there are compilers for most languages that produce the low

level Wasm code, such as Cheerp [16], Emscripten [17],

AssemblyScript [18], and Asterius [19]. Cheerp allows com-

panies to preserve critical legacy applications written in Java,

Flash and C/C++, and automatically migrate them to HTML5

and Wasm, making their application accessible from any mod-

ern browser. Emscripten is a complete open source compiler

toolchain for Wasm. It compiles C/C++ code (or any other lan-

guage that uses LLVM) into Wasm. The PSPDFKit benchmark
was compiled into Wasm with Emscripten. AssemblyScript

compiles a variant of TypeScript (basically JS with types) to

Wasm using Binaryen1. The hand written code of the Game-

boy benchmark was compiled to Wasm with this compiler.

Asterius is an Haskell to Wasm compiler based on GHC. It

compiles Haskell source files or Cabal executable targets to

Wasm+JS code. There are many more compilers within the

Wasm ecosystem, which is changing the way developers build

Web applications: they are not limited to the JS realm and are

able to use their favourite programming language.

III. BENCHMARK DESIGN AND EXECUTION

The development of a new language and its supporting

tools, namely compilers and virtual machines, is a complex

and time consuming task. Moreover, during its development,

the language and its tools need to be tested and compared to

the state-of-the-art competitors to fully assess the advantages

of such new language. Wasm is no exception, and although

its ecosystem is still in its infancy, it is crucial to compare

it to the state-of-the-art, fully optimized JavaScript environ-

ment. Because one of the main goals to develop Wasm is

the improvement of the performance of Web applications, it

is particularly relevant to compare the run-time and energy

performance of Wasm and JS.

A preliminary study of the energetic and run-time behavior

of the novel Wasm and the matured JS languages has been

1Binaryen is a compiler and toolchain infrastructure library for Wasm,
written in C++. It is available at https://github.com/WebAssembly/binaryen
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reported in [20]. This study, however, considers only a set of

micro-benchmarks of heavy computational operations which

do not represent typical Web applications. Furthermore, the

compiled Wasm programs are executed directly by the node.js

virtual machine and not by a browser as usual in Web

applications. In this paper we consider two Wasm web-based

applications developed with benchmarking purposes. More-

over, we also benchmark the performance of these applications

when executed within a browser-based environment, namely

within the Google Chrome, Mozilla Firefox, and Microsoft

Edge browsers. To monitor such Web browsers, we developed

a framework to measure the energy consumption and run-time

when such browsers are executing the benchmark applications.

Finally, we extend the previously reported micro benchmark

study so that the micro benchmarks are executed in the

(monitored) browsers.

A. Real-World Wasm Applications

To study the performance of Wasm we consider two real-

world applications developed with benchmark goals, namely

WasmBoy and PSPDFKit.
a) The WasmBoy Benchmark: WasmBoy is a Game-

boy/Gameboy Color Emulator, written in TypeScript to bench-

mark Wasm. WasmBoy is written in JavaScript/TypeScript

and it was created with the main goal of comparing the

run-time performance between Wasm, that is produced by

the AssemblyScript compiler and the ES6 latest version of

JavaScript as produced by the TypeScript compiler. This game

console includes six different open source games that can be

executed by the console. We updated the WasmBoy source

code in order to specify the browser where the games have

to be executed. Thus, considering the 6 games, with 2 two

languages we benchmark (Wasm and JS), across the 3 chosen

browsers, we have a total of 36 unique samples.

b) The PSPDFKit Benchmark: This software allows to
view, annotate, and fill in forms in PDF documents on any

platform. In order assess the possibility of porting this software

to the Wasm ecosystem, the company that developed it created

the PSPDFKit benchmark: a real-world, open-source bench-
mark aiming to compare its Wasm and JS implementations.

To execute this benchmark with realistic inputs we considered

five different pdf documents: one book divided into three

parts (with 20, 40, and 80 pages, respectively), one scientific

paper (10 pages long), and a slide presentation (containing

20 slides). We also made a few changes in the application’s

source code in order to execute several inputs in the two

different languages considered (Wasm and asm.js). Similar

to the WasmBoy benchmark, we developed makefiles to
automate the execution in the different browsers. Considering

our 5 various examples, with the 2 languages, across the 3

chosen browsers, we have a final total of 30 unique program

executions.

It should also be noticed that there is a difference between

the JavaScript implementations of the two benchmarks. The

PSPDFKit benchmark uses asm.js, a low-level and fast subset

of JS (that is not particularly human writable). In contrast,

WasmBoy uses ES6, the first significant update to the JS lan-

guage. Moreover, the JS (asm.js) implementation of PSPDFKit
is a highly optimized implementation as it was produced by

the C/C++ compiler, while the JS implementation of WasmBoy

was hand-written with no advanced optimizations.

B. Micro-Benchmark Programs

Micro-benchmarks is one of the principal ways to measuring

the performance of a software system. Wasm is no exception,

and researchers have presented a preliminary study and its

results on the run-time and energy efficiency performance of

Wasm versus JS [20]. The considered benchmark programs

are originality written in C and compiled into both Wasm and

JS.

In order to compile C-based benchmarks into their respec-

tive Wasm and JS variants, they used the Emscripten compiler.

Emscripten compiles a C program to Wasm and generates

two files (.wasm and .js) that operate together. The .wasm

file includes the C translated source code, while the .js file

(also known as glue code) is the compilation’s primary target

for loading and setting up the Wasm code. Likewise, when

compiling to JS, a .js file is created with the translated code

and a .mem file with the static memory initialization data.

Wasm was designed to be used in compute-intensive cases

such as compression, encryption, image processing, games,

and numeric computations. Thus, they monitored the energy

consumed and execution time of 10 heavy computational

(Table I) programs from two benchmarks repositories: Roseta

Code2 and Computer Language Benchmarks Game (CLBG)3.

From Rosetta Code, they obtained a total of 8 different

sorting algorithm solutions, and from CLBG, they used two
intensive benchmark problems: Fannkuch-redux and Fasta.
Both Rosetta Code and CLBG have been used to evaluate

programming language performance and/or assess their energy

economy. Finally, below is the list of the benchmarks utilized,

along with a short explanation of each, for a total of 10 distinct

solutions.

One of the aspects that they wanted to investigate was if

performance scale differently for Wasm and JS depending

on the input size. Thus, they divided the input data into

three categories: Small, Medium, and Large for each

benchmark. While the input size and data change across

benchmarks, they are consistent among the three languages

tested (C, Wasm, and JS) within each benchmark. This gave

a total of 90 distinct compiled programs to evaluate, based on

three input sizes and three languages (C, Wasm, and JS) used

throughout the ten benchmarks.

That previous study, however, has an important limitation

since it executes both Wasm and JS micro-benchmarks in their

virtual machines without considering the use of web browsers.

In order to simulate a more realistic test case, we developed

2Rosetta Code: http://www.rosettacode.org/wiki/Rosetta Code
3The Computer Language Benchmarks Game: https://benchmarksgame-

team.pages.debian.net/benchmarksgame/index.html
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TABLE I: Benchmarks details.

Benchmark Description

Fannkuch-redux
Indexed access to tiny integer
sequence.

Fasta
Generate and write random DNA
sequences.

Bead Sorting
Sort an array of positive integers
using the Bead Sort Algorithm.

Circle Sorting
Sort an array of integers into
ascending order using Circlesort.

Identifier Sorting
Sort a list of IDs, in their natural sort
order.

Lexicographic
Sorting

Given an integer n, return n in
lexicographical order.

Merge Sorting
The merge sort is a recursive sort of
order n*log(n).

Natural Sorting
Sort a list of strings, in their natural
sort order.

Quick Sorting
Sort an array of elements using the
quicksort algorithm.

Remove
Duplicates and
Sort

Remove all duplicates of a given
array and sort.

the framework to measure the performance within a browser-

based environment.

C. Measuring Energy and Run-time

To monitor the energy consumption of our benchmarks, we

rely on Intel’s Running Average Power Limit (RAPL)4. RAPL

monitors the energy consumed by the system’s Package, CPU

cores, GPU, and DRAM with a high sample rate (10ms). In

fact, RAPL has previously been used in several research works

on energy consumption and software [21], [22], [23], [24],

[25], [4], [5], and has been proven to give highly accurate

energy measurements [26].

We have developed a C-based thread that runs alongside the

benchmark execution, constantly sampling the energy usage to

ensure no register overflow5 happens while measuring using

RAPL. This thread also records the start and finish run-times

of the benchmark being performed. Each benchmark was

run five times [27], with a five-second sleep between each

execution, to gather consistent data and minimize cold start,

warm-up, and cache effects.

All measurements were performed on a Linux Ubuntu

20.04.2.0 LTS operating system, with 16GB of RAM, Intel®

Core™ i7 8750H 1.80 GHz Maximum Boost Speed 1.99 GHz,

with a Coffee Lake micro-architecture. The versions used

of Chrome, Firefox and Edge, were: 92.0.4515.107 (Official

Build) (64-bit), 90.0 (64-bit) and 92.0.902.55 (Official Build)

beta (64-bit), respectively.

To reduce the overhead caused by other tasks running on

the computer, we limited the number of processes running by

the Linux OS to the minimum, and the browsers used a single

tab to execute the benchmark.

4Intel® Power Governor: https://software.intel.com/content/www/us/en/
develop/articles/intel-power-governor.html

5A known possible occurrence when using RAPL longer than 60s

D. Data Collection

We evaluate Wasm and JS programs’ performance in three

of the four most popular and used browsers according to

several statistics websites6,7: Google Chrome, Mozilla Firefox,

and Microsoft Edge. We did not include Safari in our study

because it does not have a stable version for the operating

system of Linux.

The final step of our benchmarking framework is the

data collection. We have created a Python script, clean-
results.py, with three versions depending on the bench-

mark used. It automatically aggregates all the RAPL en-

ergy and run-time samples per benchmark-input-language-

browser-execution or benchmark-language-browser-execution

for micro-benchmarks and real-world applications, respec-

tively. The final result is a csv file for each benchmark-program

pair containing the results of all three browsers and languages,

with their RAPL samplings combined. Each csv file includes

the results for each execution and final results of our measured

metrics (both median and mean): Package (Joules), CPU cores

(Joules), DRAM (Joules), GPU (Joules) and Time (Seconds).

IV. ANALYSIS AND DISCUSSION

This section presents the benchmark results collected by

running the two Wasm benchmarks and the micro-benchmarks

presented in the previous section. The main focus is to

understand if Wasm is already outperforming JavaScript when

it comes both to energy consumption and run-time execution,

considering that Wasm is still in a very early phase. Fur-

thermore, we answer the research questions presented in the

introduction and its possible justifications.

A. Results

Wasm has only been available for a few years, yet it’s

already in all of our browsers, whether we realize it or not.

Given the hype surrounding Wasm, we want to see if it is

already outperforming JS in terms of energy usage and run-

time execution.

To better understand the results, our graphics include blue

and green bars that represent the energy consumed (Joules)
by CPU and DRAM, respectively (left axis). The orange line

corresponds to the right axis, which indicates the run-time

in seconds. Finally, the red dots represent the relationship

between the total energy used (we consider the sum of CPU

and DRAM) and the amount of time spent. This ratio may

be considered as the average power (Watts) utilized. In each
chart, the results are ordered (from left to right) by the browser

used (Chrome, Edge and Firefox). The lower the bars and the

orange line, the more efficient the system is in terms of both

energy and run-time, and the lower the red dots, the less Power

the language spend.

Figures 1 and 2 show the energy and runtime results of

the WasmBoy game and PSPDFKit viewer/editor. For example
in Figure 1, the top-left most chart represents the energy

6statista: https://www.statista.com/
7statcounter: https://gs.statcounter.com/
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consumed and run-time by game Back To Color. In Figure
2, the top-left most chart shows the information about the

performance of the book with 20 pages.

Figure 3 shows results collected from five different micro-

benchmarks with all input sizes. Each chart represents one

benchmark example with a respective input size of Small,
Medium, or Large, and within each size are the three
browsers in Wasm and JS. For example, the top left most

chart represents the Sorting-Natural benchmark with Small
input.

In Figure 4, it is possible to see the average improvements

(or not) of micro-benchmarks and real-world applications

using Wasm. The higher the bars, the more energetically or

runtime efficient the benchmarks were. For example, in terms

of energy (left bar), the micro-benchmarks (blue bars) spent

5.18% more energy using Wasm than JS. On the other hand,

the real apps spent 24.34% less energy using Wasm. This

means that micro-benchmarks use less energy using JS, unlike

real apps that are more energy efficient using Wasm.

Figures 5 and 6 show the average percentage of energy and

runtime gains between all JS and Wasm performances with

WasmBoy and PSPDFKit on each Web browser. The higher
the bars, the more efficient the system is using Wasm. For

example in Figure 5, with WasmBoy, Wasm was 20.88% more

energetically efficient, on average, using Google Chrome. In

other words, Wasm had an energy consumption reduction of

20.88%, on average. In Figure 6 with WasmBoy using Google
Chrome, Wasm was 5.15% faster than JS, on average.

Figure 7 is the average power, in Watts, utilized by JS
and Wasm in all executions of WasmBoy and PSPDFKit. For
example, in WasmBoy, using Firefox, Wasm had a power of

5.1 Watts, which means that, on average, Wasm consumed

5.1 Joules per second, while JS used more energy per second
(7 J/s). The lower the bars, the more energy energetically the
system is.

Finally, each real-world benchmark and metric has a set

of violin plots accessible on the benchmark’s online page8 in

jupyter notebook files. This information allows us to see the

total density of the gathered data, including outliers, medians,

and quartiles, for both energy consumption and run-time.

These graphics help in understanding when a language is

consistent or has a lot of inconsistencies.

B. Discussion

The main focus of this study is to compare the energy

and run-time performance between Wasm and JS. We analyze

if there is difference between the two and how significant

the difference is. We also examine how its behavior changes

between different environments, in which the Wasm has the

best performance and how better that performance is.

Micro-benchmarks solutions give us a diversity of different

outcomes, as shown in Figure 3. Google Chrome is always

the more stable browser, both in energy and run-time effi-

ciency. Moreover, Wasm is more efficient than JS most of

8Github page: https://github.com/OnThePerformanceofWebAssembly/
PerformanceOfWebAssembly

the times, while Microsoft Edge and Mozilla Firefox have

mixed results. For example, while in the Fannkuch-redux,
Fasta, and Sorting-Circle programs, Edge has better runtime
performance using Wasm, although it uses more power (the

exception being the Sorting-Circle when executed with a
Medium and Large input). Mozilla is always faster run-

ning JS except in the Fasta example. In the Circle Sorting
program, the results differ with different input sizes, Small

and Large. With Small input, Chrome and Edge have better

performances with Wasm. However, with Large input size,

the gap between JS and Wasm is significantly smaller. The

Normal Sorting solution is the only program where JS is

always more runtime efficient. In Lexicographic Sorting,
JS and Wasm have equal performances except with Firefox,

where Wasm had a poor performance.

In real-world benchmarks (Figures 1 and 2), the graphics

are similar. Nevertheless, the power differs between WasmBoy
and PSPDFKit. WasmBoy solutions use less power to run
the programs while, in PSPDFKit, the power is similar. It is
possible to notice that the energy gap between JS and Wasm

is more significant on WasmBoy.
To understand if there is an statistically-significant differ-

ence between Wasm and JS we performed a statistic analysis

on the obtained results. Thus, we tested the following hypoth-

esis:

H0 : P (A > B) = 0.5
H1 : P (A > B) �= 0.5

where P (A > B) represents, when we randomly draw from
both A and B, that the probability of a draw from A is larger

than the one from B is 50% in the case of our null hypothesis,

and different than 50% in our alternative hypothesis.

The data from all measured samples were grouped ac-

cording to their type (micro-benchmarks (MB), WasmBoy
(WB), and PSPDFKit (PDF) and each of the analyzed

browser (Google Chrome, Microsoft Edge, and Mozilla Fire-

fox). Additionally, for micro-benchmarks, we also grouped

each by input size (Small, Medium, and Large). Thus,
we obtained 12 (A, B) pairs, such as, (MBJSChrome/Small

vs. MBWasmChrome/Small), (
WBJSEdge vs.

WBWASMEdge),

(WBJSChrome vs. WBWASMChrome), (
PDF JSFirefox vs.

PDFWASMFirefox), etc.

We considered the samples independent, normally dis-

tributed and ran the Wilcoxon signed-rank test with a two-

tail p-value with confidence level of 5%. To calculate a non-

parametric effect size, Field [28] suggests using Rosenthal’s
formula [29], [30] to compute a correlation and compare the

correlation values against [31] proposed thresholds of 0.1, 0.3,

and 0.5 for small, medium, and large magnitudes, respectively.

The micro-benchmarks improvements were not very consid-

erable for Chrome and all input sizes, with p-values > 0.05.
Firefox and Edge had significant differences with p-values

< 0.05. Thus we can say that these two browsers had
meaningful differences between JS and Wasm performance.

However, these differences mean opposite things because, on

Edge, the difference is related to the better efficiency of Wasm,
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Fig. 1: WasmBoy: Energy consumed and run-time by each program in each Web browser.

Fig. 2: PSPDFKit: Energy consumed and run-time by each program in each Web browser.

but on Firefox is due to JS be better. When calculating the

effect size of these two browsers, we obtained the values of

0.41 and 0.5 for the respective Edge and Firefox. It means
that the improvement of Wasm on Edge had a medium effect

while, on Firefox, JS had a large effect.

WasmBoy and PSPDFKit had improvements completely
different than micro-benchmarks. The differences were indeed

very significant, producing statistically-significant results in

all browsers, with all p-values < 0.0001. The same happens
with the effect size, with all values > 0.8 (large effect). Thus,
this shows that JS and WASM performances are significantly

different, with a very large magnitude of discrepancy.

Returning to our research questions and looking at Figure 4,

we can claim that the results between micro-benchmarks and

real apps are significantly distinct. Unlike micro-benchmarks

that spent, on average, more 5.18% energy using Wasm,

real-world applications, had a average reduction of energy

consumption of 24.34%, compared to JS. We have shown
that there are both significant improvements and a large effect

size when using Wasm to increase the energy efficiency of

real applications (ARQ1). Its compact binary format and low-
level nature mean the browser can load, parse and compile

the code faster than JS. It is anticipated that Wasm can be

compiled faster than browsers can download it. With JS, the

performance generally increases with each iteration as it is

further optimized, however it can also decrease due to re-

optimization.

Looking at run-time results, we can say that the outcomes

are also very different between micro and real-time applica-

tions, as occurred in energy results. While Wasm, on average,

is 9.84% slower than JS in micro-benchmarks, the opposite

happens in real-world applications, where Wasm, on average,

29

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 09,2023 at 10:43:57 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Micro-Benchmarks: Energy consumed by each browser for each benchmark with the three input sizes and the respective

execution times and ratio values.

is 17.24% faster than JS (ARQ2).
These significant differences between benchmarks lead us

to try to understand the different benchmarks’ behaviors.

Figure 4 shows clearly that Wasm’s behavior is not the same

between micro and real applications (ARQ3). JS has much
better results on micro-benchmarks because of its optimization

over time through the browser engine’s Just-in-Time compiler.

Engines like V8 and SpiderMonkey optimize JS until getting

a near-native performance. These optimizations only happen if

it’s doing the exact same small piece of code over and over in a

loop. Also, for Wasm, it is assumed that the producing (offline)

compiler has already performed relevant optimizations, so a

Wasm JIT tends to be less aggressive than one for JS, where

static optimization is impossible. Another reason is that the

code testing is so small that overheads within the test loop

are a significant factor. For example, the smallest overhead in

calling Wasm from JS can affect the results. Consequently,

micro-benchmarks are not the best and most realistic fit to

measure Wasm performance.

There are also some relevant differences between the two
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Fig. 4: Percentage of energy and runtime improvements be-

tween micro-benchmarks and real-world applications using

Wasm.

Fig. 5: Average percentage of energy gains between JS and

Wasm performances on real-world applications.

realistic benchmarks, with an average energy gain/reduction of

30.69% and 18% for WasmBoy and PSPDFKit, respectively
(averages of Figure 5). Regarding the runtime performance,

WasmBoy and PSPDFKit were faster using Wasm, with speed
increases of 14.92% and 19.25%, respectively (averages of
Figure 6). This is due to their different language type because

asm.js is a very small, strict subset of JS highly optimized

in many JS engines using Just-In-Time (JIT) compiling tech-

niques. The performance characteristics of asm.js are closer to

native code than that of standard JS. However, asm.js is not

Fig. 6: Average percentage of runtime gains between JS and

Wasm performances on real-world applications.

Fig. 7: Average power, in Watts, used by JS and Wasm on

real-world applications.

humanly writable, unlike ES6 that is the standardization of JS.

Additionally, looking only at real applications, we calcu-

lated the average percentage gains (in terms of energy con-

sumption and runtime) between JS and Wasm to understand if

the behavior was the same within the three browsers. As shown

in Figure 5,WasmBoy, achieved energy reductions using Wasm
of 20.88%, 19.74%, and 51.44% for Google Chrome, Mi-

crosoft Edge, and Mozilla Firefox, respectively. In PSPDFKit,
the energy improvements were not so attractive for Chrome

and Edge, having gains of 5.96%, 6.55%, and 41.48% for

Chrome, Edge, and Firefox, respectively. Figure 6 shows that

all three browsers were faster using Wasm. WasmBoy, using
Wasm, was 20.88%, 19.74%, and 51.44% faster with Google

Chrome, Microsoft Edge, and Mozilla Firefox, respectively.

PSPDFKit, had runtime gains of 5.96%, 6.55%, and 41.48%
for Chrome, Edge, and Firefox, respectively (ARQ4). Edge
had similar results to Chrome on both applications because it is

based on the open-source Chromium browser to run on Linux

OS. While both Chrome and Edge have similar improvements,

Firefox had a considerable percentage of gains, reaching

more than 40% performance energetically in both applications.

These results can be related to the weaker Firefox performance

with JS [24], but now, with Wasm, Firefox appears to compete

with the competition. The remaining question here is: Will be,
in the future, Mozilla Firefox the best Web-browser with Wasm
evolution?
Finally, we would like to know if Wasm improvements

affect energy efficiency and run-time performance in the

same way. With PSPDFKit, the average gain of energy and
run-time using Wasm were similar, with 18% and 19.41%,
respectively. Nevertheless, with the most practical application

in this study, WasmBoy, the results were slightly different. The
run-time performance had a 15.06% average improvement,

while energy performance was two times more efficient, with

30.69% of average gains. Even so, with WasmBoy solutions,
as shown in Figure 7, Wasm can be faster using less power per

second using all three browsers. Therefore, these outcomes can

show that Wasm can be faster than JS and, even so, utilize less

energy. Wasm is very novel and has much more room to grow.

We expect that with the continued development and support

that the language has, it will surpass JavaScript over time by
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a large margin. Likely, Wasm is here to stay and revolutionize

the Web.

V. THREATS TO VALIDITY

This research aims to measure and understand the energetic

and run-time behavior in micro-benchmarks and real applica-

tions between the new Web language Wasm and matured JS.

This section presents some threats to the validity of our study,

separated into four categories.

Conclusion: While the difference between Wasm and JS

performance is irrelevant in micro-benchmarks, there is a

clear and significant gain in both energy and run-time effi-

ciency of Wasm using real applications. However, analyzing

the impact of other hardware components (such as memory

usage) deserve further analysis. All our data and benchmarking

framework are available and can be easily extended to include

additional benchmarks.

Internal: The PSPDFKit editor is arguably not really a
JavaScript application, at least not one any person would

write, since it is generated from C/C++ code. Therefore, the

PSPDFKit benchmark is great if you are a developer with

a large C/C++ application, and were wanting to know if

moving from asm.js to Wasm is a great idea (which it is).

All micro-benchmarks programs run with the same input, and

we double-checked each case’s generated output to prevent

factors interfering with the results. Also, real applications and

micro-benchmarks run in the same circumstances. In addition,

each solution was performed five times, with median and mean

values determined for each. This enabled us to reduce the

number of uncontrolled system activities and software in the

machine under test. Finally, the used energy measurement tool

has been proven to be very accurate [26], [21], [22], [23], [24],

[25], [4], [5].

Construct: We analyzed ten distinct micro-benchmarks sce-
narios across two languages, three browsers, each with three

input sizes, totaling 180 different measured cases. These

Wasm and JS solutions were produced using the Emscripten

compiler tool, with the original C solutions coming from two

widely known programming language sources. As a result,

the algorithms are guaranteed to be similar, and there is no

reason to believe that these solutions are better or worse than

others. We also analyze two real applications: a Game-boy

emulator called WasmBoy and a rendering and parsing of PDF

documents, PSPDFKit. We measure the performance of six

and five different Games and PDFs in two languages across

three browsers, totaling 66 distinct solutions.

External: This threat is related to the generalization of the
findings. Since Wasm allows C/C++, Rust or TypeScript de-

velopers to build their applications and we didn’t measure the

performance of WASM code generated from other languages

for the micro-benchmarks, we don’t know if the code written

in all these languages is equally efficient when compiled to

WASM. The new Wasm language has only been around for

four years at the time of our research. Thus it is still in its

infancy, with a lot of room for growth. However, we show

that Wasm already outperforms JS in terms of energy and

run-time performance. Consequently, the findings may not be

entirely stable and may change during the early stages of

development. Nonetheless, given the development team behind

this language (W3C, Mozilla, Microsoft, Google, and Apple),

and one of the primary goals being performance, we expect

a continued improvement. Thus the performance differences

we have observed in this study to be further highlighted and

distanced.

VI. RELATED WORK

JavaScript has been the most widely used scripting language

for the last two decades, however, its supremacy is being

challenged with the release of Wasm in 2017.

Given the more widespread adoption of Wasm, researchers

have been studying it increasingly, such as its binary secu-

rity [32], on hardening Wasm against Spectre attacks [33],

and how to speed it up with Dynamic Linking [34].

Researchers compared the speed of JavaScript with C++

using standard searching and sorting algorithms revealed that

JavaScript suffers when more processing power is required.

Other study compares JavaScript’s efficiency using numerical

computations with native code, demonstrating that it can be

run-time efficient in certain scenarios [7]. However, these

studies only looked at run-time performance and did not

compare JavaScript to a direct replacement language [35].

Similar evaluations of Wasm performance have been con-

ducted. Wasm’s own developers conducted early run-time per-

formance tests, however these were tiny performance micro-

benchmarks and file size comparisons with JavaScript [8]. Re-

searchers also conducted a large-scale comparison of Wasm’s

run-time speed against native code in two distinct browsers

(Chrome and Firefox). Native code is significantly more run-

time efficient, according to their findings (as expected). Sur-

prisingly, Wasm behaved significantly differently in the two

browsers, with Mozilla being far more inefficient [36]. The

performance of JavaScript and Wasm on both the client-side

Web browsers and the server-side Node.js was already studied

but only using numerical computing [37].

Previous studies already looked at Wasm and its run-time

performance, but they didn’t take into account its energy

efficiency and didn’t measure Wasm performance using real

applications [8] .

Finally, various researchers have investigated the perfor-

mance of several programming languages in various contexts,

including mobile [6], desktop and server [23], [38], [3], [4],

[5], and embedded systems [39], [40], in terms of both run-

time and energy efficiency. None of these studies, however,

took into account the Wasm language’s run-time and energy

efficiency.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a study a on the energy efficiency and

run-time performance between the Web’s primary language,

JavaScript, and its newer and promising competitor, Wasm. We

considered two real applications: a Gameboy console emulator,

WasmBoy, and a portable document format (pdf) viewer/editor,
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PSPDFKit. We also monitored the energy consumed and
execution time of 10 micro-benchmarks, executed with three

different input sizes. We executed all benchmarks in three

popular Web browsers: Google Chrome, Mozilla Firefox, and

Microsoft Edge.

Our findings show that Wasm performance differs when we

consider the real-world benchmarks and micro-benchmarks.

While JS can be, in some cases, more energy-efficient and

faster than Wasm in micro-benchmarks, in real applications,

Wasm outperforms JS with a significant difference. Using

micro-benchmarks, Wasm is more energy and run-time ef-

ficient than JS in Google Chrome and Microsoft Edge. In

Mozilla Firefox, JS has better performance results than Wasm,

with a significant difference most of the time. For real appli-

cations, however, Wasm outperforms JS in all cases with a

significant difference. With WasmBoy solutions, Wasm can be

faster and, even so, use less power, which means using less

energy per second. Thus, we can say that Wasm, in its proper

environment (Web browsers), is greener and faster than JS for

a significant margin.

As future work, we plan to extend our study to include other

Web-based applications while also studying memory usage

alongside energy consumption and run-time execution. Finally,

our benchmarking framework is open source8 for researchers

and practitioners to replicate and build upon.
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