Online conversation application with
confidentiality, anonymity, and identity
requirements

Pedro Fernandes! and Anténio Pinto?

L GCC, CIICESI, ESTG, Politécnico do Porto, Portugal
8080084festg.ipp.pt
? GCC, CIICESI, ESTG, Politécnico do Porto
and CRACS & INESC TEC, Porto, Portugal
apinto@inesctec.pt

Abstract. The increase in usage of smartphones and the ubiquity of In-
ternet access have made mobile communications services very attractive
to users. Messaging services are among the most popular services on the
Internet. In recent years, this services started to support confidentiality
and anonymity. A recurrent problem with the existing messaging solu-
tions is their lack of resistance to impersonation attacks. The proposed
solution addresses the impersonation problem, without neglecting user
confidentiality and anonymity, by forcing users to exchange the required
cryptographic material among themselves. Moreover, this exchange must
use a proximity communication technology, forcing the users to physi-
cally meet.

Keywords: Impersonation; Anonymity; Online conversation.

1 Introduction

The increase in usage of smartphones and the ubiquity of Internet ac-
cess have made mobile communications services very attractive to users.
Messaging services being among the most popular because these of its
availability, functionality and lower costs of communication. In partic-
ular, these services make international communications free, if the user
already has Internet connectivity, and very attractive due to functional-
ities as the use of emoji or photo and video sharing.

In recent years, these messaging services started to support end-to-end
(E2E) encryption in order to protect the transmitted content from eaves-
dropping when used over unsafe communication channels. In E2E encryp-
tion, the messages are encrypted at the source terminal, sent through the
network, and decrypted only at the destination terminal. Servers, if used,
are expected to not be able to access the exchanged messages in clear text
form [6]. This may not the be case if the server has access to the cryp-
tographic material used to encrypt the messages. Whenever the server
securely transfers messages from source to destination and is unable to
access the messages, or to identify the user who sent the message, we

are in presence of a secure messaging platform that enables both confi-
dentiality and anonymity This is sometimes referred to zero-knowledge
applications [8].

The interest in secure forms of sending online messages has grown sub-
stantially and lead the Electronic Frontier Foundation (EFF) to eval-
uate [3] the existing ecosystem of smartphone applications that offer
secure messaging services. The list of messaging applications is very long
and difficult to maintain due to the frequent appearance of new ones.
This study is currently identified by EFF as outdated and motivated the
authors to extend it.

All modern messaging applications, to the best of our knowledge, enable
users to directly communicate without requiring them to confirm their
real identify. This opens the possibility of a user assuming the identify
of another, i.e. user impersonation. This is a problem that potentiates
ill-intentioned users, possibly with criminal intent, to try and deceive
more susceptible users such as children or less tech-savvy older people.
The proposed solution, while maintaining users’ privacy and anonymity,
enables secure E2E communications, solves this user impersonation prob-
lem by requiring a first, physical interaction between the communicating
users. This first interaction is based on a proximity communication tech-
nology.

The paper is organized in sections. Section 2 describes the related work,
in particular it compares secure messaging applications. Section 3 details
the proposed solution, which is then evaluated in Section 4. Section 5
concludes this paper.

2 Related work

A set of secure messaging applications was selected from the ones avail-
able in Google Play and App Store. The selection was based on the ones
that better performed in the previously mentioned study of the EFF
and that had the more installations. In particular, TextSecure, Signal,
Telegram, WhatsApp, Threema and Wickr were selected.

TextSecure is a free and open-source mobile application for the Android
platform that allows the to send encrypted text messages. It was first re-
leased in 2010 by Open Whisper Systems [12]. In October 2015, TextSe-
cure had been installed over 1 million times through Google Play [9].
The protocol initially used by TextSecure was a protocol derived from
the Off-the-Record (OTR) protocol [11]. It comprised four stages: 1) reg-
istering; 2) sending/receiving a first message; 3) sending of a follow-up
message; 4) sending of a response. The application relays its messages to
the destination to the server that, in turn, transmits the messages to the
destination. The parties communicate with the server via Representa-
tional State Transfer (REST)-Application Programming Interface (API)
over secure Hypertext Transfer Protocol (HTTPS). The delivery of the
actual message is performed via Google Cloud Messaging (GCM) which
basically acts as a message delivery intermediary [18]. Currently, TextSe-
cure implements the algorithm Double Ratchet (also known as Azolotl
ratchet).

Signal is the successor of both the RedPhone (voice calls encryption) and
of the TextSecure. Signal was launched in 2015 and is a secure instant
messaging and voice call application that uses E2E encryption. The en-
cryption keys of the users are generated and stored in their smartphones
and not on the application servers [3]. Signal was built with mechanisms
to resist Man-in-The-Middle (MiTM) attacks. For voice calls, the appli-
cation displays a word on the screen, if the two words match at both
ends of the call, then the call is considered secure [13,15]. There is a
similar mechanism for messages that consists on the mutual verification
of digital signatures. The protocol used by the Signal application is open
source and is known as the Azxolotl protocol.

Telegram provides E2E message encryption and self-destructing mes-
sages. Telegram has more than 100 million monthly active users. The
application offers two types of chats: the standard chat that uses an
encryption key that is shared with the server and can be accessed from
multiple smartphones; and the secret chat (Telegram (Secret Chats)) that
uses E2E encryption and can only be accessed by the devices that are in
possession of the required cryptographic material. The adopted proto-
col, named MTProto, uses RSA2048 [1], Advanced Encryption Standard
(AES) 256 bits and the Diffie-Hellman key exchange [2]. The MTProto
protocol comprises three components [14]: the high-level component, the
authorization component, and the transport component. The high-level
component defines the method by which the API queries and responses
are converted into binary messages. The authorization component de-
fines the methods used for user authentication and messages encryption.
The transport component defines the method to be used by clients and
server for message transmission over a network protocol. The MTProto
supports multiple transport modes, such as Hypertext Transfer Proto-
col (HTTP), HTTPS, Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

WhatsApp is another Internet messaging application. Numbers of Septem-
ber of 2015 put their user base in the 900 million users [10]. WhatsApp
uses a store and forward approach for message transmission. When a user
wants to send a new message, it is first stored on the WhatsApp server,
and then the server relays the message to the destination user. Once
the message is received by the destination, it is removed from the server
database [5]. WhatsApp uses the same protocol as TextSecure (Azolotl
or Double Ratchet algorithm).

Threema is another free and open source Internet messaging application
with support for E2E encryption and user anonymity. As of June 2015,
Threema had 3.5 million users, most of them from German-speaking
countries. Each user, at the application start, receives a randomly as-
signed a Three-ID that will be used for user identification. In this pro-
cess, neither the user mobile phone number or email address is required.
Users can verify the identity of their Threema contacts by scanning their
QR code when they physically meet. Using this feature, users can be sure
that they contain the correct public key of their contacts, providing mes-
sage confidentiality and resistance to MiTM attacks [16]. Threema was
designed to store as little data on servers as possible. The contact lists
are managed only on the users smartphones and messages are deleted

immediately after they have been delivered. Threema supports E2E en-
cryption [17].

Wickr is another free Internet messaging application that offers confiden-
tiality. It includes the ability to set a time-to-live for each message. The
recipient’s application erases the encrypted message from their smart-
phones, trying to ensure that the message can no longer be retrieved.
The Wickr Secure Messaging protocol is specifically designed to prevent
servers from accessing both the keys or detailed information from users.
Supports E2E encryption by implementing multiple encryption layers [7].
The data, stored or in transit, is encrypted with AES256. FEach message
is encrypted with a new encryption key, deleted after its use (Perfect
Forward Secrecy). Message encryption keys are then encrypted with the
public key (Elliptic Curve Diffie Hellman (ECDH) 521) of the recipient.
All user content is deleted after the user logs off. The unique identifier
of the smartphone, Unique Device Identifier (UDID), is never sent to
the Wickr servers in an effort to assure user anonymity. Wickr’s Secure
Shredder erases all data on the smartphone so it can not be recovered.

Transport Provider Entities Anonymity Identity

Text-Secure Yes Yes Yes No No
Signal Yes Yes Yes Yes No
Telegram Yes No No No No
Telegram

(Secret-Chats) Yes Yes Yes No No
WhatsApp Yes No No No No
Threema Yes Yes Yes Yes No
Wickr Yes Yes Yes Yes No

Table 1. Application comparison

These applications were compared in the Secure Messaging Scorecard
of EFF [4]. Table 1 extends this comparison for the selected applica-
tions. The comparison criteria is fivefold: 1) transport; 2) provider; 3)
entities; 4) anonymity; 5) identity. If all communications are encrypted
while being transported through the network, then the first criteria is
satisfied. The second criteria requires that all communications must be
encrypted E2E, which means that the keys needed to encrypt/decrypt
messages must be generated and stored on the smartphones and not on
the servers. The third criteria requires that there is an internal method
for the verification of the identity of the involved entities and of the
integrity of the channel, even when the server or third parties are com-
promised. The forth criteria requires that the identity of the user is not
known by the server. The last criteria requires that the users can be sure
of the other users identity because that had a physical interaction as
proof of their identity.

For instance, the TextSecure application despite satisfying the three ini-
tial criteria, does not provide user anonymity nor requires any prior
physical interaction between users in order to establish a conversation

between them. Off the selected applications, only Threema permits the
use of an interaction between the users as a form identity confirmation,
but because it can be made remotely, undermines its fulfilling of the last
criteria.

3 Eko

The architecture of the proposed solution, named Eko, is depicted in
Figure 1. It comprises end user terminals, which are smartphones, and a
server. An user X, in order to send a secure message to an user Y, prior
to its upload to the server, firstly encrypts the message with the chat
symmetric key (SK,), and then encrypts this result with a second chat
symmetric key (SSK;). The SK, is only known by the users X and Y,
while the SSK, is known be the users and the server.

Internet

@ { IO SKXISSKx Queo @

User X User Y

Fig. 1. Application architecture

All cryptographic material is generated at the smartphones, except for
the SSK, that is generated by the server. The conversation identifier (Id)
is also generated by the server to avoid Id collision. Each conversation
is represented by a data structure named ID_-CHAT that is detailed in
Table 2. In addition to Id and the cryptographic material, it includes a
time stamp and a message validity in number of days.

Variable Description

SK; Conversation user key

SSK; Conversation key shared between users and server
Id Conversation identifier

Ts Timestamp

1% Validity (1, 10, 15, 30 days)

Table 2. Conversation data structure: ID_CHAT

All data transmitted by the application uses E2E encryption, guarantee-
ing that all communications with other users is confidential. The server
uses the conversation identifiers to select the appropriate decryption key
to process each message but is unable to decrypt the message content
and to obtain the identification of the users that take part in each con-
versation, thus providing anonymity.

Exchange by NFC of
ID_CHAT

User X User Y

Fig.2. ID_.CHAT exchange between users

Users, in order to start exchanging messages with each other, first have to
undergo a physical interaction consisting of exchanging an instance of the
data structure ID_CHAT be means of a proximity communication tech-
nology. Example technologies being Near Field Communications (NFC)
or Bluetooth Low Energy (BLE). The ID_CHAT data structure is gen-
erated by one user, and then directly shared with the remaining users,
without interaction with the server, as shown in Figure2.

4 Validation

Prototype client and server applications were implemented to validate
the proposed solution. The server was developed using the Laravel frame-
work and contains the necessary access points for the operation of the
clients. The client application was developed using the Ionic framework
that allows multi-platform development. The functional assessment was
successfully performed and the identified requirements were satisfied.

A security analysis was also performed considering the confidentiality,
anonymity and impersonation. The confidentiality of the messages ex-
changed between client and server is obtained by means of E2E encryp-
tion. The keys used to encrypt messages in conversations, the SK, key,
is generated in the smartphone of the user that creates the conversation
and stored locally. It is never uploaded to the server. The second key,
the SSK, key, is known by the participants of a conversation and by the
server. Finally, being a web-based service, the server is deployed only in
its secure mode (HTTPS).

The proposed solution guarantees user anonymity by the way it creates
and uses the ID_CHAT data structure. The identity of the user that
sends each messages is unknown to the server. Each message assumes
the form:(chatld : T's : {{Username : Msg}gy :chatld: TS}SSK),

X

where {a}, means a encrypted with key b, and a : b mean the concate-
nation of a with b. The identity of the user that sends each message can
only be decrypted with the SK, key that exists only in the ID_CHAT
data structure on the smartphones.

The proposed solution addresses the impersonation problem by imposing
a previous interaction between users for the conversation to take place.
This interaction comprises the generation of a new ID_CHAT data struc-
ture and its direct exchange with the other user’s smartphone by means
of a proximity communication technology. This way, the users must phys-
ically meet in order to communicate.

5 Conclusion

Messaging services are among the most popular services on the Inter-
net. In recent years, this services started to support confidentiality and
anonymity. A recurrent problem with the existing messaging solutions
is their lack of resistance to impersonation attacks. The proposed solu-
tion addresses the impersonation problem without neglecting user con-
fidentiality and anonymity. A prototype of the proposed solution was
implemented and functionally verified. A analysis of the security of the
proposed solution was also performed.

References

[1] Calderbank, Michael: The RSA Cryptosystem: History, Algorithm,
Primes (2007)

[2] Demircioglu, Murat and Taskin, Halil Kemal and Sarimurat, Salim:
Security analysis of the encrypted mobile communication applica-
tions (2014)

[3] Electronic Frontier Foundation: Secure Messaging Scorecard. Which
apps and tools actually keep your messages safe?, last accessed 11
September 2016

[4] Electronic Frontier Foundation, Julia Angwin, Joseph Bonneau: Se-
cure Messaging Scorecard. https://www.eff.org/secure-messaging-
scorecard (2014)

[5] Gaurav Rathee: How WhatsApp Works.
http://digitalperiod.com/explore-whatsapp-clock-sign-and-tick/
(2015)

[6] Greenberg, A.: Hacker Lexicon: What Is End-to-End Encryption?,
WIRED (2015), last accessed 17 March 2016

[7] Inc, W. How Wickr’s Encryption Works.
https://www.wickr.com/security /how-it-works, last accessed
17 February 2016

[8] Pedersen, Cam and Dahl, David: Crypton : Zero-Knowledge Appli-
cation Framework (2014), last accessed 2 March 2016

[9] Play, G.: TextSecure Private Messenger, last accessed 17 February
2016

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

18]

Sun, L.: Facebook Inc.’s WhatsApp Hits 900
Million Users: What Now? The Motley Fool.
http://www.fool.com/investing/general/2015/09/11 /facebook-
incs-whatsapp-hits-900-million-users-what.aspx (2015)

Systems, O.W.: Advanced cryptographic ratcheting.
https://whispersystems.org/blog/advanced-ratcheting/, last
accessed 28 September 2016

Tactical Technology Collective and Front Line Defend-
ers: TEXTSECURE FOR ANDROID, security in-a-box.
https://securityinabox.org/en/guide/textsecure/android (2009)
TechCrunch. AOL: Talk Private To Me: Free, Worldwide, Encrypted
Voice Calls With Signal For iPhone, last accessed 13 September 2016
Telegram: Mtproto mobile protocol

The Zfone Project: Exactly how does Zfone and ZRTP protect
against a man-in-the-middle (MiTM) attack?, last accessed 13
September 2016

Threema GmbH: Threema

Threema ~ GmbH: Threema Cryptography = Whitepaper.
https://threema.ch/en/faq, last accessed 10 September 2016
Tilman Frosch, Christian Mainka, Christoph Bader, Florian
Bergsma, Jorg Schwenk, Thorsten Holz: How Secure is TextSecure?
(2014)

