
M

Machine Learning and Game Playing

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Game playing is a major application area for
research in artificial intelligence in general
(Schaeffer and van den Herik 2002) and for
machine learning in particular (Fürnkranz
and Kubat 2001). Traditionally, the field is
concerned with learning in strategy games
such as tic-tac-toe (Michie 1963), checkers
(�Samuel’s checkers player), backgammon
(�TD-Gammon), chess (Baxter et al. 2000;
Björnsson and Marsland 2003; Donninger and
Lorenz 2006; Sadikov and Bratko 2006), Go
(Silver et al. 2016), Othello (Buro 2002),
poker (Billings et al. 2002), or bridge (Amit
and Markovitch 2006). However, recently
computer and video games have received
increased attention (Laird and van Lent 2001;
Spronck et al. 2006; Ponsen et al. 2006).

Motivation and Background

Since the early days of the field, game-playing
applications have been popular test beds for ma-
chine learning. This has several reasons:

• Games allow to focus on intelligent reasoning.
Other components of intelligent agents, such
as perception or physical actions, can be ig-
nored.

• Games are easily accessible. A typical game-
playing environment can be implemented
within a few days, often hours. Exceptions
are real-time computer games, for which only
a few open-source test beds exist.

• Games are very popular. It is not very hard to
describe the agent’s task to the general public,
and they can easily appreciate the achieved
level of intelligence.

There are various types of problems that
keep reoccurring in game-playing applications,
for which solutions with machine learning
methods are desirable, including opening book
learning, learning of evaluation functions, player
modeling, and others, which will be dealt with in
the following.

Structure of the Learning System

Game-playing applications offer various chal-
lenges for machine learning. A wide variety of
learning techniques have been used for tackling
these problems. We cannot provide details on
the learning algorithms here, but will instead
focus on the problems and give some of the
most relevant and most recent pointers to the
literature. A more detailed survey can be found
in Fürnkranz (2001).

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_740
http://dx.doi.org/10.1007/978-1-4899-7687-1_813

784 Machine Learning and Game Playing

Learning of Evaluation Functions
The most extensively studied learning problem in
game playing is the automatic adjustment of the
weights of an evaluation function. Typically, the
situation is as follows: the game programmer has
provided the program with a library of routines
that compute important features of the current
board position (e.g., the number of pieces of
each kind on the board, the size of the territory
controlled, etc.). What is not known is how to
combine these pieces of knowledge and how
to quantify their relative importance. Most fre-
quently, these parameters are combined linearly,
so that the learning task is to adjust the weights of
a weighted sum. The main problem is that there
are typically no direct target values that could be
used as training signals. Exceptions are games
or endgames that have been solved completely,
which are treated further below. However, in gen-
eral, algorithms use � preference learning (where
pairs of moves or positions are labeled according
to which one is preferred by an expert player) or
� reinforcement learning (where moves or posi-
tions are trained based on information about the
eventual outcome of the game) for tuning the
evaluation functions.

The key problem with reinforcement learning
approaches is the � credit assignment problem,
i.e., even though a game has been won (lost),
there might be bad (good) moves in the game.
Reinforcement learning takes a radical stance at
this problem, giving all positions the same rein-
forcement signal, hoping that erroneous signals
will be evened out over time. An early classic in
this area is MENACE, a tic-tac-toe player that
simulates reinforcement learning with delayed
rewards (Michie 1963) using a stack of match-
boxes, one for each position, each containing
a number of beads in different colors, which
represent the different legal moves in the position.
Moves are selected by randomly drawing a bead
out of the box that represents the current posi-
tion. After a game is won, all played moves are
reinforced by adding beads of the corresponding
colors to these boxes; in the case of a lost game,
corresponding beads are removed, thereby de-
creasing the probability that the same move will
be played again.

The premier example of a system that has
tuned its evaluation function to expert strength
by playing millions of games against itself is
the backgammon program �TD-Gammon. Its
key innovation was the use of a � neural net-
work instead of a position table, so that the
reinforcement signal can be generalized to new
unseen positions. Many authors have tried to copy
TD-GAMMON’s learning methodology to other
games (Ghory 2004). None of these successors,
however, achieved a performance that was as
impressive as TD-GAMMON’s. The reason for
this seems to be that backgammon has various
characteristics that make it perfectly suited for
learning from self-play. Foremost, among these
are the facts that the dice rolls guarantee suf-
ficient variability, which allows to use training
by self-play without the need for an explicit
exploration/exploitation trade-off, and that it only
requires a very limited amount of search, which
allows to ignore the dependencies of search algo-
rithm and search heuristic. These points have, for
example, been addressed with limited success in
the game of chess, where the program KNIGHT-
CAP (Baxter et al. 2000) integrates � temporal
difference learning into a game-tree search by
using the final positions of the principal variation
for updates and by using play on a game server
for exploration.

Many aspects of evaluation function learning
are still discussed in the current literature,
including whether there are alternatives to
reinforcement learning (e.g., evolutionary
algorithms), which training strategies should be
used (e.g., self-play vs. play against a teacher),
etc. One of the key problems that has already
been mentioned in � Samuel’s Checkers Player,
namely, the automated construction of useful
features, remains still largely unsolved. Some
progress has, e.g., been made in the game of
Othello, where a simple algorithm, very much
like �APriori, has been shown to produce
valuable conjunctions of basic features (Buro
2002).

Learning Search Control
A more challenging but considerably less inves-
tigated task is to automatically tune the vari-

http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_185
http://dx.doi.org/10.1007/978-1-4899-7687-1_813
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_740
http://dx.doi.org/10.1007/978-1-4899-7687-1_27

Machine Learning and Game Playing 785

M

ous parameters that control the search in game-
playing programs. These parameters influence,
for example, how aggressive the search algorithm
is in pruning unpromising parts of the search tree
and which lines are explored in more depth. The
key problem here is that these parameters are
intertwined with the search algorithm and cannot
be optimized independently, making the process
very tedious and expensive.

There have been a few attempts to use
� explanation-based learning to automatically
learn predicates that indicate which branches of
the search tree are the most promising to follow.
These approaches are quite related to various
uses of � explanation-based learning in planning,
but these could not be successfully be carried
over to game-tree search.

Björnsson and Marsland (2003) present a gra-
dient descent approach that minimizes the to-
tal number of game positions that need to be
searched in order to successfully solve a num-
ber of training problems. The idea is to adjust
each parameter in proportion to its sensitivity to
changes in the number of searched nodes, which
is estimated with additional searches. The amount
of positions that can be searched for each training
position is bounded in order to avoid infinite solu-
tion times for individual problems, and simulated
annealing is used to ensure convergence.

Monte Carlo Tree Search
Automated tuning of evaluation functions and
search control parameters does not work well
for all games. For many years, research in com-
puter Go has not made much progress with con-
ventional search-based and pattern learning al-
gorithms. However, a breakthrough came when
Monte Carlo techniques could be combined with
tree search algorithms. The basic algorithm inter-
leaves four phases (Browne et al. 2012):

1. Selection: select a node of the current search
tree for expansion

2. Expansion: generate one (or more) of the
successor nodes for the selected node

3. Simulation: starting from these nodes, simu-
late a game until a terminal state is reached

4. Backpropagation: propagate the observed re-
sult back to the root of the tree

The best known of such methods, UCT, may
be viewed as the extension of the UCB method
for solving � k-armed bandit problems to search
trees (Kocsis and Szepesvári 2006). In the selec-
tion phase, UCT computes the following term for
choosing the next node at each interior node of
the current tree:

UCT D NXj C C �

s
2 ln n

nj

(1)

where Xj is the average reward that has been
observed at node j , nj is the number of times
the node has been visited, and n is the num-
ber of times its predecessor has been visited.
Clearly, it can be seen that nodes with a high
utility are generally preferred (exploitation), but
the second term also increases the chances that
nodes that have been rarely visited are selected
(exploration). The parameter C can be adjusted
to trade off exploration and exploitation. From
the selected node, a single random rollout is
conducted, and its outcome is used to adapt the
Xj values in all visited nodes in the search tree.

MCTS is generally applicable but has been
particularly successful in game playing, most
notably in Computer Go. In particular, AlphaGo
(Silver et al. 2016), which employs deep learning
for training value networks to evaluate positions
and policy networks to bias the simulation phase
of MCTS towards promising moves, became the
first computer player to beat a world-class Go
player in a celebrated 5-game match in March
2016.

Opening Book Learning
Human game players not only rely on their ability
to estimate the value of moves and positions but
are often also able to play certain positions “by
heart,” i.e., without having to think about their
next move. This is the result of home preparation,
opening study, and rote learning of important
lines and variations. As computers do not forget,
the use of an opening book provides an easy way
for increasing their playing strength. However,

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_97
http://dx.doi.org/10.1007/978-1-4899-7687-1_424

786 Machine Learning and Game Playing

the construction of such opening books can be
quite laborious, and the task of keeping it up-to-
date is even more challenging.

Commercial game-playing programs, in par-
ticular chess programs, have thus resorted to tools
that support the automatic construction of open-
ing from large game databases. The key challenge
here is that one cannot rely on statistical infor-
mation alone: a move that has been successfully
employed in hundreds of games may be refuted
in a single game. Donninger and Lorenz (2006)
describe an approach that evaluates the “good-
ness” of a move based on a heuristic formula that
has been found by experimentation. This value
is then added to the result of a regular alpha-
beta search. The technique has been so successful
that the chess program HYDRA, probably the
strongest chess program today, has abandoned
conventionally large man-made (and therefore
error-prone) error books. Similar techniques have
also been used in games like Othello (Buro 2002).

Pattern Discovery
In addition to databases of common openings
and huge game collections, which are mostly
used for the tuning of evaluation functions or
the automatic generation of opening books (see
above), many games or subgames have already
been solved, i.e., databases are available in which
the game-theoretic value of positions of these
subgames can be looked up. For example, in
chess all endgames with up to six pieces and in
checkers all ten-piece endgames have been solved
(Schaeffer et al. 2003). Other games, such as
Connect-4, are solved completely, i.e., all possi-
ble positions have been evaluated, and the game-
theoretic value of the starting position has been
determined. Many of these databases are readily
available; some of them (in the domains of chess,
Connect-4, and tic-tac-toe) are part of the UCI
repository for machine learning databases.

The simplest learning task is to train a classi-
fier that is able to decide whether a given game
position is a game-theoretical win or loss (or
draw). In many cases, this is insufficient. For ex-
ample, in the chess endgame king-rook-king, any
position in which the white rook cannot be imme-
diately captured and in which black is not a stale-

mate is, in principle, won by white. However, in
order to actually win the game, it is not sufficient
to simply make moves that avoid rook captures
and stalemates. Thus, most databases contain the
maximal number of moves that are needed for
winning the position. Predicting this is a much
harder, largely unsolved problem (some recent
work can be found in Sadikov and Bratko 2006).
In addition to the game-specific knowledge that
could be gained by the extraction of patterns that
are indicative of won positions, another major
application could be a knowledge-based com-
pression of these databases (the collection of all
perfect-play chess endgame databases with up to
six men is 1.2 TB in a very compressed database
format; the win/loss checkers databases with up
to ten men contain about 4 � 1013 positions
compressed into 215 GB Schaeffer et al. 2003).

Player Modeling
Player modeling is an important research area in
game playing, which can serve several purposes.
The goal of opponent modeling is to improve
the capabilities of the machine player by allow-
ing it to adapt to its opponent and exploit his
weaknesses. Even if a game-theoretical optimal
solution to a game is known, a system that has the
capability to model its opponent’s behavior may
obtain a higher reward. Consider, for example,
the game of rock-paper-scissors aka RoShamBo,
where either player can expect to win one third
of the games (with one third of draws) if both
players play their optimal strategies (i.e., ran-
domly select one of their three moves). However,
against a player that always plays rock, a player
that is able to adapt his strategy to always playing
paper can maximize his reward, while a player
that sticks with the “optimal” random strategy
will still win only one third of the games. One
of the grand challenges in this line of work is
a game like poker, where opponent modeling is
crucial to improve over game-theoretical optimal
play (Billings et al. 2002).

Player modeling is also of increasing impor-
tance in commercial computer games (see be-
low). For one, � behavioral cloning techniques
could be used to increase the playing strength or
credibility of artificial characters by copying the

http://dx.doi.org/10.1007/978-1-4899-7687-1_69

Machine Learning and Game Playing 787

M

strategies of expert human players. Moreover, the
playing strength of the characters can be adapted
to the increasing skill level of the human player.
Finally, agents that can be trained by nonpro-
grammers can also play an important role. For ex-
ample, in massive multiplayer online role-playing
games (MMORPGs), an avatar that is trained to
simulate a user’s game-playing behavior could
take his creator’s place at times when the human
player cannot attend to his game character.

Commercial Computer Games
In recent years, the computer game industry has
discovered artificial intelligence as a necessary
ingredient to make games more entertaining and
challenging, and, vice versa, AI has discovered
computer games as an interesting and rewarding
application area (Laird and van Lent 2001). In
comparison to conventional strategy games, com-
puter game applications are more demanding,
as the agents in these games typically have to
interact with a large number of partner or enemy
agents in a highly dynamic, real-time environ-
ment, with incomplete knowledge about its states.
Tasks include off-line or online player modeling
(see above), virtual agents with learning capabil-
ities, optimization of plans and processes, etc.

Computer players in games are often con-
trolled with scripts. Dynamic scripting (Spronck
et al. 2006) is an online � reinforcement learn-
ing technique that is designed to be integrated
into scripting languages of game-playing agents.
Contrary to conventional reinforcement learn-
ing agents, it updates the weights of all actions
for a given state simultaneously. This sacrifices
guaranteed convergence, but this is desirable in
a highly dynamic game environment. The ap-
proach was successfully applied to improving the
strength of computer-controlled characters and
increasing the entertainment value of the game
by automated scaling of the difficult level of
the game AI to the human player’s skill level.
Similar to the problem of constructing suitable
features for the use in evaluation functions, the
basic tactics of the computer player had to be
handcoded. Ponsen et al. (2006) extend dynamic
scripting with an � evolutionary algorithm for
automatically constructing the tactical behaviors.

Machine learning techniques are not only used
for controlling players but also for tasks like skill
estimation, for example, TrueSkillTM (Herbrich
et al. 2007), a Bayesian skill rating system which
is used for ranking players in games on the
Microsoft’s Xbox 360. SAGA-ML (Southey et al.
2005) is a machine learning system for support-
ing game designers in improving the playability
of a game.

Despite the large commercial potential, re-
search in this area has just started, and the num-
ber of workshops and publications on this topic
is rapidly increasing. For a list of commercial
games using AI techniques, we refer to http://
www.gameai.com.

Cross-References

� Samuel’s Checkers Player
�TD-Gammon

Recommended Reading

Amit A, Markovitch S (2006) Learning to bid in
bridge. Mach Learn 63(3):287–327.

Baxter J, Tridgell A, Weaver L (2000) Learning to
play chess using temporal differences. Mach Learn
40(3):243–263.

Billings D, Peña L, Schaeffer J, Szafron D (2002) The
challenge of poker. Artif Intell 134(1–2):201–240.
Special Issue on Games, Computers and Artificial
Intelligence

Björnsson Y, Marsland TA (2003) Learning extension
parameters in game-tree search. Inf Sci 154(3–
4):95–118.

Bowling M, Fürnkranz J, Graepel T, Musick R (2006)
Special issue on machine learning and games. Mach
Learn 63(3).

Browne CB, Powley E, Whitehouse D, Lucas SM,
Cowling PI, Rohlfshagen P, Tavener S, Perez D,
Samothrakis S, Colton S (2012) A survey of Monte
Carlo tree search methods. IEEE Trans Comput
Intell AI Games 4(1):1–43

Buro M (2002) Improving heuristic mini-max search
by supervised learning. Artif Intell 134(1–2):85–99.
Special Issue on Games, Computers and Artificial
Intelligence

Donninger C, Lorenz U (2006) Innovative opening-
book handling. In: van den Herik HJ, Shun-Chin
Hsu, Donkers HHLM (eds) Advances in computer
games, vol 11. Springer, Berlin/New York

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://www.gameai.com
http://www.gameai.com
http://dx.doi.org/10.1007/978-1-4899-7687-1_740
http://dx.doi.org/10.1007/978-1-4899-7687-1_813

788 Machine Learning for IT Security

Fürnkranz J (2001) Machine learning in games: a
survey. In: Fürnkranz J, Kubat M (eds) Machines
that learn to play games, chapter 2. Nova Science
Publishers, Huntington, pp 11–59.

Fürnkranz J, Kubat M (eds) (2001) Machines that learn
to play games. Volume 8 of advances in computa-
tion: theory and practice. Nova Science Publishers,
Huntington.

Ghory I (2004) Reinforcement learning in board
games. Technical report CSTR-04-004, Department
of Computer Science, University of Bristol, Bristol.

Herbrich R, Minka T, Graepel T (2007) Trueskilltm:
a Bayesian skill rating system. In: Schölkopf B,
Platt JC, Hoffman T (eds) Advances in neural infor-
mation processing systems (NIPS-06), Vancouver,
vol 19. MIT Press, pp 569–576

Kocsis L, Szepesvári C (2006) Bandit based monte-
carlo planning. In: Proceedings of the 17th Euro-
pean conference on machine learning, ECML’06.
Springer, Berlin/Heidelberg, pp 282–293

Laird JE, van Lent M (2001) Human-level AI’s Killler
application: interactive computer games. AI Mag
22(2):15–26

Michie D (1963) Experiments on the mechanization
of game-learning – Part I. Characterization of the
model and its parameters. Comput J 6:232–236

Ponsen M, Muñoz-Avila H, Spronck P, Aha DW
(2006) Automatically generating game tactics via
evolutionary learning. AI Mag 27(3):75–84.

Sadikov A, Bratko I (2006) Learning long-term
chess strategies from databases. Mach Learn 63(3):
329–340

Schaeffer J, van den Herik HJ (eds) (2002) Chips
challenging champions: games, computers and arti-
ficial intelligence. North-Holland Publishing, Am-
sterdam. Reprint of a Special Issue of Artificial
Intelligence 134(1–2)

Schaeffer J, Björnsson Y, Burch N, Lake R, Lu P,
Sutphen S (2003) Building the checkers 10-piece
endgame databases. In: van den Herik HJ, Iida
H, Heinz EA (eds) Advances in computer games,
vol 10. Springer, Graz, pp 193–210.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L,
van den Driessche G, Schrittwieser J, Antonoglou I,
Panneershelvam V, Lanctot M, Dieleman S, Grewe
D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap
T, Leach M, Kavukcuoglu K, Graepel T, Hass-
abis D (2016) Mastering the game of Go with
deep neural networks and tree search. Nature. 529:
484–489.

Southey F, Xiao G, Holte RC, Trommelen M,
Buchanan JW (2005) Semi-automated gameplay
analysis by machine learning. In: Young RM, Laird
JE (eds) Proceedings of the 1st artificial intelli-
gence and interactive digital entertainment confer-
ence (AIIDE-05). AAAI Press, Marina del Rey,
pp 123–128

Spronck P, Ponsen MJV, Sprinkhuizen-Kuyper IG,
Postma EO (2006) Adaptive game AI with dynamic
scripting. Mach Learn 63(3):217–248.

Machine Learning for IT Security

Philip K. Chan
Florida Institute of Technology, Melbourne, FL,
USA

Definition

The prevalence of information technology (IT)
across all segments of society, greatly improves
the accessibility of information, however, it also
provides more opportunities for individuals to
act with malicious intent. Intrusion detection is
the task of identifying attacks against computer
systems and networks. Based on data/behavior
observed in the past, machine learning methods
can automate the process of building detectors for
identifying malicious activities.

Motivation and Background

Cyber security often focuses on preventing at-
tacks using authentication, filtering, and encryp-
tion techniques, but another important facet is
detecting attacks once the preventive measures
are breached. Consider a bank vault: thick steel
doors prevent intrusions, while motion and heat
sensors detect intrusions. Prevention and detec-
tion complement each other to provide a more
secure environment.

How do we know if an attack has occurred or
has been attempted? This requires analyzing huge
volumes of data gathered from the network, host,
or file systems to find suspicious activities. Two
general approaches exist for this problem: misuse
detection (also known as signature detection),
where we look for patterns signaling well-known
attacks, and � anomaly detection, where we look
for deviations from normal behavior.

Misuse detection usually works reliably on
known attacks (though false alarms and missed
detections are not uncommon), but has the obvi-
ous disadvantage of not being capable of detect-
ing new attacks. Though anomaly detection can
detect novel attacks, it has the drawback of not

http://dx.doi.org/10.1007/978-1-4899-7687-1_912

Machine Learning for IT Security 789

M

being capable of discerning intent; it can only sig-
nal that some event is unusual, but not necessarily
hostile, thus generating false alarms. A desirable
system would employ both approaches. Misuse
detection methods are more well understood and
widely applied; however, anomaly detection is
much less understood and more challenging.

Can we automate the process of building soft-
ware for misuse and anomaly detection? Machine
learning techniques hold promise in efficiently
analyzing large amounts of recent activities, iden-
tifying patterns, and building detectors.

Besides computer attacks, spam email mes-
sages, though not intended to damage computer
systems or data, are annoying and waste system
resources. To construct spam detectors from large
amounts of email messages, machine learning
techniques have been used (see “References” and
“Recommended Reading” for more).

Structure of Learning System

Machine learning can be used to construct models
for misuse as well as anomaly detection.

Misuse Detection
For misuse detection, the machine learning goal
is to identify characteristics of known attacks.
One approach is to learn the difference between
attacks and normal events, which can be casted
as a classification problem. Given examples of
labeled attacks and normal events, a learning
algorithm constructs a model that differentiates
attacks from normal events.

Lee et al. (1999) apply machine learning to
detect attacks in computer networks. They first
identify frequent episodes, associations of fea-
tures that frequently appear within a time frame,
in attack and normal data separately. Frequent
episodes that only appear in attack data help
construct features for the models. For example,
if the SYN flag is set for a http connection is a
frequent episode within 2 s and the episode only
appears in the attack data, a feature is constructed
for the number of http connections with the SYN
flag set within a period of 2 s. Using RIPPER and
based on different sets of features, they construct

three models: traffic, host-based traffic, and con-
tent models. The three models are then combined
using meta-learning.

Ghosh and Schwartzbard (1999) use neural
networks to identify attacks in operating systems.
Based on system calls in the execution traces of
normal and attack programs, they first identify a
number of “examplar” sequences of system calls.
For each system call sequence, they calculate
the distance from the examplar sequences. The
number of input nodes for the neural network
is equal to the number of examplars and values
for the input nodes are distances from those
examplar sequences. The value for the output
node is whether the system call sequence is from
an attack or normal program.

Anomaly Detection
For anomaly detection, the machine learning goal
is to characterize normal behavior. The learned
models of normal behavior are then used to iden-
tify events that are anomalies, events that devi-
ate from the models. Since anomalies are not
always attacks, to reduce false alarms, the learned
models usually provide a scoring mechanism to
indicate the degree of anomaly.

Warrender et al. (1999) identify anomalies in
system calls in the operating systems. The model
is a table of system call sequences from execution
traces of normal programs. During detection, a
sequence that is not in the table or occurs less
than 0.001 % in the training data is considered
a mismatch. The number of mismatches within
a locality frame of 20 sequences is the anomaly
score.

Mahoney and Chan (2003) introduce the
LERAD algorithm for learning rules that
identify anomalies in network traffic. LERAD
first uses a randomized algorithm to generate
candidate rules that represent associations. It
then finds a set of high quality rules that can
succinctly cover the training data. Each rule
has an associated probability of violating the
rule. During detection, based on the probability,
LERAD provides a score for anomalous events
that do not conform to the rules in the learned
model.

790 Manhattan Distance

Misuse Detection: Schultz et al. (2001) with
program executables, Maxion and Townsend
(2002) with user commands.

Anomaly Detection: Sekar et al. (2001) with
program execution, Apap et al. (2002) with Win-
dows Registry, Anderson et al. (1995) with sys-
tem resources, Lane and Brodley (1999) with user
commands.

Spam detection: Bratko et al. (2006) with text,
Fumera et al. (2006) with text and embedded
images.

Cross-References

�Anomaly Detection
�Association Rule
�Classification

Recommended Reading

Anderson D, Lunt T, Javitz H, Tamaru A, Valdes A
(1995) Detecting unusual program behavior using
the statistical component of the next-generation in-
trusion detection expert system (NIDES). Technical
report SRI-CSL-95-06, SRI

Apap F, Honig A, Hershkop S, Eskin E, Stolfo S (2002)
Detecting malicious software by monitoring anoma-
lous windows registry accesses. In: Proceeding of
fifth international symposium on recent advances in
intrusion detection (RAID), Zurich, pp 16–18

Bratko A, Filipic B, Cormack G, Lynam T, Zupan B
(2006) Spam filtering using statistical data compres-
sion models. J Mach Learn Res 7:2673–2698

Fumera G, Pillai I, Roli F (2006) Spam filtering based
on the analysis of text information embedded into
images. J Mach Learn Res 7:2699–2720

Ghosh A, Schwartzbard A (1999) A study in using
neural networks for anomaly and misuse detection.
In: Proceeding of 8th USENIX security symposium,
Washington, DC, pp 141–151

Lane T, Brodley C (1999) Temporal sequence learning
and data reduction for anomaly detection. ACM
Trans Inf Syst Secur 2(3):295–331

Lee W, Stolfo S, Mok K (1999) A data mining
framework for building intrusion detection mod-
els. In: IEEE symposium on security and privacy,
pp 120–132

Mahoney M, Chan P (2003) Learning rules for
anomaly detection of hostile network traffic. In:
Proceeding of IEEE international conference data
mining, Melbourne, pp 601–604

Maxion R, Townsend T (2002) Masquerade detection
using truncated command lines. In: Proceeding of
international conference dependable systems and
networks (DSN), Washington, DC, pp 219–228

Schultz M, Eskin E, Zadok E, Stolfo S (2001) Data
mining methods for detection of new malicious
executables. In: Proceeding of IEEE symposium
security and privacy, Oakland, pp 38–49

Sekar R, Bendre M, Dhurjati D, Bollinen P (2001)
A fast automaton-based method for detecting
anomalous program behaviors. In: Proceeding of
IEEE symposium security and privacy, Oakland,
pp 144–155

Warrender C, Forrest S, Pearlmutter B (1999) Detect-
ing intrusions using system calls: alternative data
models. In: IEEE symposium on security and pri-
vacy, Los Alamitos, pp 133–145

Manhattan Distance

Susan Craw
Robert Gordon University, Aberdeen, UK

Synonyms

City block distance; L1-distance; 1-norm dis-
tance; Taxicab norm distance

Definition

The Manhattan distance between two points x D
.x1; x2; : : : xn/ and y D .y1; y2; : : : yn/ in n-
dimensional space is the sum of the distances in
each dimension:

d.x; y/ D

nX
iD1

j xi � yi j

It is called the Manhattan distance because it
is the distance a car would drive in a city (e.g.,
Manhattan) where the buildings are laid out in
square blocks and the straight streets intersect at
right angles. This explains the other terms city
block and taxicab distances. The terms L1 and 1-
norm distances are the mathematical descriptions
of this distance.

http://dx.doi.org/10.1007/978-1-4899-7687-1_912
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_100054
http://dx.doi.org/10.1007/978-1-4899-7687-1_100239
http://dx.doi.org/10.1007/978-1-4899-7687-1_100001
http://dx.doi.org/10.1007/978-1-4899-7687-1_100465

Markov Chain Monte Carlo 791

M

Cross-References

�Case-Based Reasoning
�Nearest Neighbor

Margin

Definition

In a �Support Vector Machine, a margin is the
distance between a hyperplane and the closest
example.

Cross-References

� Support Vector Machines

Market Basket Analysis

�Basket Analysis

Markov Chain

�Markov Process

Markov Chain Monte Carlo

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Synonyms

MCMC

Definition

A Markov Chain Monte Carlo (MCMC)
algorithm is a method for sequential sampling
in which each new sample is drawn from the

neighborhood of its predecessor. This sequence
forms a �Markov chain, since the transition
probabilities between sample values are only
dependent on the last sample value. MCMC
algorithms are well suited to sampling in high-
dimensional spaces.

Motivation

Sampling from a probability density function
is necessary in many kinds of approximation,
including Bayesian inference and other applica-
tions in Machine Learning. However, sampling is
not always easy, especially in high-dimensional
spaces. Mackay (2003) gives a simple example to
illustrate the problem. Suppose we want to find
the average concentration of plankton in a lake,
whose profile looks like this:

If we do not know the depth profile of the lake,
how would we know where to sample from? If we
take a boat out, would we have to sample almost
exhaustively by fixing a grid on the surface of
the lake and sinking our instrument progressively
deeper, sampling at fixed intervals until we hit the
bottom? This would be prohibitively expensive
and if we had a similar problem, but with more
dimensions, the problem becomes intractable. If
we try to simplify the problem by drawing a
random sample, how do we ensure that enough
samples are taken from the canyons in the lake
and not just the shallows, which account for most
of the surface area?

The Algorithm

The general approach adopted in MCMC algo-
rithms is as follows. We start sampling in some
random initial state, represented by vector, x. At

http://dx.doi.org/10.1007/978-1-4899-7687-1_34
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_516
http://dx.doi.org/10.1007/978-1-4899-7687-1_100292
http://dx.doi.org/10.1007/978-1-4899-7687-1_100285

792 Markov Chain Monte Carlo

each state, we can evaluate the probability den-
sity function, P.x/. We then choose a candidate
next state, x0, near the current state and evaluate
P.x0/. Comparing the two, we decide whether
to accept or reject the candidate. If we accept it,
the candidate becomes the new current state and
the process repeats for a fixed number of steps or
until some convergence criterion is satisfied.

The Metropolis Algorithm

There are several variants of the general algo-
rithm presented above. Each variant must specify
how a candidate state is proposed and what crite-
rion should be used to accept or reject the can-
didate. The Metropolis algorithm assumes that
the next candidate is drawn from a symmetric
distribution, Q.x/, centered on the current state,
for example, a Gaussian distribution (Metropolis
et al. 1953; Metropolis and Ulam 1949). This dis-
tribution is called the proposal distribution. The
Metropolis algorithm is shown in Algorithm 1.

To decide if a candidate should be accepted or
rejected, the algorithm calculates,

˛ D
P.x0/

P.xi /

where xi is the current state and x0 is the candi-
date state. If ˛ > 1, the candidate is immediately
accepted. If ˛ < 1, then a stochastic choice

Algorithm 1 The Metropolis Algorithm
Given: target probability density function P.x/

a proposal distribution, Q, e.g., a Gaussian
the number of iterations, N

Output: a set of samples fxi g drawn from P.x/
Randomly select initial state vector, x0

for i D 0 to N � 1
create a new candidate x0 D xi C �x,

where �x is randomly chosen from Q.�x/

set ˛ D P.x0/

P.xi /

if ˛ � 1 or with probability ˛
accept the new candidate and set xiC1 D x0

else
reject the candidate and set xiC1 D xi

is made with the candidate being accepted with
probability ˛, otherwise, it is rejected.

Hastings (1970) introduced a variant, the
Metropolis–Hastings algorithm, which allows
the proposal distribution to be asymmetric. In
this case, the accept/reject calculation is:

˛ D
P.x0/Q.xi I x

0/

P.xi /Q.x0I xi /

Burn-In and Convergence

It can be difficult to decide how many iterations
are needed before an MCMC algorithm achieves
a stable distribution. Several factors affect the
length of the Markov chain needed. Depending
on the start state, many of the initial samples
may have to be discarded, called burn-in, as
illustrated below. The ellipses represent contours
of the distribution.

The variance of the proposal distribution can
also affect the chain length. If the variance is
large, the jumps are large, meaning that there is
varied sampling. However, this is also likely to
mean that fewer samples are accepted. Narrowing
the variance should increase acceptance but may
require a long chain to ensure wide sampling,
which is particularly necessary if the distribution
has several peaks. See Andrieu et al. (2003) for
a discussion of methods for improving conver-
gence times.

Markov Decision Processes 793

M

Gibbs Sampling

An application of MCMC is inference in a
�Bayesian network, also known as �Graphical
Models. Here, we sample from evidence
variables to find a probability for non-evidence
variables. That is, we want to know what
unknowns we can derive from the knowns and
with what probability. Combining the evidence
across a large network is intractable because
we have to take into account all possible
interactions of all variables, subject to the
dependencies expressed in the network. Since
there are too many combinations to compute in
a large network, we approximate the solution
by sampling. The Gibbs sampler is a special
case of the Metropolis–Hastings algorithm that
is well suited to sampling from distributions
over two or more dimensions. It proceeds
as in Algorithm 1, except that when a new
candidate is generated, only one dimension is
allowed to change while all the others are held
constant. Suppose we have n dimensions and
x D .x1; : : : ; xn/. One complete pass consists
of jumping in one dimension, conditioned on the
values for all the other dimensions, then jumping
in the next dimension, and so on. That is, we
initialise x to some value, and then for each xi

we resample P.xi jxj D6i / for j in 1. . . n. The
resulting candidate is immediately accepted. We
then iterate, as in the usual Metropolis algorithm.

Cross-References

�Bayesian Network
�Graphical Models
�Learning Graphical Models
�Markov Chain

Recommended Reading

MCMC is well covered in several text books.
Mackay (2003) gives a thorough and readable
introduction to MCMC and Gibbs Sampling.
Russell and Norvig (2009) explain MCMC in the
context of approximate inference for Bayesian

networks. Hastie et al. (2009) also give a more
technical account of sampling from the posterior.
Andrieu et al. (2003) Machine Learning paper
gives a thorough introduction to MCMC for
Machine Learning. There are also some excellent
tutorials on the web including Walsh (2004) and
Iain Murray’s video tutorial (Murray 2009) for
machine learning summer school.

Andrieu C, DeFreitas N, Doucet A, Jordan MI (2003)
An introduction to MCMC for machine learning.
Mach Learn 50(1):5–43

Hastie T, Tibshirani R, Friedman J (2009) The ele-
ments of statistical learning: data mining, inference
and perception, 2nd edn. Springer, New York

Hastings WK (1970) Monte Carlo sampling meth-
ods using Markov chains and their applications.
Biometrika 57:97–109

Mackay DJC (2003) Information theory, inference and
learning algorithms. Cambridge University Press,
Cambridge

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller
A, Teller H (1953) Equations of state calculations
by fast computing machines. J Chem Phys 21:1087–
1091

Metropolis N, Ulam S (1949) The Monte Carlo
method. J Am Stat Assoc 44(247):335–341

Murray I (2009) Markov chain Monte Carlo. http://
videolectures.net/mlss09uk murray mcmc/.
Retrieved 25 July 2010

Russell S, Norvig P (2009) Artificial intelligence: a
modern approach, 3rd edn. Prentice Hall, Engle-
wood Cliffs

Walsh B (2004) Markov chain Monte Carlo and Gibbs
sampling. http://nitro.biosci.arizona.edu/courses/
EEB581-2004/handouts/Gibbs. Retrieved 25 July
2010

Markov Decision Processes

William Uther
NICTA and The University of New South Wales,
Sydney, NSW, Australia

Synonyms

Policy search

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_100285
http://videolectures.net/mlss09uk_murray_mcmc/
http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Gibbs
http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Gibbs
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364

794 Markov Decision Processes

Definition

A Markov Decision Process (MDP) is a discrete,
stochastic, and generally finite model of a system
to which some external control can be applied.
Originally developed in the Operations Research
and Statistics communities, MDPs, and their ex-
tension to �Partially Observable Markov Deci-
sion Processes (POMDPs), are now commonly
used in the study of � reinforcement learning in
the Artificial Intelligence and Robotics commu-
nities (Bellman 1957; Bertsekas and Tsitsiklis
1996; Howard 1960; Puterman 1994). When used
for reinforcement learning, firstly the parameters
of an MDP are learned from data, and then the
MDP is processed to choose a behavior.

Formally, an MDP is defined as a tuple: <

S;A; T; R >, where S is a discrete set of states,
A is a discrete set of actions, T W S � A !
.S ! R/ is a stochastic transition function, and
R W S � A ! R specifies the expected reward
received for performing the given action in each
state.

An MDP carries the Markov label because
both the transition function, T , and the reward
function, R, are Markovian; i.e., they are de-
pendent only upon the current state and action,
not previous states and actions. To be a valid
transition function, the distribution over the re-
sulting states, S ! R, must be a valid probability
distribution, i.e., non-negative and totalling 1.
Furthermore, the expected rewards must be finite.

The usual reason for specifying an MDP is to
find the optimal set of actions, or policy, to per-
form. We formalize the optimality criteria below.
Let us first consider how to represent a policy. In
its most general form the action, a 2 A, indicated
by a policy, � , might depend upon the entire his-
tory of the agent; � W .S �A/� �S!A. How-
ever, for each of the common optimality criteria
considered below a Markov policy, S ! A, will
be sufficient. i.e., for every MDP, for each of the
optimality criteria below, there exists a Markov
policy that performs as well as the best full policy.
Similarly, there is no requirement for an MDP
that a policy be stochastic or mixed.

Optimality Criteria
Informally, one wants to choose a policy so as
to maximise the long term sum of immediate
rewards. Unfortunately the naive sum,

P1
tD0 rt

where rt is the expected immediate reward re-
ceived at time t , usually diverges. There are
different optimality criteria that can than be used
as alternatives.

Finite Horizon
The easiest way to make sure that the sum of
future expected rewards is bounded is to only
consider a fixed, finite time into the future; i.e.,
find a policy that maximises

Pn
tD0 rt for each

state.

Infinite Horizon Discounted
Rather than limiting the distance we look into the
future, another approach is to discount rewards
we will receive in the future by a multiplicative
factor, � , for each time-step. This can be justified
as an inflation rate, as an otherwise unmodelled
probability that the simulation ends each time-
step, or simply as a mathematical trick to make
the criteria converge. Formally we want a policy
that maximises

P1
tD0 � t rt for each state.

Average Reward
Unfortunately, the infinite horizon discounted
optimality criterion adds another parameter to
our model: the discount factor. Another approach
is to optimize the average reward per time-step,
or gain, by finding a policy that maximizes
limn!1

1
n

Pn
tD0 rt for each state. This is very

similar to using sensitive discount optimality;
finding a policy that maximizes the infinite
horizon discounted reward as the discount factor
approaches 1, lim�!1

P1
tD0 � t rt , for each state.

When maximizing average reward, any finite
deviation from the optimal policy will have neg-
ligible effect on the average over an infinite
timeframe. This can make the agent “lazy.” To
counteract this, often a series of increasingly
strict optimality criteria are used. The first is the
“gain” optimality criterion given above – opti-
mizing the long term average reward. The next is
a “bias” optimality which selects from among all

http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Markov Decision Processes 795

M

gain optimal policies the ones that also optimize
transient initial rewards.

Value Determination
For the finite horizon, infinite horizon discounted,
or bias optimality criteria, the optimality criteria
can be calculated for each state, or for each state-
action pair, giving a value function. Once found,
the value function can then be used to find an
optimal policy.

Bellman Equations
The standard approach to finding the value func-
tion for a policy over an MDP is a dynamic
programming approach using a recursive formu-
lation of the optimality criteria. That recursive
formulation is known as the Bellman equation.

There are two, closely related, common forms
for a value function; the state value function,
V W S ! R and the state-action value function,
Q W S � A ! R. For a finite horizon undis-
counted optimality criterion with time horizon n

and policy � :

Q�
n .s; a/ D

nX
tD0

rt

D R.s; a/C Es02T .s;a/V
�

n�1.s0/

D R.s; a/C
X
s02S

T .s; a/.s0/V �
n�1.s0/

V �
n .s/ D Q�

n .s; �.s//

For the infinite horizon discounted case:

Q�.s; a/ D R.s; a/C �
X
s02S

T .s; a/.s0/V �.s0/

V �.s/ D Q�.s; �.s//

These equations can be turned into a method
for finding the value function by replacing the
equality with an assignment:

Q�.s; a/ R.s; a/

C �
X
s02S

T .s; a/.s0/Q�.s0; �.s0//

As long as this update rule is followed infinitely
often for each state/action pair, the Q-function
will converge.

Prioritised sweeping: Rather than blindly
updating each state/action, intelligent choice
of where to update will significantly speed
convergence. One technique for this is called
Prioritized Sweeping (Moore 1993; Andre et al.
1997).

A priority queue of states is kept. Initially
one complete pass of updates over all states is
performed, but thereafter states are updated in
the order they are pulled from the priority queue.
Any time the value of a state, V �.s/, changes, the
priorities of all states, s0, that can reach state s are
updated; we update fs0jT .s0; �.s0//.s/ ¤ 0g. The
priorities are increased by the absolute change in
V �.s/.

The effect of the priority queue is to focus
computation where values are changing rapidly.

Linear Programming Solutions
Rather than using the Bellman equation and dy-
namic programming, an alternative approach is to
set up a collection of inequalities and use linear
programming to find an optimal value function.
In particular if we minimize,

X
s2S

V �.s/

subject to the constraints

8s2S0 � V �.s/ � ŒR.s; a/

C �
X
s02S

T .s; a/.s0/V �.s0/�;

then the resulting V � accurately estimates the
expected sum of discounted reward.

Bellman Error Minimization
A third approach to value determination is simi-
lar to the dynamic programming solution above.
Rather than replacing the equality in the Bellman
equation with an assignment, it turns the equation
into an error function and adjusts the Q function
to minimise the sum of squared Bellman residuals

796 Markov Decision Processes

(Baird 1995):

Residual.s/ D Q�.s; a/ � ŒR.s; a/

C �
X
s02S

T .s; a/.s0/Q�.s0; �.s0//� Err

D
X
s2S

Residual.s/2

Control Methods
The previous section gave us a way to obtain a
value function for a particular policy, but what we
usually need is a good policy, not a value function
for the policy we already have. For an optimal
policy, for each state:

�.s/ D argmaxa2AQ�.s; a/

If a policy, � , is not optimal then its value
function can be used to find a better policy, � 0. It
is common to use the greedy policy for the value
function:

� 0.s/ argmaxa2AQ�.s; a/

This process can be used iteratively to find the
optimal policy.

Policy iteration: Policy iteration alternates be-
tween value determination and greedy policy up-
dating steps until convergence is achieved. The
algorithm starts with a policy, �1. The value
function is calculated for that policy, V �1. A new
policy is then found from that value function,
�2. This alternation between finding the optimal
value function for a given policy and then im-
proving the policy continues until convergence.
At convergence the policy is optimal.

Value iteration: Rather than explicitly updat-
ing the policy, value iteration works directly with
the value function. We define an update,

Q.s; a/ R.s; a/

C �
X
s02S

T .s; a/.s0/ max
a02A

Q.s0; a0/;

with a maximization step included. As long as
this update is performed often enough in each

state, Q will converge. Once Q has converged,
the greedy policy will be optimal.

Mixed policy iteration: The two previous
methods, policy and value iteration, are two
extremes of a spectrum. In practice updates
to the policy and value function can occur
asynchronously as long as the value and policy in
each state are updated often enough.

Representations
In the above discussion we have discussed a
number of functions, but not discussed how these
functions are represented. The default represen-
tation is an array or tabular form which has
no constraints on the function it can represent.
However, the � curse of dimensionality suggests
that the number of states will, in general, be
exponential in the problem size. This can make
even a single complete iteration over the state
space intractable. One solution is to represent the
functions in a more compact form so that they can
be updated efficiently. This approach is known
as function approximation. Here we review some
common techniques.

A class of representations is chosen to rep-
resent the functions we need to process: e.g.,
the transition, T , reward, R, Value, V or Q,
and/or policy, � , functions. A particular function
is selected from the chosen class by a parameter
vector, � .

There are two important questions that must be
answered by any scheme using function approxi-
mation; does the resulting algorithm converge to
a solution, and does the resulting solution bear
any useful relationship with the optimal solution?

A simple approach when using a differentiable
function to represent the value function is to use
a form of � temporal difference learning. For a
given state, s, and action, a, the Bellman equation
is used to calculate a new value, Qnew.s; a/, and
then � is updated to move the value function
toward this new value. This gradient based ap-
proach usually has a learning rate, ˛ 2 [0, 1], to
adjust the speed of learning.

Qnew.s; a/ R.s; a/C �
X
s02S

T .s; a/.s0/V old.s0/

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

Markov Decision Processes 797

M

Δs;a�D˛
@Q

@�
.Qnew.s; a/�Q01d.s; a//

This approach is known not to converge in
general, although it does converge in some spe-
cial cases. A similar approach with full Bellman
Error minimization will not oscillate, but it may
cause the � to diverge even as the Bellman
residual converges.

Contraction mappings: The first class of func-
tion approximators that was shown to converge
with the above update, apart from a complete tab-
ular representation, was the class of contraction
mappings (Gordon 1995). Simply put, these are
function approximation classes where changing
one value by a certain amount changes every
other value in the approximator by no more than
that amount. For example, linear interpolation
and tile coding (Tile codings are also known
as Cerebellar Motor Action Controllers (CMAC)
in early work Albus 1981) are each contraction
mappings whereas linear extrapolation is not.

Formally, let S be a vector space with max
norm jj:jj1. A function f is a contraction map-
ping if,

8a; b 2 S; kf .a/ � f .b/k1 < ka � bk1

The class of function approximations that form
contraction mappings includes a number of
common approximation techniques including
tile coding. Tile coding represents a function as a
linear combination of basis functions, �.s; a/,

OQ.s; a/ D � �'.s; a/;

where the individual elements of ' are binary
features on the underlying state.

Linear approximations: The linear combina-
tion of basis functions can be extended beyond bi-
nary features. This will converge when temporal
differencing updates are performed in trajectories
through the state space following the policy being
evaluated (Tsitsiklis and Van Roy 1997).

Variable resolution techniques: One technique
for representing value functions over large state
spaces is use a non-parametric representation.
Munos gives a technique that introduces more

basis functions for their approximation over time
as needed (Munos and Moore 2001).

Dynamic Bayesian networks: Bayesian Net-
works are an efficient representation of a factored
probability distribution. Dynamic Bayesian Net-
works use the Bayesian Network formalism to
represent the transition function, T , in an MDP
(Guestrin et al. 2003). The reward and value
functions are usually represented with linear ap-
proximations. The policy is usually represented
implicitly by the value function.

Decision diagrams: Arithmetic Decision Dia-
grams (ADDs) are a compact way of representing
functions from a factored discrete domain to a
real range. ADDs can also be efficiently manip-
ulated, with operators for the addition and multi-
plication of ADDs as well as taking the maximum
of two ADDs. As the Bellman equation can be
re-written using operators, it is possible to im-
plement mixed policy iteration using this efficient
representation St-Aubin et al. (2000).

Hierarchical representations: �Hierarchical
Reinforcement Learning factors out common
substructure in the functions that represent an
MDP in order to solve it efficiently. This has been
done in many different ways. Dietterich’s MAXQ
hierarchy allowed a prespecified hierarchy to
re-use common elements in a value function
(Dietterich 2000). Sutton’s Options framework
focussed on temporal abstraction and re-
use of policy elements (Sutton et al. 1998).
Moore’s Airports hierarchy allowed automatic
decomposition of a problem where the specific
goal could change over time, and so was made
part of the state (Moore et al. 1999). Andre’s A-
Lisp system takes the hierarchical representation
to an extreme by building in a Turing complete
programming language (Andre and Russell
2002).

Greedy Algorithms Versus Search

In the previous sections the control problem was
solved using a greedy policy for a value func-
tion. If the value function was approximate, then
the resulting policy may be less than optimal.
Another approach to improving the policy is

http://dx.doi.org/10.1007/978-1-4899-7687-1_363

798 Markov Model

to introduce search during execution. Given the
current state, the agent conducts a forward search
looking for the sequence of actions that produces
the best intermediate reward and resulting state
value combination.

These searches can be divided into two broad
categories: deterministic and stochastic searches.
Deterministic searches, such as LAO� (Hansen
and Zilberstein 1998), expand through the state
space using the supplied model of the MDP. In
contrast stochastic, or Monte-Carlo, approaches
sample trajectories from the model and use
statistics gathered from those samples to choose
a policy (Kocsis and Szepesvári 2006).

Cross-References

�Bayesian Network
�Curse of Dimensionality
�Markov Chain Monte Carlo
� Partially Observable Markov Decision

Processes
�Reinforcement Learning
�Temporal Difference Learning

Recommended Reading

Albus JS (1981) Brains, behavior, and robotics. BYTE,
Peterborough. ISBN:0070009759

Andre D, Friedman N, Parr R (1997) Generalized
prioritized sweeping. In: Neural and information
processing systems, Denver, pp 1001–1007

Andre D, Russell SJ (2002) State abstraction for pro-
grammable reinforcement learning agents. In: Pro-
ceedings of the eighteenth national conference on
artificial intelligence (AAAI), Edmonton

Baird LC (1995) Residual algorithms: reinforcement
learning with function approximation. In: Prieditis
A, Russell S (eds) Machine learning: proceedings
of the twelfth international conference (ICML95).
Morgan Kaufmann, San Mateo, pp 30–37

Bellman RE (1957) Dynamic programming. Princeton
University Press, Princeton

Bertsekas DP, Tsitsiklis J (1996) Neuro-dynamic pro-
gramming. Athena Scientific, Belmont

Dietterich TG (2000) Hierarchical reinforcement
learning with the MAXQ value function decompo-
sition. J Artif Intell Res 13:227–303

Gordon GJ (1995) Stable function approximation in
dynamic programming (Technical report CMU-CS-
95-103). School of Computer Science, Carnegie
Mellon University

Guestrin C et al (2003) Efficient solution algorithms
for factored MDPs. J Artif Intell Res 19:399–468

Hansen EA, Zilberstein S (1998) Heuristic search
in cyclic AND/OR graphs. In: Proceedings of
the fifteenth national conference on artificial
intelligence. http://rbr.cs.umass.edu/shlomo/papers/
HZaaai98.html

Howard RA (1960) Dynamic programming and
Markov processes. MIT Press, Cambridge

Kocsis L, Szepesvári C (2006) Bandit based Monte-
Carlo planning. In: European conference on ma-
chine learning (ECML), Berlin. Lecture notes in
computer science, vol 4212. Springer, pp 282–293

Moore AW, Atkeson CG (1993) Prioritized sweeping:
reinforcement learning with less data and less real
time. Mach Learn 13:103–130

Moore AW, Baird L, Pack Kaelbling L (1999) Multi-
value-functions: efficient automatic action hierar-
chies for multiple goal MDPs. In: International
joint conference on artificial intelligence (IJCAI99),
Stockholm

Munos R, Moore AW (2001) Variable resolution dis-
cretization in optimal control. Mach Learn 1:1–31

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. Wiley series
in probability and mathematical statistics. Applied
probability and statistics section. Wiley, New York.
ISBN:0-471-61977-9

St-Aubin R, Hoey J, Boutilier C (2000) APRICODD:
approximate policy construction using decision dia-
grams. In: NIPS-2000, Denver

Sutton RS, Precup D, Singh S (1998) Intra-option
learning about temporally abstract actions. In: Ma-
chine learning: proceedings of the fifteenth inter-
national conference (ICML98). Morgan Kaufmann,
Madison, pp 556–564

Tsitsiklis JN, Van Roy B (1997) An analysis of
temporal-difference learning with function approxi-
mation. IEEE Trans Autom Control 42(5):674–690

Markov Model

�Markov Process

Markov Net

�Markov Network

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://rbr.cs.umass.edu/shlomo/papers/HZaaai98.html
http://rbr.cs.umass.edu/shlomo/papers/HZaaai98.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_516
http://dx.doi.org/10.1007/978-1-4899-7687-1_515

Maximally Specific Hypothesis 799

M

Markov Network

Synonyms

Markov net; Markov random field

Definition

A Markov network is a form of undirected
� graphical model for representing multivariate
probability distributions.

Cross-References

�Graphical Models

Markov Process

Synonyms

Markov chain; Markov model
A stochastic process in which the conditional
probability distribution of future states of the
process, given the present state and all past states,
depends only upon the present state. A process
with this property may be called Markovian.
The best known Markovian processes are Markov
chains, also known as Markov Models, which are
discrete-time series of states with transition prob-
abilities. Markov chains are named after Andrey
Markov (1865–1922), who introduced several
significant new notions to the concept of stochas-
tic processes. Brownian motion is another well-
known phenomenon that, to close approximation,
is a Markov process.

Recommended Reading

Meyn SP, Tweedie RL (1993) Markov chains and
stochastic stability. Springer, London

Markov Random Field

�Markov Network

Markovian Decision Rule

Synonyms

Randomized decision rule

Definition

In a �Markov decision process, a decision rule,
dt , determines what action to take, based on the
history to date at a given decision epoch and for
any possible state. It is deterministic if it selects a
single member of A.s/ with probability 1 for each
s 2 S and for a given ht , and it is randomized if
it selects a member of A.s/ at random with prob-
ability qdt .ht /.a/. It is Markovian if it depends on
ht only through st . That is, dt .ht / D dt .st /.

Maxent Models

�Maximum Entropy Models for Natural Lan-
guage Processing

Maximally General Hypothesis

�Most General Hypothesis

Maximally Specific Hypothesis

�Most Specific Hypothesis

http://dx.doi.org/10.1007/978-1-4899-7687-1_100287
http://dx.doi.org/10.1007/978-1-4899-7687-1_100288
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_100285
http://dx.doi.org/10.1007/978-1-4899-7687-1_100286
http://dx.doi.org/10.1007/978-1-4899-7687-1_515
http://dx.doi.org/10.1007/978-1-4899-7687-1_100393
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_525
http://dx.doi.org/10.1007/978-1-4899-7687-1_560
http://dx.doi.org/10.1007/978-1-4899-7687-1_562

800 Maximum Entropy Models for Natural Language Processing

Maximum Entropy Models for
Natural Language Processing

Adwait Ratnaparkhi
Yahoo!, Sunnyvale, CA, USA

Abstract

This chapter provides an overview of the max-
imum entropy framework and its application
to a problem in natural language processing.
The framework provides a way to combine
many pieces of evidence from an annotated
training set into a single probability model.
The framework has been applied to many
tasks in natural language processing, including
part-of-speech tagging. This chapter covers
the maximum entropy formulation, its rela-
tionship to maximum likelihood, a parameter
estimation method, and the details of the part-
of-speech tagging application.

Synonyms

Maxent models; Log-linear models; Statistical
natural language processing

Definition

The term maximum entropy refers to an opti-
mization framework in which the goal is to find
the probability model that maximizes entropy
over the set of models that are consistent with the
observed evidence.

The information-theoretic notion of entropy is
a way to quantify the uncertainty of a probability
model; higher entropy corresponds to more un-
certainty in the probability distribution. The ra-
tionale for choosing the maximum entropy model
– from the set of models that meet the evidence –
is that any other model assumes evidence that has
not been observed (Jaynes 1957).

In most natural language processing prob-
lems, observed evidence takes the form of co-

occurrence counts between some prediction of
interest and some linguistic context of interest.
These counts are derived from a large number
of linguistically annotated examples, known as
a corpus. For example, the frequency in a large
corpus with which the word that co-occurs with
the tag corresponding to determiner, or DET, is a
piece of observed evidence. A probability model
is consistent with the observed evidence if its
calculated estimates of the co-occurrence counts
agree with the observed counts in the corpus.

The goal of the maximum entropy frame-
work is to find a model that is consistent with
the co-occurrence counts, but is otherwise max-
imally uncertain. It provides a way to combine
many pieces of evidence into a single probability
model. An iterative parameter estimation proce-
dure is usually necessary in order to find the
maximum entropy probability model.

Motivation and Background

The early 1990s saw a resurgence in the use of
statistical methods for natural language process-
ing (Church and Mercer 1993). In particular, the
IBM TJ Watson Research Center was a prominent
advocate in this field for statistical methods such
as the maximum entropy framework. Language
modeling for speech recognition (Lau et al. 1993)
and machine translation (Berger et al. 1996) were
among the early applications of this framework.

Structure of Learning System

The goal of a typical natural language processing
application is to automatically produce linguis-
tically motivated categories or structures over
freely occurring text. In statistically based ap-
proaches, it is convenient to produce the cate-
gories with a conditional probability model p

such that p.ajb/ is the probability of seeing a
prediction of interest a (e.g., a part-of-speech tag)
given a linguistic context of interest b (e.g., a
word).

The maximum entropy framework discussed
here follows the machine learning approach to

http://dx.doi.org/10.1007/978-1-4899-7687-1_100289
http://dx.doi.org/10.1007/978-1-4899-7687-1_100278
http://dx.doi.org/10.1007/978-1-4899-7687-1_100446

Maximum Entropy Models for Natural Language Processing 801

M

NLP, which assumes the existence of a large
corpus of linguistically annotated examples. This
annotated corpus is used to create a training set,
which in turn is used to estimate the probability
model p.

Representing Evidence
Evidence for the maximum entropy model is
derived from the training set. The training set is
a list of (prediction, linguistic context) pairs that
are generated from the annotated data. However,
in practice, we do not record the entire lin-
guistic context. Instead, linguistically motivated
Boolean-valued questions reduce the entire lin-
guistic context to a vector of question identifiers.
Therefore, each training sample looks like:

Prediction Question vector
a q1 : : : qn

where a is the prediction and where q1 : : : qn is
a vector of questions that answered true for the
linguistic context corresponding to this training
sample. The questions must be designed by the
experimenter in advance, and are specifically de-
signed for the annotated data and the problem
space.

In the framework discussed here, any piece of
evidence is represented with a feature. A feature
correlates a prediction a with an aspect of a
linguistic context b, captured by some question:

fj .a; b/ D

�
1 if a D x and q.b/ Dtrue
0 otherwise

Combining the Evidence
The maximum entropy framework provides a
way to combine all the features into a probability
model. In the conditional maximum entropy for-
mulation (Berger et al. 1996), the desired model
p� is given by:

P D
˚
pjEpfj D E Qpfj ; j D 1 : : : k

�
(1)

H.p/ D �
X
a;b

Qp.b/p.ajb/ log p.ajb/

p� D argmaxp2P H.p/

where H. p/ is the conditional entropy of p,
Qp.b/ is the observed probability of the linguistic

context b in the training set, and P is the set
of models that are consistent with the observed
data. A model p is consistent if its own feature
expectation Epfj is equal to the observed feature
expectation E Qpfj , for all j D 1 : : : k features.
E Qpfj can be interpreted as the observed count
of fj in the training sample, normalized by the
training sample size. Both are defined as follows:

Epfj D
X
a;b

Qp.b/p.ajb/fj .a; b/

E Qpfj D
X
a;b

Qp.a; b/fj .a; b/

According to the maximum entropy frame-
work, the optimal model p� is the most uncertain
model among those that satisfy the feature con-
straints. It is possible to show that the form of the
optimal model must be log-linear:

p�.ajb/ D
1

Z.b/

Y
j D1:::k

˛
fj .a;b/

j (2)

Z.b/ D
X
a0

Y
j D1:::k

˛
fj .a0;b/

j

Here Z.b/ is a normalization factor, and ˛j > 0.
Each model parameter ˛j can be viewed as the
“strength” of its corresponding feature fj ; the
conditional probability is the normalized product
of the feature weights of the active features.

Relationship to Maximum Likelihood
The maximum entropy framework described here
has an alternate interpretation under the more
commonly used technique of maximum likeli-
hood estimation.

Q D

8<
:pjp.ajb/ D

1

Z.b/

Y
j D1:::k

˛
fj .a;b/

j

9=
;

L.p/ D
X
a;b

Qp.a; b/ log p.ajb/

q� D argmax
p2Q

L.p/

802 Maximum Entropy Models for Natural Language Processing

Here Q is the set of models of form (2),
Qp.a; b/ is the observed probability of prediction
a together with linguistic context b, L.p/ is
the log-likelihood of the training set, and q� is
the maximum likelihood model. It can be shown
that p�D q�; maximum likelihood estimation for
models of the form (2) gives the same answer as
maximum entropy estimation over the constraints
on feature counts (1). The difference between
approaches is that the maximum likelihood ap-
proach assumes the form of the model, whereas
the maximum entropy approach assumes the con-
straints on feature expectations, and derives the
model form.

Parameter Estimation
The Generalized Iterative Scaling (GIS) algo-
rithm (Darroch and Ratcliff 1972) is the easiest
way to estimate the parameters for this kind of
model. The iterative updates are given below:

˛
.0/
j D 1

˛
.n/
j D ˛

.n�1/
j

�
E Qpfj

Epfj

� 1
C

GIS requires the use of a “correction” feature g

and constant C > 0, which are defined so that
g.a; b/ D C �

P
j D1:::k fj .a; b/ for any .a; b/

pair in the training set. Normally, the correction
feature g must be trained in the model along
with the k original features, although (Curran
and Clark 2003) show that GIS converges even
without the correction feature. The number of
iterations needed to achieve convergence depends
on certain aspects of the data, such as the training
sample size and the feature set size, and is typi-
cally tuned for the problem at hand.

Other algorithms for parameter estimation in-
clude the Improved Iterative Scaling (Berger et al.
1996) algorithm and the Sequential Conditional
GIS (Goodman 2002) algorithm. The list given
here is not complete; many other numerical al-
gorithms can be applied to maximum entropy
parameter estimation, see Malouf (2002) for a
comparison.

It is usually difficult to assess the reliability
of features that occur infrequently in the training

set, especially those that occur only once. When
the parameters are trained from low frequency
feature counts, maximum entropy models – as
well as many other statistical learning techniques
– have a tendency to “overfit” the training data.
In this case, performance on training data ap-
pears very high, but performance on the intended
test data usually suffers. Smoothing or regular-
ization techniques are designed to alleviate this
problem for statistical models; some smoothing
techniques for maximum entropy models are re-
viewed in Chen and Rosenfeld (1999).

Applications

This framework has been used as a generic ma-
chine learning toolkit for many problems in nat-
ural language processing. Like other generic ma-
chine learning techniques, the core of the maxi-
mum entropy framework is invariant across dif-
ferent problem spaces. However, some informa-
tion is specific to each problem space:

Predictions: The space of predictions for this
model

Questions: The space of questions for this model
Feature Selection: Any possible (question, pre-

diction) pair can be used as a feature. In
complex models, only a small subset of all
the possible features are used in a model.
The feature selection strategy specifies how to
choose the subset.

For a given application, it suffices to give the
above three pieces of information to fully specify
a maximum entropy probability model.

Part-of-Speech Tagging
Part-of-speech tagging is a well-known task in
computational linguistics in which the goal is to
disambiguate the part-of-speech of all the words
in a given sentence. For example, it can be non-
trivial for a computer to disambiguate the part-of-
speech of the word flies in the following famous
examples:

• Fruit flies like a banana.
• Time flies like an arrow.

Maximum Entropy Models for Natural Language Processing 803

M

The word flies behaves like a noun in the first
case, and like a verb in the second case. In the
machine learning approach to this problem, co-
occurrence statistics of tags and words in the
linguistic context are used to create a predictive
model for part-of-speech tags.

The computational linguistics community has
created annotated corpora to help build and test
algorithms for tagging. One such corpus, known
as the Penn treebank (Marcus et al. 1994), has
been used extensively by machine learning and
statistical NLP practitioners for problems like
tagging. In this corpus, roughly 1 M words from
the Wall St. Journal have manually been assigned
part-of-speech tags. This corpus can be converted
into a set of training samples, which in turn can
be used to train a maximum entropy model.

Model Specification
For tagging, the goal is a maximum entropy
model p that will produce a probability of
seeing a tag at position i , given the linguistic
context of the i th word, the surrounding words,
and the previously predicted tags, written as
p.ti jti�1 : : : t1; w1 : : : wn/. The intent is to use
the model left-to-right, one word at a time.
The maximum entropy model for tagging
(Ratnaparkhi 1996) is specified as:

Predictions: The 45 part-of-speech tags of the
Penn treebank

Questions: Listed below are the questions and
question patterns. A question pattern has a
placeholder variable (e.g., X; Y) that is instan-
tiated by scanning the annotated corpus for
examples in which the patterns match. Let i

denote the position of the current word in the
sentence, and let wi and ti denote the word and
tag at position i , respectively.

• Does wi D X?
• Does wi�1 D X?
• Does wi�2 D X?
• Does wiC1 D X?
• Does wiC2 D X?
• Does ti�1 D X?
• Does ti�1ti�2 D X; Y ?

• For word that occur less than 5 times in the
training set:
– Are the first K (for K � 4) characters

X1 : : : XK?
– Are the last K (for K � 4) characters

X1 : : : XK?
– Does the current word contain a num-

ber?
– Does the current word contain a hy-

phen?
– Does the current word contain an upper-

case character?

Feature Selection: Any feature whose count in
the training data is less than 10 is discarded.

While the features for each probability decision
could in theory look at the entire linguistic con-
text, they actually only look at a small window
of words surrounding the current word, and a
small window of tags to the left. Therefore each
decision effectively makes the markov-like as-
sumption given in Eq. (3).

p.ti jti�1 : : : t1; w1 : : : wn/

D p.ti jti�1ti�2wi�2wi�1wi wiC1wiC2/ (3)

D

Q
j D1:::k ˛

fj .ti ;ti�1ti�2wi�2wi�1wi wiC1wiC2/

j

Z.ti�1ti�2wi�2wi�1wi wiC1wiC2/

(4)

Equation (4) is the maximum entropy model for
tagging. Each conditional probability of a predic-
tion ti given some context ti�1ti�2wi�2wi�1wi

wiC1wiC2 is the product of the features that are
active for that (prediction, context) pair.

Training Data
The training set is created by applying the ques-
tions to each word in the training set. For exam-
ple, when scanning the word flies in the sentence
“Time flies like an arrow” the training example
would be:

Prediction Question vector
verb wi D flies; wi�1 D Time; wi�2 D �bd�;

wiC1 D like; wiC2 D an;

ti�1 D noun; ti�1ti�2 D noun; �bd�

804 Maximum Entropy Models for Natural Language Processing

Here *bd* is a special symbol for boundary. The
tags have been simplified for this example; the
actual tags in the Penn treebank are more fine-
grained than noun and verb.

Hundreds of thousands of training samples are
used to create candidate features. Any possible
(prediction, question) pair that occurs in training
data is a candidate feature. The feature selection
strategy is a way to eliminate unreliable or noisy
features from the candidate set. For the part-of-
speech model described here, a simple frequency
threshold is used to implement feature selection.

Given a selected feature set, the GIS algorithm
is then used to find the optimal value for the cor-
responding ˛j parameters. For this application,
roughly 50 iterations of GIS sufficed to achieve
convergence.

Search for Best Sequence
The probability model described thus far will
produce a distribution over tags, given a linguistic
context including and surrounding the current
word. In practice we need to tag entire sentences,
which means that the model must produce a
sequence of tags. Tagging is typically performed
left-to-right, so that each decision has the left
context of previously predicted tags. The prob-
ability of the best tag sequence for an n-word
sentence is factored as:

p.t1 : : : tnjw1 : : : wn/

D
Y

iD1:::n

p.ti jti�1 : : : t1; w1 : : : wn/

The desired tag sequence is the one with the
highest conditional sequence probability:

t�
1 : : : t�

n D argmax
t1:::tn

p.t1 : : : tnjw1 : : : wn/

A dynamic programming procedure known as the
Viterbi algorithm is typically used to find the
highest probability sequence.

Other NLP Applications
Other NLP applications have used maximum en-
tropy models to predict a wide variety of linguis-
tic structure. The statistical parser in Ratnaparkhi

(1999) uses separate maximum entropy models
for part-of-speech, chunk, and parse structure
prediction. The system in Borthwick (1999) uses
maximum entropy models for named entity de-
tection, while the system in Ittycheriah et al.
(2001) uses them as sub-components for both
answer type prediction and named entity detec-
tion. Typically, such applications do not need to
change the core framework, but instead need to
modify the meaning of the predictions, questions,
and feature selection to suit the intended task of
the application.

Future Directions

Conditional random fields (Lafferty et al. 2001),
or CRFs, are an alternative to maximum entropy
models that address the label bias issue. Label
bias affects sequence models that predict one el-
ement at a time, in which features at a given state
(or word, in the case of POS tagging) compete
with each other, but do not compete with features
at any other state in the sequence. In contrast,
a CRF model directly produces a probability
distribution over the entire sequence, and there-
fore allows global competition of features across
the entire sequence. The parameter estimation
for CRFs is related to the Generalized Iterative
Scaling algorithm used for maximum entropy
models. See Sha and Pereira (2003) for a example
of CRFs applied to noun phrase chunking.

Another recently published future direction is
Collobert et al. (2011), which presents a multi-
layer neural network approach for several se-
quence labeling tasks, including POS tagging.
This approach avoids task-specific feature engi-
neering – like the questions in section “Model
Specification” – and instead uses the neural net-
work training algorithm to discover internal rep-
resentations for the word and tag context. It also
uses large amounts of unlabeled data to enhance
the internal representations for words.

Recommended Reading

Berger AL, Della Pietra SA, Della Pietra VJ (1996)
A maximum entropy approach to natural language
processing. Comput Linguist 22(1):39–71

Mean Absolute Deviation 805

M

Borthwick A (1999) A maximum entropy approach
to named entity recognition. PhD thesis, New York
University

Chen S, Rosenfeld R (1999) A Gaussian prior for
smoothing maximum entropy models. Technical re-
port CMUCS-99-108, Carnegie Mellon University

Church KW, Mercer RL (1993) Introduction to the spe-
cial issue on computational linguistics using large
corpora. Comput Linguist 19(1):1–24

Collobert R, Weston J, Bottou L, Karlen M,
Kavukcuoglu K, Kuksa P (2011) Natural language
processing (almost) from scratch. J Mach Learn Res
12:2493–2537

Curran JR, Clark S (2003) Investigating GIS and
smoothing for maximum entropy taggers. In:
Proceedings of the tenth conference on Euro-
pean chapter of the Association for Computational
Linguistics-Volume 1. Association for Computa-
tional Linguistics, pp 91–98

Darroch J, Ratcliff D (1972) Generalized iterative
scaling for log-linear models. Ann Stat 43(5):1470–
1480

Goodman J (2002) Sequential conditional generalized
iterative scaling. In: Proceedings of the Association
for Computational Linguistics

Ittycheriah A, Franz M, Zhu W, Ratnaparkhi A (2001)
Question answering using maximum-entropy com-
ponents. In: Procedings of NAACL

Jaynes ET (1957) Information theory and statistical
mechanics. Phys Rev 106(4):620–630

Lafferty J, McCallum A, Pereira F (2001) Condi-
tional random fields: probabilistic models for seg-
menting and labeling sequence data. In: Proceed-
ings of the 18th international conference on ma-
chine learning. Morgan Kaufmann, San Francisco,
pp 282–289

Lau R, Rosenfeld R, Roukos S (1993) Adaptive
language modeling using the maximum entropy
principle. In: Proceedings of the ARPA human
language technology workshop. Morgan Kaufmann,
San Francisco, pp 108–113

Malouf R (2002) A comparison of algorithms for
maximum entropy parameter estimation. In: Sixth
conference on natural language learning, pp 49–55

Marcus MP, Santorini B, Marcinkiewicz MA (1994)
Building a large annotated corpus of English:
the Penn Treebank. Comput Linguist 19(2):
313–330

Ratnaparkhi A (1996) A maximum entropy model
for part-of-speech tagging. In: Brill E, Church
K (eds) Proceedings of the conference on empir-
ical methods in natural language processing. As-
sociation for Computational Linguistics, Somerset,
pp 133–142

Ratnaparkhi A (1999) Learning to parse natural lan-
guage with maximum entropy models. Mach Learn
34(1–3):151–175

Sha F, Pereira F (2003) Shallow parsing with con-
ditional random fields. In: Proceedings of HLT-
NAACL, pp 213–220

McDiarmid’s Inequality

Synonyms

Bounded differences inequality

Definition

McDiarmid’s inequality shows how the values of
a bounded function of independent random vari-
ables concentrate about its mean. Specifically,
suppose f W X n ! R satisfies the bounded
differences property. That is, for all i D 1; : : : ; n

there is a ci � 0 such that for all x1; : : : ; xn; x0 2

X

jf .x1; : : : ; xn/

� f .x1; : : : ; xi�1; x0; xiC1; : : : ; xn/j � ci :

If X D .X1; : : : ; Xn/ 2 X n is a random variable
drawn according to P n and � D EP n Œf ŒX� then
for all � > 0

P n.f .X/ � � � �/ � exp

�
2�2Pn
iD1 c2

i

�
:

McDiarmid’s is a generalization of Hoeffding’s
inequality, which can be obtained by assuming
X D Œa; b� and choosing f .X/ D

Pn
iD1 Xi .

When applied to empirical risks this inequality
forms the basis of many � generalization bounds.

MCMC

�Markov Chain Monte Carlo

Mean Absolute Deviation

�Mean Absolute Error

http://dx.doi.org/10.1007/978-1-4899-7687-1_100041
http://dx.doi.org/10.1007/978-1-4899-7687-1_328
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_953

806 Mean Absolute Error

Mean Absolute Error

Synonyms

Absolute error loss; Mean absolute deviation;
Mean error

Definition

Mean Absolute Error is a �model evaluation
metric used with regression models. The mean
absolute error of a model with respect to a � test
set is the mean of the absolute values of the in-
dividual prediction errors on over all � instances
in the � test set. Each prediction error is the dif-
ference between the true value and the predicted
value for the instance.

mae D

Pn
iD1 abs.yi � �.xi //

n

where yi is the true target value for test instance
xi , �.xi / is the predicted target value for test
instance xi , and n is the number of test instances.

Cross-References

�Mean Squared Error

Mean Error

�Mean Absolute Error

Mean Shift

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Abstract

Mean Shift is a clustering algorithm based on
kernel density estimation. Various extensions

have been proposed to improve speed and
quality.

Synonyms

Density estimator

Definition

Mean shift (Comaniciu and Meer 2002) is a non-
parametric algorithm for partitional clustering
which does not require specifying the number of
clusters and can form any shape of clusters. The
mean shift procedure was originally proposed by
Fukunaga and Hostetler (1975). Cheng (1995)
adapted it for image analysis. Comaniciu, Meer,
and Ramesh presented the mean shift approach
to solve low-level vision problems: image seg-
mentation (Comaniciu and Meer 2002), adap-
tive smoothing (Comaniciu and Meer 2002), and
kernel-based object tracking (Comaniciu et al.
2003).

Given n data points xi , i D 1; : : : ; n in the
d -dimensional space Rd , the multivariate kernel
density estimator obtained with kernel K.x/ and
window radius h is given by

f .x/ D
1

nhd

nX
iD1

K.
x � xi

h
/ (1)

Given the gradient of the density estimator, the
mean shift is defined as the difference between
the weighted (using the kernel as weights) mean
and x, the center of the kernel,

mh.x/ D

Pn
iD1 xi g.jj x�xi

h
jj2/Pn

iD1 g.jj x�xi

h
jj2/

� x (2)

The mean shift vector is proportional to the
normalized density gradient estimate, and thus
points to the direction of the maximum increase
in the density. By successively computing the
mean shift vector and translating the kernel (win-
dow) by the vector, the mean shift procedure can
guarantee converging at a nearby point where the
gradient of density function is zero.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100504
http://dx.doi.org/10.1007/978-1-4899-7687-1_100293
http://dx.doi.org/10.1007/978-1-4899-7687-1_100295
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_210

Mean Shift 807

M

Extensions

There are many extensions to the mean shift
algorithm. Methods have been proposed to im-
prove the performance of mean shift on speed
(Paris and Durand 2007) and on accuracy by
adaptive bandwidths (Georgescu et al. 2003) and
asymmetric kernels (Yilmaz 2007).

The mean shift algorithm is designed
for static distributions; a modified algorithm
called Continuously Adaptive Mean Shift
(CAMSHIFT) (Bradski 1998) can deal with
dynamically changing distributions, for example,
the color probability distributions derived from
video frame sequences.

Mean shift has been extended for manifold
clustering. Subbarao and Meer (2006) and Tuzel
et al. (2005) proposed extensions to Grassmann
manifolds and Lie groups for motion segmen-
tation and multibody factorization. The medoid
shift (Sheikh et al. 2007) algorithm avoids the
definition of a stopping criteria and performs data
clustering on both linear and curved spaces. The
quick shift (Vedaldi and Soatto 2008) algorithm
was proposed to eliminate the over-fragmentation
problem of medoid shift. Cetingul and Vidal
(2009) proposed intrinsic mean shift for clus-
tering on Stiefel and Grassmann manifolds. The
approach presents an alternative mean shift for-
mulation which performs the iterative optimiza-
tion on the manifold of interest and intrinsically
locates the modes via consecutive evaluations of
a mapping.

Softwares

The following softwares have implementations of
the mean shift clustering algorithm:

• Scikit-Learn. An open-source machine learn-
ing software written in Python. http://scikit-
learn.org

• OpenCV. Open Source Computer Vision Li-
brary. Written in C/C++. http://opencv.org

• Apache Mahout. Open-source machine
learning software in Java for use in Hadoop,

with support on mean shift before version 0.8.
http://mahout.apache.org

• ImageJ. A Java-based library for image anal-
ysis and processing. It has an image filter-
ing plug-in using the mean shift filter. http://
rsbweb.nih.gov/ij/plugins/mean-shift.html

Recommended Reading

Bradski GR (1998) Computer vision face tracking for
use in a perceptual user interface. Intel Technol J
Q2(Q2):214–219

Cetingul HE, Vidal R (2009) Intrinsic mean shift for
clustering on stiefel and grassmann manifolds. In:
IEEE conference on computer vision and pattern
recognition (CVPR 2009), Miami, pp 1896–1902

Cheng Y (1995) Mean shift, mode seeking, and
clustering. IEEE Trans Pattern Anal Mach Intell
17(8):790–799

Comaniciu D, Meer P (2002) Mean shift: a robust
approach toward feature space analysis. IEEE Trans
Pattern Anal Mach Intell 24(5):603–619

Comaniciu D, Ramesh V, Meer P (2003) Kernel-based
object tracking. IEEE Trans Pattern Anal Mach
Intell 25(5):564–577

Fukunaga K, Hostetler L (1975) The estimation of
the gradient of a density function, with applica-
tions in pattern recognition. IEEE Trans Inf Theory
21(1):32–40

Georgescu B, Shimshoni I, Meer P (2003) Mean shift
based clustering in high dimensions: a texture clas-
sification example. In: Proceedings of ninth IEEE
international conference on computer vision 2003,
Nice, vol 1, pp 456–463

Paris S, Durand F (2007) A topological approach
to hierarchical segmentation using mean shift. In:
IEEE conference on computer vision and pattern
recognition (CVPR 2007), Minneapolis, MN, pp 1–
8

Sheikh YA, Khan EA, Kanade T (2007) Mode-seeking
by medoidshifts. In: IEEE 11th international con-
ference on computer vision (ICCV 2007), Rio de
Janeiro, pp 1–8

Subbarao R, Meer P (2006) Nonlinear mean shift
for clustering over analytic manifolds. In: IEEE
computer society conference on computer vision
and pattern recognition (CVPR 2006), vol 1,
pp 1168–1175

Tuzel O, Subbarao R, Meer P (2005) Simultaneous
multiple 3d motion estimation via mode finding on
lie groups. In: Tenth IEEE international conference
on computer vision (ICCV 2005), vol 1, pp 18–25

Vedaldi A, Soatto S (2008) Quick shift and ker-
nel methods for mode seeking. In: Forsyth D,
Torr P, Zisserman A (eds) Computer vision ECCV
2008. Lecture notes in computer science, vol 5305.
Springer, Berlin/Heidelberg, pp 705–718

http://scikit-learn.org
http://scikit-learn.org
http://opencv.org
http://mahout.apache.org
http://rsbweb.nih.gov/ij/plugins/mean-shift.html
http://rsbweb.nih.gov/ij/plugins/mean-shift.html

808 Mean Squared Error

Yilmaz A (2007) Object tracking by asymmetric kernel
mean shift with automatic scale and orientation
selection. In: IEEE conference on computer vision
and pattern recognition (CVPR 2007), Minneapolis,
MN, pp 1–6

Mean Squared Error

Synonyms

Quadratic loss; Squared error loss

Definition

Mean Squared Error is a �model evaluation
metric often used with � regression models. The
mean squared error of a model with respect to a
� test set is the mean of the squared prediction
errors over all � instances in the � test set. The
prediction error is the difference between the true
value and the predicted value for an instance.

mse D

Pn
iD1.yi � �.xi //

2

n

where yi is the true target value for test instance
xi , �.xi / is the predicted target value for test
instance xi , and n is the number of test instances.

Cross-References

�Mean Absolute Error

Measurement Scales

Ying Yang
Australian Taxation Office, Box Hill, VIC,
Australia

Definition

Turning to the authority of introductory statistical
textbooks (Bluman 1992; Samuels and Witmer
1999), there are two parallel ways to classify data
into different types. Data can be classified into
either categorical or � numeric. Data can also be

classified into different levels of �measurement
scales.

There are two parallel ways to classify data
into different types. Data can be classified into
either categorical or numeric. Data can also be
classified into different levels of measurement
scales.

Categorical versus Numeric

Variables can be classified as either categorical
or numeric. Categorical variables, also often
referred to as qualitative variables, are variables
that can be placed into distinct categories accord-
ing to some characteristics. Categorical variables
sometimes can be arrayed in a meaningful rank
order. But no arithmetic operations can be applied
to them. Examples of categorical variables are

• Gender of a fish: male and female
• Student evaluation: fail, pass, good, and excel-

lent

Numeric variables, also often referred to as quan-
titative variables, are numerical in nature. They
can be ranked in order. They can also have mean-
ingful arithmetic operations. Numeric variables
can be further classified into two groups, discrete
or continuous.

A discrete variable assumes values that can be
counted. The variable cannot assume all values
on the number line within its value range. An
example of a discrete variable is the number of
children in a family.

A continuous variable can assume all values
on the number line within the value range. The
values are obtained by measuring. An example of
a continuous variable is Fahrenheit temperature.

Levels of Measurement Scales

In addition to being classified as either categor-
ical or numeric, variables can also be classified
by how they are categorized, counted, or mea-
sured. This type of classification uses measure-

http://dx.doi.org/10.1007/978-1-4899-7687-1_100384
http://dx.doi.org/10.1007/978-1-4899-7687-1_100442
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_604
http://dx.doi.org/10.1007/978-1-4899-7687-1_529

Medicine: Applications of Machine Learning 809

M

ment scales, and four common types of scales are
used: nominal, ordinal, interval, and ratio.

The nominal level of measurement scales clas-
sifies data into mutually exclusive (nonoverlap-
ping), exhaustive categories in which no order or
ranking can be imposed on the data. An example
of a nominal variable is gender of a fish: male and
female.

The ordinal level of measurement scales clas-
sifies data into categories that can be ranked.
However, the differences between the ranks can-
not be calculated by arithmetic. An example of an
ordinal variable is student evaluation, with values
fail, pass, good, and excellent. It is meaningful to
say that the student evaluation of pass ranks is
higher than that of fail. It is not meaningful in
the same way to say that the gender female ranks
higher than the gender male.

The interval level of measurement scales
ranks the data, and the differences between
units of measure can be calculated by arith-
metic. However, zero in the interval level of
measurement means neither “nil” nor “nothing”
as zero in arithmetic means. An example of an
interval variable is Fahrenheit temperature. It
is meaningful to say that the temperature A is
two points higher than the temperature B. It is
not meaningful in the same way to say that the
student evaluation of pass is two points higher
than that of fail. Besides, 0ıF does not mean the
absence of heat.

The ratio level of measurement scales pos-
sesses all the characteristics of interval measure-
ment, and there exists a zero that, the same as
arithmetic zero, means “nil” or “nothing.” In
consequence, true ratios exist between different
units of measure. An example of a ratio variable
is number of children in a family. It is meaningful
to say that the number of children in the family
A is twice that of the family B. It is not mean-
ingful in the same way to say that the Fahrenheit
temperature A is twice that of B.

The nominal level is the lowest level of
measurement scales. It is the least powerful in
terms of including data information. The ordinal
level is higher. The interval level is even higher.
The ratio level is the highest level. Any data
conversion from a higher level of measurement

Measurement Scales, Table 1 Characteristics of differ-
ent levels of measurement scales

Level Ranking? Arithmetic op-
eration?

Arithmetic zero?

Nominal No No No

Ordinal Yes No No

Interval Yes Yes No

Ratio Yes Yes Yes

scales to a lower level of measurement scales,
such as � discretization, will lose information.
Table 1 gives a summary of the characteristics of
different levels of measurement scales.

Summary

In summary, the following taxonomy applies to
variable types:

• Categorical (qualitative) variables:
Nominal
Ordinal

• Numeric (quantitative) variables:
Interval, either discrete or continuous
Ratio, either discrete or continuous

Recommended Reading

Bluman AG (1992) Elementary statistics: a step by step
approach. Wm. C. Brown Publishers, Dubuque

Samuels ML, Witmer JA (1999) Statistics for the life
sciences, 2nd edn. Prentice-Hall Publishers, Upper
Saddle River

Medicine: Applications of Machine
Learning

Katharina Morik
Technische Universität Dortmund, Dortmund,
Germany

Motivation

Health care has been an important issue in
computer science since the 1960s. In addition
to databases storing patient records, library

http://dx.doi.org/10.1007/978-1-4899-7687-1_221

810 Medicine: Applications of Machine Learning

resources (e.g., PubMed, a service of the U.S.
National Library of Medicine that includes over
16 million citations from journals for biomedical
articles back to the 1950s), administrative and
financial systems, more sophisticated support
of health care has been the aim of artificial
intelligence (AI) from the very beginning on.
Starting with expert systems which abstract
laboratory findings and other vital parameters
of a patient before they heuristically classify
the patient into one of the modeled diagnoses
(Shortliffe 1976), knowledge acquisition was
discovered to be the bottleneck of systems
for the automatic medical diagnosis. Machine
learning came into play as a means of knowledge
acquisition. Learning rules for (medical) expert
systems focused on the heuristic classification
step within expert systems. Given conveniently
abstracted measurements of the patient’s state,
the classification was learned in terms of rules
or � decision trees. Since the early days, the use
of machine learning for health care progressed in
two ways:

• The abstraction of measurements of a patient’s
vital parameters is a learning task in its own
right. Diverse kinds of data are to be handled:
laboratory data, online measurements at the
bedside, x-rays or other imaging data, ge-
netic data,. . . Machine learning is confronted
with a diversity of representations for the
examples.

• Diagnosis is just one task in which physicians
are to be supported. There are many more
tasks which machine learning can ease. In
intensive care, the addressee of the learning
results can be a machine, e.g., the respirator.
Financing health care and planning the medi-
cal resources (e.g., for a predicted epidemia)
are yet another important issue. Machine
learning is placed in a diversity of medical
tasks.

The urgent need for sophisticated support of
health care follows from reports which estimate
up to 100,000 deaths in the USA each year due to
medical error (Kohn et al. 2000).

Structure of the Problem

The overall picture of the medical procedures
shows the kinds of data and how they are entered
into the database of health records (a synonym
is “patient database.”) A monitoring system is
given in intensive care units, which acquires
� time series from minute measurements. The
observations at the bedside are entered manually
into the system. The information from the
hospital is entered via a local area network.
The physician accesses information from
libraries and research databases (dashed lines).
Libraries, research databases, and biomedical
research also influence the development of
guidelines, protocols, and clinical pathways
(dotted lines). Guidelines are rather abstract.
Protocols of certain actions are integrated to
become a clinical pathway which is a plan of
both diagnostic and therapeutical actions for a
typical patient with a specific diagnosis. The
bold arrow shows the intended high-quality
therapy. Guidelines and protocols promote
evidence-based practices, reduce inter-clinician
practice variations and support decision-making
in patient care while constraining the costs of
care. Computerized protocols can be generated
based on guidelines. They have been proved
useful in improving the quality and consistency
of healthcare but the protocol development
process is time-consuming (Ten Teije et al.
2006). This is where machine learning offers
support. Usually, ontologies (e.g., in description
logic) or other knowledge-based techniques
(in medicine-specific formats like the Arden
Syntax, GuideLine Interchange Format (GLIF),
PROforma, Asbru, and EON) are used to support
the development of protocols (de Clercq et al.
2004). By contrast, machine learning induces
the current practices and their outcome from the
health records (Smith et al. 2009). To reflect such
use of Machine Learning, the bold arrows of
the picture would need to be turned the other
way around, protocols are learned from the data
or evaluated based on the data. All (reversed)
arrows mark possible applications of machine
learning.

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

Medicine: Applications of Machine Learning 811

M

Therapeutical interventions

Health records,
patient database

Respirator, heart assistance, ...
Vital signs

Monitor

NALtupnilaunaM
Nursing procedures
Plan of care
Medication
Intake
Output

X-Rays
microbiology
laboratory
blood bank
pharmacy
administration

Regional, national
registries

Research databases

Library resources

Guidelines, protocols, clinical pathways

Biomedical
research

Diversity of Representations

The overall health record of a patient includes
several types of data, not all of them are digital.

• Laboratory data consist of attributes almost
always with numerical values, sometimes with
discrete ordinal values, sometimes just binary
values like “positive,” “negative.”

• Plain text states anamneses, diagnosis, and
observations. From the text, key words can
be transformed into attributes for machine
learning.

• Online measurements at the bedside are time
series. They are analyzed in order to find level
changes or trends (Gather et al. 2006) and
alarm the physician (Sieben and Gather 2007).
In order to exploit the time series for fur-
ther learning tasks, they often are abstracted
(e.g., Bellazzi et al. 2002). Recently, online
measurements from body sensors have raised
attention in the context of monitoring patients
at home (Amft and Tröster 2008).

• Sequences can also be considered time series,
but the measurements are not equidistant and
not restricted to numerical values. Examples
are data gathered at doctors’ visits and long-
term patient observations.

• X-rays or other imaging data (e.g., ultrasound
imaging or more novel molecular imaging
techniques like positron emission tomography,
magnetic resonance imaging, or computer
tomography) cannot be analyzed directly by
machine learning algorithms. They require
the extraction of features. It has been shown
that the adequate extraction of features is
more important than the selection of the
best suited learning algorithm (Mavroforakis
et al. 2006). The number of extracted features
can become quite large. For instance, from
1,619 images of skin lesion, each 752 � 582
pixels, 107 features were extracted in order
to detect melanoma using diverse learning
algorithms (Dreiseitl et al. 2001). Hence,
feature selection is also an important task in
medical applications (Lucaces et al. 2009;
Withayachumnankul et al. 2006). Often,
different techniques are applied to gather data
for the detection of the same disease. For
instance, glaucoma detection uses standard
automated perimetry or scanning laser or
Heidelberg Retina Tomograph or stratus
optical coherence tomography. It is not
yet clear how important the choice among
measurement types (devices) is with respect
to feature extraction and machine learning.

812 Medicine: Applications of Machine Learning

• Tissue and blood: In vitro “data” also belong
to health records. Immediately after biopsy
or surgery, the tissue is transferred to the
pathology department. After the pathologist
has taken the sample needed for proper diag-
nosis, a representative tissue sample will be
snap frozen and stored in liquid nitrogen or at
�80 ıC. Also blood cells are stored in a blood
bank. From the specimen, the RNA is ex-
tracted and the so-called microarrays of gene
expressions are developed and then scaled.
The huge prognostic value of gene expression
in patients with breast cancer has been shown
by van’t Veer et al. (2002). Genome research
aims at revealing the impact of gene regulation
and protein expression-regulation (taking into
account the regulation of protein synthesis,
protein ubiquitination, and post-translational
modification) on, e.g., cancer diagnosis and
response to therapies. Machine learning, par-
ticularly clustering, frequent itemset mining,
and classification have been applied success-
fully (see learning from gene expression mi-
croarray data).

In addition to patient records, there are knowl-
edge bases describing particular diseases or com-
puterized protocols for particular therapies.

Medical Tasks

Diagnosis and Medication
Diagnosis is primarily a classification task. Given
the description of the patient’s state and a set
of diseases, the learning algorithm outputs the
classification into one of the classes. If physicians
want to inspect the learned classifier, logic-based
algorithms are preferred. Decision trees and the
conceptual clustering algorithm AQ were used
to diagnose breast cancer from nine abstracted
descriptions like tumor size: 0–4, 5–9, � � � 50–
54, 55–59 (Michalski et al. 1986; Cestnik et al.
1987).

�Bayesian methods were used to classify,
e.g., diseases of the lymph node. Based on the
examination of the extracted tissue, a patholo-

gist enters the description. The Bayesian net-
work (BN) outputs not only just one diagnosis,
but the conditional probabilities for the diseases
(Heckerman 1990). In particular, diagnosis for
rather vague symptoms such as abdominal pain
or lower back pain is well supported by BNs
(McNaught et al. 2001). BNs are capable of in-
corporating given expert knowledge as priors. In
order to combine textbook knowledge with em-
pirical data, electronic literature was transformed
into priors for BN structures. Then, from health
records, the BN was learned as a model of ovarian
tumors (Antal et al. 2004).

� Inductive logic programming (ILP) also al-
lows to take into account background knowledge.
This was used for an enhanced learning of med-
ical diagnostic rules (Lavrac et al. 1993). The
identification of glaucomatous eyes was effec-
tively learned by ILP (Mizoguchi et al. 1997).
One advantage of ILP is that the learned logic
clauses can easily be integrated into a knowledge-
based system and, hence, become operational for
clinical practice.

Since some tests which deliver information
about the patient’s state can be costly – both,
financially and in terms of a risk for the patient –
� cost-sensitive learning may be applied.

Since the error of classifying a patient as
ill where he or she is not (false positives) is
less harmful than classifying a patient as healthy
where he or she is not (false negatives), the eval-
uation of the learning result most often is used in
a biased way. The evaluation can be summarized
in Table 1.

Precision is the proportion A
ACB

, and recall is

the proportion A
ACC

. Sensitivity is synonymous
to recall. In medical applications, sensitivity is
balanced with respect to specificity being the pro-
portion B

BCD
(synonym false positives rate). The

analysis of the Receiver Operator Characteristic

Medicine: Applications of Machine Learning, Table 1
Evaluation measures

TrueC False�

PredicatedC A B

Predicated� C D

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_181

Medicine: Applications of Machine Learning 813

M

(ROC) allows to evaluate learning according to
sensitivity and specificity (see �ROC analysis).

If not the understandability but only sensitivity
and specificity are important, numerical learning
algorithms are used to classify the patient’s data.
In particular, if the patient’s state is described
by numerical features, no discretization is nec-
essary for numerical learners as is needed for
the logic-based ones. Multilayer perceptrons (see
�Neural Networks), � support vector machines
(SVM), mixtures of Gaussians, and mixture of
generalized Gaussian classifiers were trained on
the numerical data of 189 normal eyes and 156
glaucomatous eyes (Goldbaum et al. 2002). The
numerical description of the visual field is given
by standard automated threshold perimetry. The
medical standard procedure to interpret the visual
field is to derive global indices. The authors com-
pared performance of the classifiers with these
global indices, using the area under the ROC
curve. Two human experts were judged against
the machine classifiers and the global indices
by plotting their sensitivity–specificity pairs. The
mixture of Gaussian had the greatest area under
the ROC curve of the machine classifiers, and hu-
man experts were not better at classifying visual
fields than the machine classifiers or the global
indices.

Other approaches to glaucoma detection use
different features describing the patient’s state
(Zangwill et al. 2004) or other numerical learners,
e.g., � logistic regression (Huang et al. 2006).
For testing the learning from numerical attributes,
the UCI Machine Learning Repository offers the
arrhythmia database. The aim is to distinguish
between the presence and absence of cardiac
arrhythmia and to classify it in one of the 16
groups. About 279 attributes are given, 206 of
them being numerical ones.

As has been shown in an application to in-
tensive care, medication can be transformed into
a set of classification tasks (Morik et al. 2000).
Given measurements of eight vital signs, a de-
cision is made for each of six drugs, whether
to increase or to decrease it. This gives a set of
classification tasks, which the �SVM learned.
Depending on the drug, the accuracy ranged from
81.3 % with 2.5 standard error to 86.9 % with

7 standard error. Additionally, on 41 cases, the
SVM decision was compared with an expert’s
decisions when confronted with the same data.
In 32 cases the expert chose the same direction
of change as did the learned decision function.
In 34 cases the learned decision was equal to
the actual therapy. Another set of classification
tasks were to decide every minute whether to
increase, decrease, or leave the doses as it is.
Again, each of these classifiers was learned by the
SVM. From 1,319 examples decision functions
were learned and tested on 473 examples. For
training, an unbalanced cost function was used.
The SVM cost factor for error was chosen ac-
cording to CC

C�

D numberof negativeexample
numberofpositiveexample

. The
results again differed depending on the drug. For
adrenaline, 79 % of the test cases were equally
handled by the physician and the decision func-
tion. For adrenaline as well as for dobutamine,
only in 1.5 % of the test cases the learned rule
recommended the opposite direction of change.
Again, a blind test with an expert showed that the
learned recommendations’ deviation from actual
therapy was comparable to that of the human
expert. Combining the two sets of classifications,
for each minute and each patient, the support
vector machine’s decision function outputs a rec-
ommendation of treatment (Morik et al. 2000).

Prognosis and Quality of Care Assessment
Prognosis or outcome prediction is important for
the evaluation of the quality of care provided. The
standard statistical models use only a small set of
covariates and a score variable, which indicates
the severity of the illness. Machine learning may
also rely on the aggregated score features, but
is in addition capable of handling the features
underlying the scores. Given health records of
patients including the therapy, machine learning
is to predict the outcome of care, e.g., classifies
into mortal or surviving cases. The prediction
of breast cancer survivability has been tested on
a very large database comparing three learning
methods (Delen et al. 2004). The results indicated
that decision trees (here: C5) result in the best
predictor with 93.6 % accuracy on the holdout
sample (this prediction accuracy is better than
any reported in the literature), artificial neural

http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

814 Medicine: Applications of Machine Learning

networks came out to be the second with 91.2 %
accuracy, and the � logistic regression models
came out to be the worst of the three with 89.2 %
accuracy.

Prediction of survival is a hard task for
patients with serious stroke, because there is
a long-term risk after the stay at the hospital.
The scoring schemes (e.g., the Glasgow coma
scale and the Ranking score) are not sufficient
for predicting the outcome. In a data situation
where 29 attributes (or features) were given
for only 327 patient records, BNs were learned
and compared with a handmade causal network.
The results were encouraging – as soon as more
electronic health records become available, the
BNs will become closer to medical knowledge.
Moreover, the discovery of relations on the
basis of empirical data may enhance medical
knowledge (Wu et al. 2001).

Carcinogenesis prediction was performed us-
ing ILP methods. As has become usual with can-
cer diagnosis and prognosis, there is a close link
with microbiology (Srinivasan et al. 1994) (see
Learning from gene expression microarray data).

Prognosis need not be restricted to mortality
rates. In general, it is a means of quality
assessment of clinical treatments. For instance,
hemodialysis services have been assessed
through temporal data mining by Bellazzi et al.
(2002).

Finding subgroups of patients with devious
reactions to a therapy might lead to a better under-
standing of a certain medical process (Atzmueller
et al. 2005). While the before mentioned study
aims at an enhanced expert – system interaction,
a Dutch study aims at a more precise modeling
of prognoses (Abu-Hanna and Lucas 2001). In
an extensive study for eight different hospitals
and 7,803 patients, two different models were
combined: one for determining the subgroups and
the other for building a model for each subgroup.
For the prognoses of patients in an intensive care
unit, subgroups have been detected using decision
trees. The decision tree was trained to classify
patients into the survival class and the mortality
class on the basis of the nonaggregated features
underlying the illness score. The leaves of the
tree become subgroups. These are then used for

training a logistic regression model of mortality
based on the aggregated features.

Verification and Validation
Verification is the process of testing a model
against a specification. In medicine, this often
means to check clinical practice against expert
protocols, or to check an actual diagnosis
against one derived from textbook knowledge.
Since many logic-based machine learning
algorithms consist of a generalization and
a specialization step, they can be used for
verification. Generalization delivers rules from
clinical data which can then be compared with
given expert rules (protocols). Specialization
is triggered by facts that contradict a learning
hypothesis. Hence, using an expert rule as
hypothesis, the learning algorithm counts the
contradicting clinical cases and specializes the
rule. For an early case study on verification and
rule enhancement see, e.g., Morik et al. (1994).
A more recent study compares a given clinical
protocol for intensive care with actual therapies
at another hospital (Scholz 2002). Decision trees
and association rules have been learned in order
to inspect and enhance the knowledge base of
a web-based teledermatology system (Ou et al.
2007). While verification means to build the
system right, validation means to build the right
system. The borderline between verification and
validation is fuzzy. On the one hand, medical
practice is investigated with respect to the
guidelines (verification), on the other hand, the
guidelines are enhanced on the basis of medical
practice (validation).

Moreover, learned models can be verified with
respect to expert knowledge and validated with
respect to clinical practice. A study on the hemo-
dynamic monitoring of the critically ill integrated
machine learning into a knowledge-based ap-
proach to evidence-based medicine. A knowledge
base on drug effects was verified using patient
records. Only 18 % of the observations showed
vital signs of patients in the opposite direction
than predicted by the knowledge base. Then, the
knowledge base was used to validate therapeuti-
cal interventions proposed by a learned model.
Accuracy measures of a model only reflect how

http://dx.doi.org/10.1007/978-1-4899-7687-1_951

Medicine: Applications of Machine Learning 815

M

well the learning result fits actual behavior of
the physician and not how well it fits the “gold
standard.” Hence, a proposed intervention should
be validated with respect to its effects on the
patient. If the known effects push vital signs
in the direction of the desired value range, the
recommendation is considered sound, otherwise
it is rejected. Using past data, the learned model
was found to recommend an intervention with the
desired effects in 81 % of the cases (Morik et al.
2002).

Intelligent Search in Medical Literature
Intelligent search in the overwhelming number
of research publications supplies the information
when it is needed. ILP has been successfully
put to use for finding relevant medical docu-
ments (Dimec et al. 1999). Also the intelligent
search in clinical free-text guidelines is an issue
(Moskovitch et al. 2006). The techniques for text
categorization can be applied to medical texts in
the usual way. If the search engine not only labels
the overall document but, in addition, phrases
within it, the search could become more focused
and also deliver paragraphs instead of complete
texts. The biomedical challenge for named entity
recognition requires the automatic extraction and
classification of words referring to DNA, RNA,
proteins, cell types, and cell lines from texts (Kim
et al. 2004). Even more difficult is the discovery
of medical knowledge from texts (Sanchez and
Moreno 2005).

Epidemiology and Outbreak Detection
Understanding the transmission of infectious dis-
eases and forecasting epidemics is an important
task, since infections are distributed globally.
Statistical approaches to spatio-temporal analysis
of scan data are regularly used. There, a grid
partitions the map into regions where occurrences
of the disease are shown as points. “Hot spot”
partitions are those of high density. By contrast,
clustering detects hot spot regions depending on
the data, hence, the shape of regions is flexible.
Taking into account the a priori density of the
population, a risk-adjusted nearest neighbor hier-
archical clustering discovers “hot spot” regions.
Also a risk-adjusted support vector machine with

Gaussian kernel has successfully been applied to
the problem of detecting regions with infectious
disease outbreak. The discovery of hot spot re-
gions can be exploited for predicting virus ac-
tivity, if an indicator is known which can easily
be observed. For instance, dead crows indicate
activity of the West Nile virus. An overview of
infectious disease informatics is given by Zeng
et al. (2005).

Machine learning can also contribute to the
understanding of the transmission of infectious
diseases. A case study on tuberculosis epidemi-
ology uses BNs to identify the distribution of
tuberculosis patient attributes. The learning re-
sults captured the known statistical relationships.
A relational model learned from the database di-
rectly using structured statistical models revealed
several novel associations (Getoor et al. 2004).

Cross-References

�Class Imbalance Problem
�Classification
�Classifier Systems
�Cost-Sensitive Learning
�Decision Tree
� Feature Selection
� Inductive Logic Programming
�ROC Analysis
� Support Vector Machines
�Time Series

Recommended Reading

Abu-Hanna A, Lucas PJF (2001) Prognostic models in
medicine: AI and statistical approaches [Editorial].
Methods Inf Med 40(1):1–5

Amft O, Tröster G (2008) Recognition of dietary
events using on-body sensors. Artif Intell Med
42(2):121–136

Antal P, Fannes G, Timmerman D, Moreau Y, De Moor
B (2004) Using literature and data to learn BNs as
clinical models of ovarian tumors. Artif Intell Med
30(3): 257–281

Atzmueller M, Baumeister J, Hensing A, Richter E-
J, Puppe F (2005) Subgroup mining for interac-
tive knowledge refinement. In: Artificial intelligence
in medicine (AIME). Springer, Berlin/Heidelberg,
pp 453–462

http://dx.doi.org/10.1007/978-1-4899-7687-1_110
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

816 Medicine: Applications of Machine Learning

Bellazzi R, Larizza C, Magni P, Bellazi R (2002)
Quality assessment of dialysis services through in-
telligent data analysis and temporal data mining.
In: Workshop at the 15th European conference on
AI about intelligent data analysis in medicine and
pharmacology, Lyon, pp 3–9

Cestnik B, Kononenko I, Bratko I (1987) ASSISTANT
86: a knowledge-elicitation tool for sophisticated
users. In: Bratko I, Lavrac N (eds) Progress in
machine learning. Sigma Press, Wilmslow, pp 31–
45

de Clercq PA, Blomb JA, Korstenb HH, Has-
man A (2004) Approaches for creating computer-
interpretable guidelines that facilitate decision sup-
port. Artif Intell Med 31(1):1–27

Delen D, Walker G, Kadam A (2004) Predicting breast
cancer survivability: a comparison of three data
mining methods. Artif Intell Med 34(2):113–127

Dimec B, Dzeroski S, Todorovski L, Hristovski D
(1999) WWW search engine for Slovenian and
English medical documents. In: Proceedings of the
15th international congress for medical informatics.
IOS Press, Amsterdam, pp 547–552

Dreiseitl S, Ohn-Machado L, Kittler H, Vinterbo S,
Billhardt H, Binder M (2001) A comparison of
machine learning methods for the diagnosis of pig-
mented skin lesions. J Biomed Inform 34:28–36

Gather U, Schettlinger K, Fried R (2006) Online signal
extraction by robust linear regression. Comput Stat
21(1):33–51

Getoor L, Rhee JT, Koller D, Small P (2004) Under-
standing tuberculosis epidemiology using structured
statistical models. Artif Intell Med 30(3):233–256

Goldbaum MH, Sample PA, Chan K, Williams J, Lee
T-W, Blumenthal E et al (2002) Comparing machine
learning classifiers for diagnosing glaucoma from
standard automated perimetry. Investig Ophthalmol
Vis Sci 43:162–169

Heckerman D (1990) Probabilistic similarity networks.
Technical report STAN-CS-1316, Department of
Computer Science and Medicine at Stanford

Huang ML, Chen HY, Hung PT (2006) Analysis of
glaucoma diagnosis with automated classifiers using
stratus optical coherence tomography. Opt Quantum
Electron 37:1239–1249

Kim JD, Ohta T, Tsuruoka Y, Tateisi Y, Collier N
(2004) Introduction to the bio-entity recognition
task at JNLPBA. In: Collier N, Ruch P, Nazarenko
A (eds) Proceedings of the international joint work-
shop on natural language processing in biomedicine
and its applications. ACL, Morristown, pp 70–76

Kohn LT, Corrigan JM, Donaldson M (eds) (2000)
To err is human – building a safer health system.
National Academic Press, Washington, DC

Lavrac N, Dzeroski S, Prinat V, Krizman V (1993) The
utility of background knowledge in learning medical
diagnostic rules. Appl Artif Intell 7:273–293

Lucaces O, Taboada F, Albaiceta G, Domingues LA,
Enriques P, Bahamonde A (2009) Predicting the
probability of survival in intensive care unit patients

from a small number of variables and training ex-
amples. Artif Intell Med 45(1):63–76

Mavroforakis M, Georgiou H, Dimitropoulos N,
Cavouras D, Theodoridis S (2006) Mammographic
masses characterization based on localized texture
and dataset fractal analysis using linear, neural and
support vector machine classifiers. Artif Intell Med
37(2):145–162

McNaught K, Clifford S, Vaughn M, Foggs A, Foy
M (2001) A Bayesian belief network for lower
back pain diagnosis. In: Lucas P, van der Gaag LC,
Abu-Hanna A (eds) Bayesian models in medicine –
Workshop at AIME, Caseais

Michalski R, Mozetic I, Hong J, Lavrac N (1986) The
multi-purpose incremental learning system AQ15
and its testing application on three medical domains.
In: Proceedings of the 5th national conference on ar-
tificial intelligence. Morgan Kaufmann, San Mateo,
pp 1041–1045

Mizoguchi F, Ohwada H, Daidoji M, Shirato S (1997)
Using inductive logic programming to learn clas-
sification rules that identify glaucomatous eyes.
In: Lavraè N, Keravnou E, Zupan B (eds) Intelli-
gent data analysis in medicine and pharmacology.
Kluwer, Norwell, pp 227–242

Morik K, Imhoff M, Brockhausen P, Joachims T,
Gather U (2000) Knowledge discovery and knowl-
edge validation in intensive care. Artif Intell Med
19(3):225–249

Morik K, Joachims T, Imhoff M, Brockhausen P,
Rüping S (2002) Integrating kernel methods into
a knowledge-based approach to evidence-based
medicine. In: Schmitt M, Teodorescu HN, Jain A,
Jain A, Jain S, Jain LC (eds) Computational in-
telligence processing in medical diagnosis. Studies
in fuzziness and soft computing, vol 96. Physica-
Verlag, New York, pp 71–99

Morik K, Potamias G, Moustakis VS, Charissis G
(1994) Knowledgeable learning using MOBAL: a
medical case study. Appl Artif Intell 8(4):579–592

Moskovitch R, Cohen-Kashia S, Drora U, Levya I,
Maimona A, Shahar Y (2006) Multiple hierarchical
classification of free-text clinical guidelines. Artif
Intell Med 37(3):177–190

Ou M, West G, Lazarescu M, Clay C (2007) Dynamic
knowledge validation and verification for CBR tele-
dermatology system. Artif Intell Med 39(1):79–96

Sanchez D, Moreno A (2005) Web mining techniques
for automatic discovery of medical knowledge. In:
Proceedings of the 10th conference on artificial
intelligence in medicine, Aberdeen

Scholz M (2002) Using real world data for modeling
a protocol for ICU monitoring. In: Lucas P, Asker
L, Miksch S (eds) Working notes of the IDAMAP
2002 workshop, Lyon, pp 85–90

Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok
JL, Aguiar RC et al (2002) Diffuse large B-cell
lymphoma outcome prediction by gene-expression
profiling and supervised machine learning. Nat Med
8(1):68–74

Metaheuristic 817

M

Shortliffe EH (1976) Computer based medical consul-
tations: MYCIN. Elsevier, New York/Amsterdam

Sieben W, Gather U (2007) Classifying alarms in in-
tensive care–analogy to hypothesis testing. In: 11th
conference on artificial intelligence in medicine
(AIME). Springer, Berlin, pp 130–138

Smith WP, Doctor J, Meyer J, Kalet IJ, Philips
MH (2009) A decision aid for intensity-modulated
radiation-therapy plan selection in prostate cancer
based on a prognostic Bayesian network and a
Markov model. Artif Intell Med 46(2):119–130

Srinivasan A, Muggleton SH, King RD, Sternberg
MJE (1994) Carcinogenesis prediction using induc-
tive logic programming. In: Zupan B, Keravnou E,
Lavrac N (eds) Intelligent data analysis in medicine
and pharmacology. Kluwer, Norwell, pp 243–260

Ten Teije A, Lucas P, Miksch S (eds) (2006) Work-
shop on AI techniques in healthcare: evidence-based
guidelines and protocols, held in conjunction with
ECAI-2006, Riva del Garda

van’t Veer LJ, Dai HY, van de Vijver MJ, He YDD,
Hart AA, Mao M et al (2002) Gene expression
profiling predicts clinical outcome of breast cancer.
Nature 415:530–536

Withayachumnankul W, Ferguson B, Rainsford T,
Findlay D, Mickan SP, Abbott D (2006) T-ray rele-
vant frequencies for osteosarcoma classification. In:
Abbott D, Kivshar YS, Rubinstein-Dunlop HH, Fan
S-H (eds) Proceedings of SPIE, Brisbane

Wu X, Lucas P, Kerr S, Dijkhuisen R (2001)
Learning Bayesian-network topologies in realistic
medical domains. In: Intelligent data analysis in
medicine and pharmacology. Medical Data Analy-
sis. Springer, Berlin/Heidelberg, pp 302–307

Zangwill LM, Chan K, Bowd C, Hao J, Lee TW,
Weinreb RN et al (2004) Heidelberg retina tomo-
graph measurements of the optic disc and parap-
illary retina for detecting glaucoma analyzed by
machine learning classifiers. Investig Ophthalmol
Vis Sci 45(9):3144–3151

Zeng D, Chen H, Lynch C, Eidson M, Gotham I (2005)
Infectious disease informatics and outbreak detec-
tion. In: Chen H, Fuller S, Friedman C, Hersh W
(eds) Medical informatics: knowledge management
and data mining in biomedicine. Springer, New
York, pp 359–395

Memory-Based

� Instance-Based Learning

Memory-Based Learning

�Case-Based Reasoning

Merge-Purge

�Entity Resolution
�Record Linkage

Message

In �Minimum Message Length inference, a bi-
nary sequence conveying information is called a
message.

Meta-combiner

A meta-combiner is a form of � ensemble learn-
ing technique used with �missing attribute val-
ues. Its common topology involves base learners
and classifiers at the first level, and meta-learner
and meta-classifier at the second level. The meta-
classifier combines the decisions of all the base
classifiers.

Metaheuristic

Marco Dorigo1, Mauro Birattari1, and
Thomas Stützle2

1Université Libre de Bruxelles, Brussels,
Belgium
2Université libre de Bruxelles (ULB), Brussels,
Belgium

A metaheuristic is a set of concepts that can
be used to define heuristic methods that can be
applied to a wide set of different problems. In
other words, a metaheuristic can be seen as a gen-
eral algorithmic framework that can be applied
to different optimization problems with relatively
few modifications. Examples of metaheuristics
include simulated annealing, tabu search, iterated
local search, evolutionary algorithms, and ant
colony optimization.

http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_34
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_954

818 Metalearning

Metalearning

Pavel Brazdil2, Ricardo Vilalta3, Christophe
Giraud-Carrier4, and Carlos Soares1;2

1LIAAD-INESC Porto L.A./Faculdade de
Economia, University of Porto, Porto,
Portugal
2LIAAD-INESC Tec/Faculdade de Economia,
University of Porto, Porto, Portugal
3Department of Computer Science, University of
Houston, Houston, TX, USA
4Department of Computer Science, Brigham
Young University, Provo, UT, USA

Abstract

In the area machine learning / data mining
many diverse algorithms are available nowa-
days and hence the selection of the most suit-
able algorithm may be a challenge. Tbhis is
aggravated by the fact that many algorithms
require that certain parameters be set. If a
wrong algorithm and/or parameter configu-
ration is selected, substandard results may
be obtained. The topic of metalearning aims
to facilitate this task. Metalearning typically
proceeds in two phases. First, a given set of
algorithms A (e.g. classification algorithms)
and datasets D is identified and different pairs
<ai,dj> from these two sets are chosen for
testing. The dataset di is described by certain
meta-features which together with the per-
formance result of algorithm ai constitute a
part of the metadata. In the second phase the
metadata is used to construct a model, usually
again with recourse to machine learning meth-
ods. The model represents a generalization
of various base-level experiments. The model
can then be applied to the new dataset to
recommend the most suitable algorithm or a
ranking ordered by relative performance. This
article provides more details about this area.
Besides, it discusses also how the method can
be combined with hyperparameter optimiza-
tion and extended to sequences of operations
(workflows).

Synonyms

Adaptive learning; Dynamic selection of bias;
Hyperparameter optimization; Learning to learn;
Selection of algorithms, Ranking learning meth-
ods; Self-adaptive systems

Definition

Metalearning allows machine learning systems
to benefit from their repetitive application. If a
learning system fails to perform efficiently, one
would expect the learning mechanism itself to
adapt in case the same task is presented again.
Metalearning differs from base learning in the
scope of the level of adaptation; whereas learning
at the base level is focused on accumulating
experience on a specific task (e.g., credit rat-
ing, medical diagnosis, mine-rock discrimination,
fraud detection, etc.), learning at the meta-level
is concerned with accumulating experience on
the performance of multiple applications of a
learning system.

Briefly stated, the field of metalearning ex-
ploits the relation between tasks or domains and
learning algorithms. Rather than starting afresh
on each new task, metalearning facilitates evalu-
ation and comparison of learning algorithms on
many different previous tasks, establishes ben-
efits and disadvantages, and then recommends
the learning algorithm, or combination of algo-
rithms, that maximizes some utility function on
the new task. This problem can be seen as an
instance of the algorithm selection task (Rice
1976).

The utility or usefulness of a given learn-
ing algorithm is often determined through
a mapping between a characterization of
the task and the algorithm’s estimated per-
formance (Brazdil and Henery 1994). In
general, metalearning can recommend more
than one algorithm. Typically, the num-
ber of recommended algorithms is sig-
nificantly smaller than the number of all
possible (available) algorithms (Brazdil et al.
2009).

http://dx.doi.org/10.1007/978-1-4899-7687-1_100005
http://dx.doi.org/10.1007/978-1-4899-7687-1_100128
http://dx.doi.org/10.1007/978-1-4899-7687-1_100200
http://dx.doi.org/10.1007/978-1-4899-7687-1_100259
http://dx.doi.org/10.1007/978-1-4899-7687-1_100419
http://dx.doi.org/10.1007/978-1-4899-7687-1_100420

Metalearning 819

M

Motivation and Background

The application of machine learning systems to
classification and regression tasks has become a
standard, not only in research but also in com-
merce and industry (e.g., finance, medicine, and
engineering). However, most successful applica-
tions are custom designed, the result of skillful
use of human expertise. This is due, in part, to the
large, ever-increasing number of available ma-
chine learning systems, their relative complexity,
and the lack of systematic methods for discrimi-
nating among them. The problem is further com-
pounded by the fact that, in Knowledge Discov-
ery from Databases, each operational phase (e.g.,
pre-processing, model generation) may involve a
choice among various possible alternatives (e.g.,
progressive vs. random sampling, neural network
vs. decision tree learning), as observed by Bern-
stein et al. (2005).

Current data mining systems are only as pow-
erful as their users. These tools provide multi-
ple algorithms within a single system, but the
selection and combination of these algorithms
must be performed before the system is invoked,
generally by an expert user. For some researchers,
the choice of learning and data transformation
algorithms should be fully automated if machine
learning systems are to be of any use to nonspe-
cialists. Others claim that full automation of the
data mining process is not within the reach of
current technology. An intermediate solution is
the design of assistant systems aimed at helping
to select the right learning algorithm(s). What-
ever the proposed solution, there seems to be an
implicit agreement that metaknowledge should
be integrated seamlessly into the data mining
system. Metalearning focuses on the design and
application of learning algorithms to acquire and
use metaknowledge to assist machine learning
users with the process of model selection. A
general framework for this purpose, together with
a survey of approaches, is in Smith-Miles (2008).

Metalearning is often seen as a way of redefin-
ing the space of inductive hypotheses searched by
the learning algorithm(s). This issue is related to
the idea of � search bias, that is, search factors
that affect the definition or selection of induc-

tive hypotheses (Mitchell 1997). In this sense,
metalearning studies how to choose the right
bias dynamically and thus differs from base-level
learning, where the bias is fixed or user param-
eterized. Metalearning can also be viewed as an
important feature of self-adaptive systems, that
is, learning systems that increase in efficiency
through experience (Vilalta and Drissi 2002).

Structure of the Metalearning System

A metalearning system is essentially composed
of two parts. One part is concerned with the ac-
quisition of metaknowledge from machine learn-
ing systems. The other part is concerned with
the application of metaknowledge to new prob-
lems with the objective of identifying an optimal
learning algorithm or technique. The latter part
– application of metaknowledge – can be used
to help select or adapt suitable machine learning
algorithms. So, for instance, if we are dealing
with a � classification task, metaknowledge can
be used to select a suitable � classifier for the new
problem. Once this has been done, one can train
the classifier and apply it to some unclassified
sample for the purpose of class prediction.

In the following sections, we begin by describ-
ing scenarios corresponding to the case when
metaknowledge has already been acquired. We
then provide an explanation of how this knowl-
edge is acquired.

Employing Metaknowledge to Select
Machine Learning Algorithms

The aim of this section is to show that meta-
knowledge can be useful in many different set-
tings. We will start by considering the problem
of selecting suitable machine learning algorithms
from a given set. The problem can be seen as a
search problem. The search space includes the
individual machine learning algorithms, and the
aim is to identify the best algorithm. This process
can be divided into two separate phases. In the
first phase, the aim is to identify a suitable sub-
set of machine learning algorithms based on an

http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_100249

820 Metalearning

Dataset Meta-features

Matching & search

Meta-knowledge base:
- ML/DM algorithms (initial bias),
- Datasets + meta-features,
- Performance

Evaluation method (e.g. CV) +
performance criteria

(a) (b)

(c)

(d)

(e)

(Ordered) subset of
algorithms (new bias)

Evalution & Selection

The best ML/DM algorithm

Metalearning, Fig. 1 Selection of machine learning algorithms: determining the reduced space and selecting the best
alternative

input dataset (Fig. 1a–1b). The selection method
used in this process can exploit metaknowledge
(Fig. 1c). This is in general advantageous, as it
often leads to better choices. In some work the
result of this phase is represented in the form of
a ranked subset of machine learning algorithms
(Fig. 1d). The subset of algorithms represents the
reduced bias space. The ranking (i.e., ordering
of different algorithms) represents the procedural
search bias.

The second phase is used to search through
the reduced space. Each option is evaluated using
a given performance criterion (e.g., accuracy).
Typically, cross-validation is used to identify the
best learning algorithm (Fig. 1e). We note that
metaknowledge does not completely eliminate
the need for the search process but rather provides
a more effective search. The search effectiveness
depends on the quality of metaknowledge.

Input to and Output from the
Metalearning System

A metalearning approach to solving the algorithm
selection problem relies on dataset characteristics
or meta-features that provide some information
to differentiate performance among a given set of
learning algorithms. These include various types
of measures, or meta-features, discussed in detail
below.

Much previous work in dataset characteriza-
tion has concentrated on extracting statistical and
information-theoretic parameters estimated from
the training set. Measures include the number
of classes, the number of features, the ratio of
examples to features, the degree of correlation
between features and target concept, the average
class entropy, etc. (Engels and Theusinger
1998). The disadvantage of this approach is

Metalearning 821

M

that there is a limit to how much information
these meta-features can capture, given that all
these measures are uni- or bilateral measures
only (i.e., they capture relationships between
two attributes only or one attribute and the
class).

Another approach is based on what are called
landmarkers; these are simple and fast learners
(Pfahringer et al. 2000). The accuracy of these
simplified algorithms is used to characterize a
dataset and to identify areas where each type
of learner can be regarded as an expert. An
interesting variation on the theme of landmark-
ing uses information obtained on simplified ver-
sions of the data (e.g., samples). Accuracy results
on these samples serve to characterize individ-
ual datasets and are referred to as subsampling
landmarks.

In principle, any machine learning algorithm
can be used at the meta-level. However, one
important aspect of the metalearning task
is the scarcity of training data. As a result,
many researchers in the past have used lazy
learning methods, such as k-NN, since these
delay the generalization of metadata to the
application phase (Nakhaeizadeh and Schnabl
1997). However, other types of models, such
as neural networks, ranking trees, and bagging
ensembles, have been proposed and proved
rather successful (Sun and Pfahringer 2012,
2013).

There are several possible outputs or types of
model a metalearning system can produce. Some
focus on selecting the best algorithm in the set of
available base learners; some attempt to predict
the actual performance of individual algorithms;
yet others assess the relative performance of dif-
ferent pairs of algorithms; finally, some systems
produce a complete ranking of the base learners
that can then be followed by minimal testing to
identify the truly best algorithm for the user’s
dataset. One significant advantage of ranking
methods is that they offer a next best alternative
if the first algorithm seems to be suboptimal. As
the set of base learners may contain variants of
the same algorithms, and it would be wasteful
to test them all before moving on to other types
of algorithms, a recent approach known as ac-

tive testing has been proposed, which seeks to
identify the most promising algorithm that has a
chance of surpassing the best algorithm identified
so far (Leite et al. 2012).

Acquisition of Metaknowledge

There are two natural ways in which metaknowl-
edge can be acquired. One possibility is to rely
on expert knowledge. Another possibility is to
use an automatic procedure. We explore both
alternatives briefly below.

One way of representing metaknowledge is in
the form of rules that match domain (dataset)
characteristics with machine learning algorithms.
Such rules can be handcrafted, taking into ac-
count theoretical results, human expertise, and
empirical evidence. For example, in decision tree
learning, a heuristic rule can be used to switch
from univariate tests to linear tests if there is a
need to construct non-orthogonal partitions over
the input space. This method has serious disad-
vantages however. First, the resulting rule set is
likely to be incomplete. Second, timely and accu-
rate maintenance of the rule set as new machine
learning algorithms become available is problem-
atic. As a result, most research has focused on
automatic methods.

One other way of acquiring metaknowledge
relies on automatic experimentation. For this we
need a pool of problems (datasets) and a set of
machine learning algorithms that we wish to con-
sider. Then we need to define the experimental
method that determines which alternatives we
should experiment with and in which order (see
Fig. 2 for details).

Suppose we have a dataset (characterized us-
ing certain meta-features), in combination with
certain machine learning algorithms. The com-
bination is assessed using an evaluation method
(e.g., cross-validation) to produce performance
results. The results, together with the characteri-
zation, represent a piece of metadata that is stored
in the metaknowledge base. The process is then
repeated for other combinations of datasets and
algorithms.

822 Metalearning

repository of datasets

algorithm

data
characterization

meta-learning
algorithm

meta-knowledge
for

algorithm selection

meta-
features

algorithm
performance

Metalearning, Fig. 2 Acquisition of metadata for the metaknowledge base

Algorithm Selection and
Hyperparameter Optimization

While this entry describes metalearning in the
context of selecting algorithms for machine learn-
ing, there are a number of other areas, such
as regression, time series forecasting, and opti-
mization (Smith-Miles 2008), where algorithm
selection is important and could benefit from a
similar approach.

Similarly, there has been recent interest in the
optimization community in the problem of hyper-
parameter optimization, wherein one seeks a set
of hyperparameters for a learning algorithm, usu-
ally with the goal of obtaining good generaliza-
tion and consequently low loss (Xu et al. 2008).
Hyperparameter optimization is clearly relevant
to algorithm selection, since most learning al-
gorithms have parameters that can be adjusted
and whose values may affect the performance of
the learner. Historically, metalearning has largely
ignored parameter selection, and hyperparameter
optimization has largely ignored metalearning.
Recent efforts in bringing the two fields together
hold promise.

Applying Metalearning to Workflow
Design for KDD

Much of the work in metalearning has focused
on classification algorithm selection and thus
addressed only a small fraction of the overall data
mining process. In practice, users must not only
select a classification learner but must often also
consider various data pre-processing steps and
other aspects of the process to build what are
actually sequences of operations to apply to their
data, also known as workflows. Several advances
have been made in recent years in this area
(Hilario et al. 2011; Kietz et al. 2012). Usually,
it is possible to distinguish two phases. In the
first phase, the system runs different experiments
that involve different workflows for many diverse
problems. The workflow may be generated au-
tomatically with the recourse to a given ontol-
ogy of operators. The individual problems are
characterized and the performance of different
workflows recorded. This can be compared to
running experiments with a set of classification
algorithms and gathering the metaknowledge. In
the second phase, the system carries out planning

Minimum Description Length Principle 823

M

with the aim of designing a workflow that is likely
to achieve good results. In this phase, a given
ontology of operators can again be exploited. The
expansion of the operators may be guided by the
existing metaknowledge.

The aim is to give preference to the more
promising expansions and generate a ranked list
of viable workflows.

Cross-References

� Inductive Transfer

Recommended Reading

Bernstein A, Provost F, Hill S (2005) Toward in-
telligent assistance for a data mining process: an
ontology-based approach for cost-sensitive classifi-
cation. IEEE Trans Knowl Data Eng 17(4): 503–518

Brazdil P, Henery R (1994) Analysis of results. In:
Michie D, Spiegelhalter DJ, Taylor CC (eds) Ma-
chine learning, neural and statistical classification.
Ellis Horwood, New York

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R
(2009) Metalearning – applications to data mining.
Springer, Berlin

Engels R, Theusinger C (1998) Using a data metric for
offering preprocessing advice in data-mining appli-
cations. In: Proceedings of the 13th European con-
ference on artificial intelligence, Brighton, pp 430–
434

Hilario M, Nguyen P, Do H, Woznica A, Kalousis
A (2011) Ontology-based meta-mining of knowl-
edge discovery workflows. In: Jankowski N et al
(eds) Meta-learning in computational intelligence.
Springer, Berlin/New York

Kietz JU, Serban F, Bernstein A, Fischer S (2012)
Designing KDD-workflows via HTN-planning for
intelligent discovery assistance. In: Vanschoren J
et al (eds) Planning to learn workshop at ECAI-2012
(PlanLearn-2012)

Leite R, Brazdil P, Vanschoren J (2012) Selecting
classification algorithms with active testing. In: Ma-
chine learning and data mining in pattern recogni-
tion. Springer, Berlin/New York, pp 117–131

Mitchell T (1997) Machine learning. McGraw Hill,
New York

Nakhaeizadeh G, Schnabl A (1997) Development of
multi-criteria metrics for evaluation of data mining
algorithms. In: Proceedings of the 3rd international
conference on knowledge discovery and data min-
ing, Newport Beach, pp 37–42

Pfahringer B, Bensusan H, Giraud-Carrier C (2000)
Meta-learning by landmarking various learning al-

gorithms. In: Proceedings of the 17th interna-
tional conference on machine learning, Stanford,
pp 743–750

Rice JR (1976) The algorithm selection problem. Adv
Comput 15:65–118

Smith-Miles KA (2008) Cross-disciplinary perspec-
tives on meta-learning for algorithm selection. ACM
Comput Surv 41(1):6

Sun Q, Pfahringer B (2012) Bagging ensemble selec-
tion for regression. In: Proceedings of the 25th Aus-
tralasian joint conference on artificial intelligence,
Sydney, pp 695–706

Sun Q, Pfahringer B (2013) Pairwise meta-rules for
better meta-learning-based algorithm ranking. Mach
Learn 93(1):141–161

Vilalta R, Drissi Y (2002) A perspective view and
survey of metalearning. Artif Intell Rev 18(2): 77–
95

Xu L, Hutter F, Hoos H, Leyton-Brown K (2008)
Cross-disciplinary perspectives on meta-learning
for algorithm selection. J Artif Intell Res 32: 565–
606

Minimum Cuts

�Graph Clustering

Minimum Description Length
Principle

Teemu Roos
Department of Computer Science, Helsinki
Institute for Information Technology, University
of Helsinki, Helsinki, Finland

Abstract

The minimum description length (MDL) prin-
ciple states that one should prefer the model
that yields the shortest description of the data
when the complexity of the model itself is also
accounted for. MDL provides a versatile ap-
proach to statistical modeling. It is applicable
to model selection and regularization. Modern
versions of MDL lead to robust methods that
are well suited for choosing an appropriate
model complexity based on the data, thus ex-
tracting the maximum amount of information
from the data without over-fitting. The modern

http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_348

824 Minimum Description Length Principle

versions of MDL go well beyond the familiar
k
2 log n formula.

Philosophy

The MDL principle is a formal version of Oc-
cam’s razor. While the Occam’s razor only sug-
gests that between hypotheses that are compatible
with the evidence, one should choose the simplest
one, the MDL principle also quantifies the com-
patibility of the hypotheses with the evidence.
This leads to a trade-off between the complexity
of the hypothesis and its compatibility with the
evidence (“goodness of fit”).

The philosophy of the MDL principle em-
phasizes that the evaluation of the merits of a
model should not be based on its closeness to
a “true” model, whose existence is often impos-
sible to verify, but instead on the data. Inspired
by Solomonoff’s theory of universal induction,
Rissanen postulated that a yardstick of the per-
formance of a statistical model is the probability
it assigns to the data. Since the probability is
intimately related to code length (see below), the
code length provides an equivalent way to mea-
sure performance. The key idea made possible by
the coding interpretation is that the length of the
description of the model itself can be quantified
in the same units as the code length of the data,
namely, bits. Earlier, Wallace and Boulton had
made a similar proposal under the title minimum
message length (MML) (Wallace and Boulton
1968). A fundamental difference between the two
principles is that MML is a Bayesian approach
while MDL is not.

The central tenet in MDL is that the better
one is able to discover the regular features in
the data, the shorter the code length. Showing
that this is indeed the case often requires that we
assume, for the sake of argument, that the data
are generated by a true distribution and verify
the statistical behavior of MDL-based methods
under this assumption. Hence, the emphasis on
the freedom from the assumption of a true model
is more pertinent in the philosophy of MDL than
in the technical analysis carried out in its theory.

Theory

The theory of MDL addresses two kinds of ques-
tions: .i/ the first kind asks what is the shortest
description achievable using a given model class,
i.e., universal data compression; .ii/ the second
kind asks what can be said about the behav-
ior of MDL methods when applied to model
selection and other machine learning and data
mining tasks. The latter kind of questions are
closely related to the theory of statistical esti-
mation and statistical learning theory. We review
the theory related to these two kinds of questions
separately.

Universal Data Compression
As is well known in information theory, the short-
est expected code length achievable by a uniquely
decodable code under a known data source, p�,
is given by the entropy of the source, H.p�/.
The lower bound is achieved by using a code
word of length `�.x/ D � log p�.x/ bits for
each source symbol x. (Here and in the following,
log denotes base-2 logarithm.) Correspondingly,
a code-length function ` is optimal under a source
distribution defined by q.x/ D 2�`.x/. (For the
sake of notational simplicity, we omit a normal-
izing factor C D

P
x 2�`.x/ which is necessary

in case the code is not complete. Likewise, as is
customary in MDL, we ignore the requirement
that code lengths be integers.) These results can
be extended to data sequences whereupon we
write xn D x1 : : : xn to denote a sequence of
length n.

While the case where the source distribution
p� is known can be considered solved in the
sense that the average-case optimal code-length
function `� is easily established as described
above, the case where p� is unknown is more
intricate. Universal data compression studies sim-
ilar lower bounds when the source distribution is
not known or when the goal is not to minimize
the expected code length. For example, when
the source distribution is only known to be in
a given model class (a set of distributions), M,
the goal may be to find a code that minimizes
the worst-case expected code length under any
source distribution p� 2 M. A uniquely decod-

Minimum Description Length Principle 825

M

able code that achieves near-optimal code lengths
with respect to a given model class is said to be
universal.

Rissanen’s groundbreaking 1978 paper (Rissa-
nen 1978) gives a general construction for uni-
versal codes based on two-part codes. A two-part
code first includes a code for encoding a distribu-
tion, q, over source sequences. The second part
encodes the data using a code based on q. The
length of the second part is thus � log q.xn/ bits.
The length of the first part, `.q/, depends on the
complexity of the distribution q, which leads to a
trade-off between complexity measured by `.q/

and goodness of fit measured by log q.x/:

min
q

.`.q/ � log q.xn//: (1)

For parametric models that are defined by a
continuous parameter vector � , a two-part coding
approach requires that the parameters be quan-
tized so that their code length is finite. Rissa-
nen showed that given a k-dimensional para-
metric model class, M D fp� I � 2 ‚ �

R
kg, the optimal quantization of the parameter

space ‚ is achieved by using accuracy of or-
der 1=

p
n for each coordinate, where n is the

sample size. The resulting total code length be-
haves as � log Op.xn/ C k

2 log n C O.1/, where
Op.xn/ D maxfp� .xn/ W � 2 ‚g is the maxi-

mum probability under model class M. Note that
the leading terms of the formula are equivalent
to the Bayesian information criterion (BIC) by
Schwarz (Schwarz 1978). Later, Rissanen also
showed that this is a lower bound on the code
length of any universal code that holds for all
but a measure-zero subset of sources in the given
model class (Rissanen 1986).

The above results have subsequently been
refined by studying the asymptotic and finite-
sample values of the O.1/ residual term for
specific model classes. The resulting formulas
lead to a more accurate characterization of
model complexity, often involving the Fisher
information (Rissanen 1996).

Subsequently, Rissanen and others have
proposed other kinds of universal codes that
are superior to two-part codes. These include

Bayes-type mixture codes that involve a prior dis-
tribution for the unknown parameters (Rissanen
1986), predictive forms of MDL (Rissanen 1984;
Wei 1992), and, most importantly, normalized
maximum likelihood (NML) codes (Yuri
1987; Rissanen 1996). The latter have the
important point-wise minimax property that
they achieve the minimum worst-case point-wise
redundancy:

min
q

max
xn
� log q.xn/C log Op.xn/;

where the maximum is over all possible data
sequences of length n and the minimum is over
all distributions.

Behavior of MDL-Based Learning Methods
The philosophy of MDL suggests that data com-
pression is a measure of the success in discov-
ering regularities in the data, and hence, better
compression implies better modeling. Showing
that this is indeed the case is the second kind of
theory related to MDL.

Barron and Cover proposed the index of re-
solvability as a measure of the hardness of esti-
mating a probabilistic source in a two-part coding
setting (see above) (Barron and Cover 1991). It is
defined as

Rn.p�/ D min
q

�
`.q/

n
CD.p� jj q/

�
;

where p� is the source distribution and
D.p� jj q/ denotes the Kullback-Leibler
divergence between p� and q. Intuitively, a
source is easily estimable if there exists a simple
distribution that is close to the source. The
result by Barron and Cover bounds the Hellinger
distance between the true source distribution and
the distribution Oq minimizing the two-part code
length, Eq. (1), as

d 2
H .p�; Oq/ � O.Rn.p�// in p�-probability:

For model selection problems, consistency is
often defined in relation to a fixed set of alter-
native model classes and a criterion that selects
one of them given the data. If the criterion leads

826 Minimum Description Length Principle

to the simplest model class that contains the true
source distribution, the criterion is said to be
consistent. (Note that the additional requirement
that the selected model class is the simplest one
is needed in order to circumvent a trivial solution
in nested model classes where simpler models
are subsets of more complex model classes.)
There are a large number of results showing
that various MDL-based model selection crite-
ria are consistent; for examples, see the next
section.

Applications

MDL has been applied in a wide range of ap-
plications. It is well suited for model selection
problems where one needs not only to estimate
continuous parameters but also their number and,
more generally, the model structure, based on sta-
tistical data. Other approaches applicable in many
such scenarios include Bayesian methods (in-
cluding minimum message length), cross valida-
tion, and structural risk minimization (see Cross-
References below).

Some example applications include the fol-
lowing:

1. Autoregressive models, Markov chains, and
their generalizations such as tree machines
were among the first model classes studied in
the MDL literature, see Rissanen (1978, 1984)
and Weinberger et al. (1995).

2. Linear regression. Selecting a subset of rele-
vant covariates is a classical example of a situ-
ation involving models of variable complexity,
see Speed and Yu (1993), Wei (1992), and
Rissanen (2000).

3. Discretization of continuous covariates en-
ables the use of learning methods that use
discrete data. The granularity of the discretiza-
tion can be determined by applying MDL,
see Fayyad and Irani (1993).

4. The structure of probabilistic graphical
models encodes conditional independencies
and determines the complexity of the model.
Their structure can be learned by MDL, see,

e.g., Lam and Bacchus (1994) and Silander
et al. (2010)

Future Directions

The development of efficient and computation-
ally tractable codes for practically relevant model
classes is required in order to apply MDL more
commonly in modern statistical applications. The
following are among the most important future
directions:

– While the original k
2 log n formula is still

regularly referred to as “the MDL principle,”
future work should focus on modern formula-
tions involving more advanced codes such as
the NML and its variations.

– There is strong empirical evidence suggesting
that coding strategies with strong minimax
properties lead to robust model selection
methods, see, e.g., Silander et al. (2010).
Tools akin to the index of resolvability are
needed to gain better theoretical under-
standing of the properties of modern MDL
methods.

– Scaling up to modern big data applications,
where model complexity regularization is cru-
cial, requires approximate versions of MDL
with sublinear computational and storage re-
quirements. Predictive MDL is a promising
approach in handling high-throughput stream-
ing data scenarios.

Cross-References

�Cross-Validation
� Inductive Inference
�Learning Graphical Models
�Minimum Message Length
�Model Evaluation
�Occam’s Razor
�Overfitting
�Regularization
� Structural Risk Minimization
�Universal Learning Theory

http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_614
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_799
http://dx.doi.org/10.1007/978-1-4899-7687-1_867

Minimum Message Length 827

M

Recommended Reading

Good review articles on MDL include Barron
et al. (1998); Hansen and Yu (2001). The text-
book by Grünwald (2007) is a comprehensive and
detailed reference covering developments until
2007 Grünwald (2007).

Barron A, Cover T (1991) Minimum complexity den-
sity estimation. IEEE Trans Inf Theory 37(4):1034–
1054

Barron A, Rissanen J, Yu B (1998) The minimum
description length principle in coding and modeling.
IEEE Trans Inf Theory 44:2734–2760

Fayyad U, Irani K (1993) Multi-interval discretization
of continuous-valued attributes for classification
learning. In: Bajczy R (ed) Proceedings of the 13th
International Joint Conference on Artificial Intelli-
gence and Minimum Description Length Principle,
Chambery. Morgan Kauffman

Grünwald P (2007) The Minimum Description Length
Principle. MIT Press, Cambridge

Hansen M, Yu B (2001) Model selection and the
principle of minimum description length. J Am Stat
Assoc 96(454):746–774

Lam W, Bacchus F (1994) Learning Bayesian belief
networks: an approach based on the MDL principle.
Comput Intell 10:269–293

Rissanen J (1978) Modeling by shortest data descrip-
tion. Automatica 14(5):465–658

Rissanen J (1984) Universal coding, information, pre-
diction, and estimation. IEEE Trans Inf Theory
30:629–636

Rissanen J (1986) Stochastic complexity and model-
ing. Ann Stat 14(3):1080–1100

Rissanen J (1996) Fisher information and stocha-
sic complexity. IEEE Trans Inf Theory 42(1):
40–47

Rissanen J (2000) MDL denoising. IEEE Trans Inf
Theory 46(7):2537–2543

Schwarz G (1978) Estimating the dimension of a
model. Ann Stat 6(2):461–464

Silander T, Roos T, Myllymäki P (2010) Learning
locally minimax optimal Bayesian networks. Int J
Approx Reason 51(5):544–557

Speed T, Yu B (1993) Model selection and predic-
tion: normal regression. Ann Inst Stat Math 45(1):
35–54

Wallace C, Boulton D (1968) An information measure
for classification. Comput J 11(2):185–194

Wei C (1992) On predictive least squares principles.
Ann Stat 20(1):1–42

Weinberger M, Rissanen J, Feder M (1995) A univer-
sal finite memory source. IEEE Trans Inf Theory
41(3):643–652

Yuri Shtarkov (1987) Universal sequential coding
of single messages. Probl Inf Transm 23(3):
3–17

Minimum Message Length

Rohan A. Baxter
Australian Taxation Office, Sydney, NSW,
Australia

Abstract

The Minimum Message Length (MML) Prin-
ciple is an information-theoretic approach to
induction, hypothesis testing, model selection,
and statistical inference. MML, which pro-
vides a formal specification for the implemen-
tation of Occam’s Razor, asserts that the ‘best’
explanation of observed data is the shortest.
MML was first published by Chris Wallace
and David Boulton in 1968.

Definition

Minimum message length is a theory of
� inductive inference whereby the preferred
model is the one minimizing the expected
message length required to explain the data with
the prior information.

Given the data represented in a finite binary
string, E, an � explanation of the data is a two-
part �message or binary string encoding the data
to be sent between a sender and receiver. The
first part of the message (the � assertion) states
a hypothesis, model, or theory about the source
of the data. The second part (the � detail) states
those aspects of E which cannot be deduced
from this assertion and prior knowledge. The
sender and receiver are assumed to have agreed
on the prior knowledge, the assertion code, and
the detail code before the message is constructed
and sent. The shared prior knowledge captures
their belief about the data prior to seeing the data
and is needed to provide probabilities or, equiv-
alently, optimum codes, for the set of models.
The assertion and detail codes can be equiva-
lently considered to be the shared language for
describing models (for the assertion code) and for
describing data (for the detail code).

http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_294
http://dx.doi.org/10.1007/978-1-4899-7687-1_535
http://dx.doi.org/10.1007/978-1-4899-7687-1_37
http://dx.doi.org/10.1007/978-1-4899-7687-1_213

828 Minimum Message Length

Minimum Message
Length, Fig. 1 A view of
model selection by MML.
The data is coded assuming
a model and parameters in
the assertion. The model
and parameters are coded
in the assertion. As shown
here, often different models
have same probability,
while the code lengths for
model parameters and data
detail differ between the
different models

Out of all possible models which might be
advanced about the data, MML considers the
best inference as that model which leads to the
shortest explanation. The length of the expla-
nation can be calculated using �Shannon’s in-
formation, L.E/ D � log.P.E//, where L.E/

is the length of the shortest string encoding an
event, E, and P./ is the probability of a message
containing E.

To compare models, we calculate the expla-
nation length for each and prefer the one with
shortest explanation length. Figure 1 shows three
models being evaluated and the different lengths
of the assertion and details for each. Model 2
is preferred as it has the minimum message
length.

Motivation and Background

The original motivation for minimum message
length inductive inference is the idea that the
best explanation of the facts is the shortest
(Wallace and Boulton 1968). By inductive
inference, we mean the selection of a best
model of truth. This goal is distinct from a
best model for prediction of future data or
for choosing a model for making the most
beneficial decisions. In the field of machine
learning, greater focus has been on models for
prediction and decision, but inference of the
best models of truth has an important separate
application.

For discrete models, MML looks like
Bayesian model selection since choosing H to
minimize the explanation length of data X

� log P.H/ � log P.X jH/

D � log.P.H/P.X jH/

is often, but not always, as discussed below,
equivalent to choosing H to maximize the proba-
bility

P.H jX/ W

P.H jX/ D
P.H/P.X jH/

P.X/

where P.X/ is a constant for a given detail code.
For models with real-valued parameters, the

equivalence between MML and Bayesian model
selection always breaks down (Wallace 2005,
p. 117). Stating the P.H/ in a message requires
real-valued parameters in H to be stated to a
limited precision. The MML coding approach
replaces a continuum of possible hypotheses with
a discrete subset of values and assigns a nonzero
prior probability to each discrete theory. The
discrete subsets are chosen to optimize the ex-
pected message length given the prior knowledge
assumptions.

For models with only discrete-valued parame-
ters, the equivalence between MML and Bayesian
model selection may break down if the discrete

http://dx.doi.org/10.1007/978-1-4899-7687-1_968

Minimum Message Length 829

M

values chosen involve the merging of values in
the assumed prior distribution, P.H/ (Wallace
2005, p. 156). This may occur with a small
dataset if the data is insufficient to justify a code-
book distinguishing individual members of H .

Other than a discretized hypothesis space,
MML shares many properties of Bayesian
learning such as sufficiency, avoidance of
overfitting, and consistency (Wallace 2005). One
difference arising from the discretized hypothesis
space is that MML allows inductive inference
to be invariant under arbitrary monotonic
transformations of parameter spaces. The
Bayesian learning options for model choice such
as the maximum a posteriori (MAP) estimate
are not invariant under such transformations.
Other theoretical benefits include consistency
and guarantees against overfitting.

Message lengths of an explanation can be
based on the theory of algorithmic complexity
(Wallace and Dowe 1999), instead of Shannon’s
information. The algorithmic complexity (AC)
of a string with respect to a universal Turing
machine, T, can be related to Shannon’s infor-
mation by regarding T as defining a probability
distribution over binary strings, P.S/, such that

PT .S/ D 2�AC.S/;8S

The connection with algorithmic complexity has
some appeal for applications involving data that
are not random in a probabilistic sense, such as
function approximation where data seems to be
from a deterministic source. In these cases, after
fitting a model, the data residuals can be encoded
using AC randomness, since the probabilistic
sense of randomness does not apply (Wallace
2005, p. 275).

Theory

Strict MML (SMML) estimators refer to the es-
timator functions which exactly minimize the
expected message length (Wallace and Boulton
1975). Most practical MML estimators are not
strict and are discussed in a separate section on
Approximations.

A SMML estimator requires (Dowe et al.
2007):

• X; a data space, and a set of observations from
the data space, fxi W i 2 N g :

• p(xjh), a conditional probability function over
data given a model, h.

• H is a model space. For example, H can be a
simple continuum of known dimension k.

• P.h/: a prior probability density on the pa-
rameter space H :

R
H

P.h/dh D 1.

X; H , and the functions P.h/, p(xjh) are assumed
to be known a priori by both the sender and
receiver of the explanation message. Both the
sender and receiver agree on a code for X; using
knowledge of X; H; p.h/, and f(xjh) only.

The marginal prior probability of the data
x follows from the assumed background
knowledge:

r.x/ D

Z
H

p.xjh/P.h/dh

The SMML estimator is a function m W X ! H W

m.x/ D h which names the model to be selected.
The assertion, being a finite string, can name

at most a countable subset of H . Call the subset
H � D

˚
hj W j D 1; 2; 3; : : :

�
. The choice of H �

implies a coding distribution over H � W f .hj / D

qj > 0 W j D 1; 2; 3; : : : with
P

j qj D 1. So
choice of H �and qj lead to a message length:

� log qj � log p.xjhj /

The sender, given x, will choose an h to make the
explanation short. This choice is described by an
estimator function: m.x/ W X ! H so that the
length of the explanation is

I1.x/ D � log q.m.x// � log p.xjm.x//

and the expected length is (Wallace 2005, p. 155):

I1 D �
X

x2X
r.x/ Œlog q.m.x//

C log p.xi jm.xi //�

830 Minimum Message Length

Consider how to choose H � and coding distribu-
tion qj to minimize I1. This will give the shortest
explanation on average, prior to the sender seeing
the actual data.

Define tj D
˚
x W m.x/ D hj

�
, so that tj is

the set of data which results in assertion hj being
used in the explanation. I1 can now be written as
two terms:

I1 D �
X

hj 2Hstart

� X
xi 2tj

ri

�
log qj

�
X

hj 2Hstart

X
xi 2tj

ri log p.xi jhj /

The first term of I1is minimized by choosing:

qj D
X

xi 2tj

rj

So the coding probability assigned to estimate
hj is the sum of the marginal probabilities of the
data values resulting in hj . It is the probability
that estimate hj will be used in the explanation
based on the assumptions made.

The second term of I1 is the average of the
log likelihood over the data values used in hj .
Dowty (2013) gives a method for calculating the
SMML estimator for a one-dimensional exponen-
tial family of statistical models with a continuous
sufficient statistic. Techniques from differential
geometry may lead to extensions of this work to
linear and logistic regression models. This com-
putational approach does not answer outstanding
questions about the existence or uniqueness of
SMML estimates.

Example with Binomial Distribution

This section describes the SMML estimator for
the binomial distribution. For this problem with
100 independent trials giving success or failure,
we have p.xjp/ D pn.1 � p/100 � s; h.p/ D 1,
where s is the observed number of successes and
p is the unknown probability of success.

We have a SMML estimator minimizing I1 in
Table 1. I1 has 52.068 nits. Note that the partition

Minimum Message Length, Table 1 A SMML esti-
mator for binomial distribution (Wallace 2005; Farr and
Wallace 2002, p. 159)

j s p j

1 0 0

2 1–6 0.035

3 7–17 0.12

4 18–32 0.25

5 33–49 0.41

6 50–66 0.58

7 67–81 0.74

8 82–93 0.875

9 94–99 0.965

10 100 1

pj in Table 1 is not unique due to asymmetry
in having ten partitions of 101 success counts.
Note the difference between the SMML estimate,
pj , and the MAP estimate s

100 in this case. For
example, for 50 observed successes, the MAP
estimate is 0.5, while SMML estimate is 0.58.
With 49 successes, the SMML estimate jumps to
0.41, so it is very discrete. The SMML estimate
spacings are consistent with the expected error
and so the MAP estimates are arguably overly
precise and smooth.

This is less than 0.2 nits more than the optimal
one-part code based on the marginal probability
of the data � log r.x/.

Approximations

SMML estimators are hard to find in practice
and various approximations of SMML estimators
have been suggested. We focus on the quadratic
approximation here, often called the MML
estimator or MML87 (Wallace and Freeman
1987). Other useful approximations have been
developed and are described in Wallace (2005).
The use of approximations in applications re-
quires careful checking of the assumptions made
by the approximation (such as various regularity
conditions) to ensure the desirable theoretical
properties of MML inductive inference still
apply:

Minimum Message Length 831

M

I1.x/ 	� log
f .h0/q

F .h0/
12

C
�
� log p.xjh0/

	
C

0:5F.h0; x/

F.h0/

where F.h/ is the Fisher information:

F.h0/ D �E
@2

.@h0/2
log p.xjh0/

D �
X

x2X
p.xjh0/

@2

.@h0/2
log p.xjh0/

The assumptions are (Wallace and Freeman 1987;
Wallace 2005):

• f(xjh) is approximately quadratic on theta near
its maximum.

• H has a locally Euclidean metric.
• Fisher information is defined everywhere

in H .
• f .h/ and F.h/ vary little over theta of order

1p
F .h/

.

A further approximation has the third term sim-
plify to 0.5 only (Wallace 2005, p. 226) which
assumes F.h; x/ 	 F.h/.

The MML estimator is a discretized MAP es-
timator with the prior P.h/ being discretized as:

f .h0/ 	
P.h0/p
F.h0/

In practice, note that the Fisher information may
be difficult to evaluate. Various approximations
have been made for the Fisher information where
appropriate for particular applications.

Applications

MML estimators have been developed for various
probability distributions such as binomial, multi-
nomial, and Poisson. MML estimators were de-
veloped for densities such as normal, von Mises,
and Student’s T (Wallace 2005). These estimators
and associated coding schemes are then useful

components for addressing more complex model
selection problems in machine learning.

There have been many applications of MML
estimators to model spaces from machine learn-
ing (Wallace 2005; O’Donnell et al. 2006; Allison
2009). We will now briefly note MML applica-
tions for mixture models, regular grammars, deci-
sion trees, and causal nets. MML estimators have
also been developed for multiple linear regression
(Wallace 2005), polynomial regression (Wallace
2005), neural networks (Allison 2009), ARMA
time series, hidden Markov models (Edgoose
and Allison 1999), sequence alignment (Allison
2009), phylogenetic trees (Allison 2009), fac-
tor analysis (Wallace 2005), cut-point estimation
(Wallace 2005), and image segmentation.

Model-Based Clustering or Mixture
Models

Clustering was the first MML application from
Wallace and Boulton’s 1968 paper (Wallace and
Boulton 1968). Some changes to the coding
scheme have occurred over the decades. A
key development was the switch from definite
assignment of classes to things to probabilistic
assignment in the 1980s. The MML model
selection and a particularly efficient search
involving dynamic splitting and merging of
clusters were implemented in a FORTRAN
program called Snob (since it discriminated
between things).

The assertion code consists of:

1. The number of classes
2. For each class

2.1 The population proportion
2.2 Parameters of the statistical distribution

for each attribute (or an insignificant flag)

The detail code consists of, for each datum, the
class to which it belongs, attribute values assum-
ing the distribution parameters of the class. Bits-
back coding is used to partially or probabilisti-
cally assign a class to each datum. This efficiency
is needed to get consistent estimates.

832 Minimum Message Length

Probabilistic Finite-State Machines

Probabilistic finite-state machines can represent
probabilistic regular grammars (Wallace 2005).
A simple assertion code for the discrete FSM
structure, as developed by Wallace and Georgeff,
is the following:

• State the number of states, S , using a prior
P.S/.

• For each state, code the number of arcs leaving
the state, log.KC1/, where KC1 is maximum
number of arcs possible.

• Code the symbols labeling the arcs,

log

�
KC1
c
as

�
.

• For each arc, code the destination state,
as log S .

The number of all states other than state 1 is
arbitrary, so the code permits .S � 1/Š, equal
length, and different descriptions of the same
FSM. This inefficiency can be adjusted for by
subtracting log.S � 1/Š

A candidate detail code used to code the sen-
tences is an incremental code where each tran-
sition from state to state is coded incrementally,
using log nsk C

1
vs
C as where nsk is the number

of times this arc has already been followed and vs

is the number of times the state has already been
left.

This application illustrates some general is-
sues about assertion codes for discrete structures:

1. There can be choices about what to include
in the assertion code or not. For example,
the transition probabilities are not part of the
assertion code above, but could be included,
with adjustments, in an alternative design
(Wallace 2005).

2. Simple approaches with interpretable priors
may be desirable even if using non-optimal
codes. The assumptions made should be val-
idated. For example, arcs between states in
FSMs are usually relatively sparse (a s
 S)
so a uniform distribution is not a sensible prior
here.

3. Redundancy comes from being able to code
equivalent models with different descriptions.
For some model spaces, determining the
equivalence is either not possible or very
expensive computationally.

4. Redundancy can come from the code allowing
description of models that cannot arise.
For example, the example assertion code
could describe a FSM with states with
no arcs.

5. Exhaustive search of model space can only
be done for small FSMs. For larger applica-
tions, the performance of the MML model
selection is conflated with performance of
the necessary search space heuristics. This
issue also occurs with decision trees, causal
nets, etc.

In a particular application, it may be appropriate
to trade-off redundacy with interpretability in
assertion code design.

Decision Trees

Assertion codes for decision trees and graphs
have been developed (Wallace and Patrick 1993;
Wallace 2005). An assertion describes the struc-
ture of the tree, while the detail code describes
the target labels. The number of attributes, the
arity of each attribute, an agreed attribute order,
and probability that a node is a leaf or split node
are assumed known by the sender and receiver.
Like the PFSM transition probabilities, the leaf
class distributions are not explicitly included in
the decision tree model (a point of distinction
from Bayesian tree approaches).

An assertion code can be constructed
by performing a prefix traversal of the tree
describing each node. Describing a node requires
�log 2 P L if it is a leaf and �log 2 P s if it is
a split node. If it is a split node, the attribute
that it splits on must be specified, requiring
log 2 (number of available attributes). If it is
a leaf node, the data distribution model should
be specified. For example, the parameters of a
binomial distribution if the data consists of two
classes.

Minimum Message Length 833

M

Causal Nets (Dai et al. 1997; Neil et al.
1999; O’Donnell et al. 2006)

The assertion code has two parts.
First part: DAG

1. Specify an ordering of variables, log N Š.
2. Specify which of M a possible arcs are

present, log.N.N � 1/=2/ bits on assumption
probability an arc is present is 0.5.

Second part: Parameters
3. For each variable, state the form of conditional

distribution and then the parameters of the
distribution. Then encode all N values of v j
according to the distribution.

Note that the assertion code is intermixed with the
detail code for each variable (Wallace 2005). Fur-
ther adjustments are made to deal with grouping
of causal nets with various equivalences or near
equivalences. This requires a further approxima-
tion because no attempt is made to code the best
representative causal net from the group of causal
nets described (Fig. 2).

Future Directions

There seems a potential for further development
of feasible approximations that maintain the key
SMML properties. The crossover of exciting
new developments in coding theory may also
help with the development of MML estimators.
Examples include stochastic encoding such as
bits-back coding, discovered by Wallace in 1990
(Wallace 1990) and since expanded to many
new application areas showing connections
between MML with variational learning and
ensemble learning (Honkela and Valpola 2004).
Another area is the relationship between
optimum hypothesis discretization and indices
of resolvability and rate-distortion optimization
(Lanterman 2001).

MML estimators will continue to be developed
for the new model spaces that arise in machine
learning. MML relevance seems assured because
with complex models, such as social networks,
the best model is the useful outcome, rather

Minimum Message Length, Fig. 2 Assertion code
lengths for different DAGS using the example coding
scheme

than a prediction or posterior distribution of
networks.

Open-source software using MML estimators
for difference machine learning models is avail-
able (MML software).

Definition of Key Terms Used Above

Inductive inference: Choice of a model, theory,
or hypothesis to express an apparent regularity or
pattern in a body of data about many particular
instances or events.

Explanation: A code with two parts, where the
first part is an assertion code and the second part
is a detail code.

834 Mining a Stream of Opinionated Documents

Assertion: The code or language shared
between the sender and receiver that is used
to describe the model.

Detail: The code or language shared between
the sender and receiver that is used to describe
the data conditional on the asserted model.

Message: A binary sequence conveying infor-
mation is called a message.

Shannon’s information: If a message an-
nounces an event E1 of probability P.E1/, its
information content is � log2 P.E1/. This is also
its length in bits.

Cross-References

�Bayesian Methods
� Inductive Inference
�Minimum Description Length Principle
�Universal Learning Theory

Recommended Reading

Allison L (2009) MML website. http://www.allisons.
org/ll/MML/

Dowe DL, Gardner SB, Oppy G (2007) Bayes not
bust!: why simplicity is no problem for Bayesians.
Brit J Phil Sci 58:709–754

Dowty JG (2013) SMML estimators for 1-
dimensional continuous data. Comput J.
doi:10.1093/comjnl/bxt145

Dai H, Korb KB, Wallace CS, Wu X (1997) A study of
causal discovery with weak links and small samples.
In: Proceedings of fifteenth international joint con-
ference on artificial intelligence. Morgan Kaufman,
San Francisco, pp 1304–1309

Edgoose T, Allison L (1999) MML Markov classifica-
tion of sequential data. Stat Comput 9(4):269–278

Farr GE, Wallace CS (2002) The complexity of
strict minimum message length inference. Comput
J 45(3): 285–292

Grunwald P (2008) The minimum description length
principle. MIT Press, Cambridge

Honkela A, Valpola H (2004) Variational learning
and bits-back coding: an information-theoretic view
to Bayesian learning. IEEE Trans Neural Netw
15(4):800–810

Lanterman AD (2001) Schwarz, Wallace and Rissanen:
intertwining themes in theories of model selection.
Int Stat Rev 69(2):185–212

MML software: www.datamining.monash.edu.au/
software, http://allisons.org/ll/Images/People/
Wallace/FactorSnob/

Neil JR, Wallace CS, Korb KB, Learning Bayesian
networks with restricted interactions, in Laskey and
Prade. In: Proceedings of the fifteenth conference
of uncertainty in artificial intelligence (UAI-99),
Stockholm, pp 486–493

O’Donnell R, Allison L, Korb K (2006) Learning hy-
brid Bayesian networks by MML. Lecture notes in
computer science: AI 2006 – Advances in artificial
intelligence, vol 4304. Springer, Berlin/New York,
pp 192–203

Wallace CS (1990) Classification by minimum-
message length inference. In: Akl SG et al (eds)
Advances in computing and information-ICCI 1990.
No. 468 in lecture notes in computer science.
Springer, Berlin

Wallace CS (2005) Statistical & inductive inference by
MML. Information sciences and statistics. Springer,
New York

Wallace CS, Boulton DM (1968) An information mea-
sure for classification. Comput J 11:185–194

Wallace CS, Boulton DM (1975) An information
measure for single-link classification. Comput J
18(3):236–238

Wallace CS, Dowe DL (1999) Minimum message
length and Kolmogorov complexity. Comput J
42(4):330–337

Wallace CS, Freeman PR (1987) Estimation and in-
ference by compact coding. J. R. Stat. Soc. (Ser B)
49:240–252

Wallace CS, Patrick JD (1993) Coding decision trees.
Mach Learn 11:7–22

Mining a Stream of Opinionated
Documents

�Opinion Stream Mining

Missing Attribute Values

Ivan Bruha
McMaster University, Hamilton, ON, Canada

Synonyms

Missing values; Unknown attribute values; Un-
known values

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_867
http://www.allisons.org/ll/MML/
http://www.allisons.org/ll/MML/
www.datamining.monash.edu.au/software
www.datamining.monash.edu.au/software
http://allisons.org/ll/Images/People/Wallace/FactorSnob/
http://allisons.org/ll/Images/People/Wallace/FactorSnob/
http://dx.doi.org/10.1007/978-1-4899-7687-1_905
http://dx.doi.org/10.1007/978-1-4899-7687-1_100302
http://dx.doi.org/10.1007/978-1-4899-7687-1_100496
http://dx.doi.org/10.1007/978-1-4899-7687-1_100497

Missing Attribute Values 835

M

Definition

When inducing � decision trees or � decision
rules from real-world data, many different aspects
must be taken into account. One important as-
pect, in particular, is the processing of missing
(unknown) � attribute values. In machine learn-
ing (ML), instances (objects, observations) are
usually represented by a list of attribute values;
such a list commonly has a fixed length (i.e., a
fixed number of attributes).

The topic of missing attribute values has been
analyzed in the field of ML in many papers
(Brazdil and Bruha 1992; Bruha and Franek
1996; Karmaker and Kwer 2005; Long and
Zhang 2004; Quinlan 1986, 1989). Grzymala-
Busse (2003) and Li and Cercone (2006) discuss
the treatment of missing attribute values using
the rough set strategies.

There are a few directions in which missing
(unknown) attribute values as well as the
corresponding routines for their processing
may be studied and designed. First, the source
of “unknownness” should be investigated;
there are several such sources (Kononenko
1992):

• A value is missing because it was forgotten or
lost

• A certain attribute is not applicable for a given
instance (e.g., it does not exist for a given
observation)

• An attribute value is irrelevant in a given
context

• For a given observation, the designer of a
training database does not care about the value
of a certain attribute (the so-called dont-care
value)

The first source may represent a random case,
while the remaining ones are of structural char-
acter.

Moreover, it is important to define formu-
las for matching instances (examples) containing
missing attribute values with decision trees and
decision rules as different matching routines vary
in this respect.

Strategies for Missing Value
Processing

The aim of this section is to survey the well-
known strategies for the processing of missing
attribute values. Quinlan (1989) surveys and in-
vestigates quite a few techniques for process-
ing unknown attribute values processing for the
TDIDT family. This chapter first introduces the
seven strategies that are applied in many ML
algorithms. It then discusses particular strategies
for the four paradigms: Top Down Induction
Decision Trees (TDIDT), (also known as the
decision tree paradigm, or divide-and-conquer),
covering paradigm (also known as the decision
rules paradigm), Naive Bayes, and induction of
� association rules. The conclusion compares the
above strategies and then portrays possible direc-
tions in combining these strategies into a more
robust system.

To deal with real-world situations, it is
necessary to process incomplete data – i.e.,
data with missing (unknown) attribute values.
Here we introduce the seven strategies (routines)
for processing missing-attribute-values. They
differ in the style of the solution of their
matching formulae. There are the following
natural ways of dealing with unknown attribute
values:

1. Ignore the example (object, observation) with
missing values: strategy Ignore (I)

2. Consider the missing (unknown) value as an
additional regular value for a given attribute:
strategy Unknown (U) or

3. Substitute the missing (unknown) value for
matching purposes by a suitable value which
is either
• The most common value: strategy Common

(C)
• A proportional fraction: strategy Fraction

(F)
• Any value: strategy Anyvalue (A)
• Random value: strategy Random (Ran)
• A value determined by a ML approach:

strategy Meta-Fill-In (M) of the known
values of the attribute that occur in the
training set

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_201
http://dx.doi.org/10.1007/978-1-4899-7687-1_100496
http://dx.doi.org/10.1007/978-1-4899-7687-1_38

836 Missing Attribute Values

Dealing with missing attribute values is in fact
determined by matching a selector (see the cor-
responding definitions below) with an instance.
A matching procedure of a selector with a fully
specified instance returns the uniform solution:
the instance either matches or not. Dilemmas
arise when a partially defined instance is to be
matched.

We now informally introduce a couple of
definitions. An inductive algorithm generates
a knowledge base (decision tree or a set of
decision rules) from atraining set of K training
examples, each accompanied by its desired
� class Cr ; r D 1; : : : ; R. Examples are formally
represented by N � attributes, which are either
discrete (symbolic) or numerical (continuous).
A discrete attribute An; n D 1 : : : ; N , comprises
J.n/ distinct values V1; : : : ; VJ.n/. A numerical
attribute may attain any value from a continuous
interval. The symbolic/logical ML algorithms
usually process the numerical attributes by
� discretization/fuzzification procedures, either
on-line or off-line; see e.g., Bruha and Berka
(2000).

An example (object, observation) can thus
be expressed as an N-tuple x D Œx1; : : : ; xN �,
involving N attribute values. A selector Sn is
defined as an attribute-value pair of the form
xn D Vj , where Vj is the j th value of the
attribute An (or the j th interval of a numerical
attribute An).

To process missing values, we should know in
advance (for r D 1; : : : ; R; n D 1; : : : ; N; j D

1; : : : ; J.n/):

• The overallabsolute frequencies Fn;j that ex-
press the number of examples exhibiting the
value Vj for each attribute An

• The class-sensitive absolute frequencies
Fr;n;j that express the number of examples
of the class Cr exhibiting the value Vj for
each attribute An

• The overall relative frequencies fn;j of all
known values Vj for each attribute An

• The class-sensitive relative frequencies fr;n;j

of all known values Vj for each attribute An

and for a given class Cr

The underlying idea for learning relies on the
class distribution; i.e., the class-sensitive frequen-
cies (overall and class-sensitive frequencies) are
utilized. As soon as we substitute a missing value
by a suitable one, we take the desired class of
the example into consideration in order not to
increase the noise in the data set. On the other
hand, the overall frequencies are applied within
classification.

We can now define the matching of an exam-
ple x with a selector Sn by the so-called matching
ratio = 0 if xn ¤ Vj

�.x; Sn/fD 1 if xn D Vj g (1)

2 Œ0I 1� if xn is unknown (missing)

A particular value of the matching ratio is de-
termined by the selected routine (strategy) for
missing value processing.

(I) Strategy Ignore: Ignore Missing Values:
This strategy simply ignores examples (in-
stances) with at least one missing attribute value
before learning. Hence, no dilemma arises when
determining matching ratios within learning.
However, this approach does not contribute to
any enhancement of processing of noisy or partly
specified data.

As for classification, a missing value does not
match any regular (known) value of a selector.
Thus, a selector’s matching ratio is equal to 0 for
any missing value. Consequently, only a path of
nodes in a decision tree or a decision rule that
tests only the regular values during classification
may succeed. If there is no such path of nodes
in a decision tree or such a rule has not been
found, then the default principle is applied; i.e.,
the instance with missing value(s) is classified as
belonging to the majority class.

(U) Strategy Unknown: Unknown Value as
a Regular One: An unknown (missing) value
is considered as an additional attribute value.
Hence, the number of values is increased by
one for each attribute that depicts an unknown
value in the training set. The matching ratio of
a selector comprising the test of the selector Sn

and an instance with the nth attribute missing is
equal to 1 if this test (selector) is of the form

http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_221

Missing Attribute Values 837

M

xn D‹ where “?,” represents the missing (un-
known) value.

Note that selectors corresponding to the nu-
merical (continuous) attributes are formed by
tests xn 2 Vj (where Vj is a numerical interval)
or xn D‹.

(C) Strategy Common: The Most Common
Value: This routine needs the class-sensitive ab-
solute frequencies Fr;n;j to be known before the
actual learning process, and the overall frequen-
cies Fn;j before the classification. A missing
value of a discrete attribute An of an example
belonging to the class Cr is replaced by the class-
sensitive common value, which maximizes the
Laplacian formula Fr;n;j C1

Fn;j CR
over j for the given

r and n. If the maximum is reached for more
than one value of An, then the value Vj with
the greatest frequency Fr;n;j is selected as the
common value.

A missing value within the classification is
replaced by the overall common value, which
maximizes Fn;j over the subscript j . Conse-
quently, the matching ratio yields 0 or 1, as every
missing value is substituted by a concrete, known
value.

The Laplacian formula utilized within the
learning phase prefers those attribute values that
are more predictive for a given class, contrary to
the conventional “maximum frequency” scheme.
For instance, let an attribute have two values:
the value V1 with the absolute frequencies [4, 2]
for the classes C1 and C2, and the value V2 with
frequencies [3, 0] for these two classes. Then,
when looking for the most common value of this
attribute for the class C1, the maximum frequency
chooses the value V1 as the most common value,
whereas the Laplacian formula prefers the value
V2 as the more predictive for the class C1.

(F) Strategy Fraction: Split into Proportional
Fractions:

• Learning phase

The learning phase requires that the relative
frequencies fr;n;j above the entire training set
be known. Each example x of class Cr with
a missing value of a discrete attribute An is

substituted by a collection of examples before
the actual learning phase, as follows: the missing
value of An is replaced by all known values Vj

of An and Cr . The weight of each split example
(with the value Vj) is

wj D w.x/ � fr;n;j ; j D 1; : : : ; J.n/

where w(x) is the weight of the original example
x. The weight is assigned by the designer of the
training set and represents the designer’s subjec-
tive judgment of the importance of that particular
example within the entire training set. The match-
ing ratio of the split examples is accomplished by
(1) in a standard way.

If a training example involves more missing
attribute values, then the above splitting is done
for each missing value. Thus, the matching ratio
may rapidly decrease. Therefore, this strategy,
Fraction, should involve a methodology to avoid
explosion of examples, so that only a predefined
number of split examples with the largest weights
is used for replacement of the original example.

• Classification phase

The routine Fraction works for each paradigm
in a different way. In case of a decision tree, the
example with a missing value for a given attribute
An is split along all branches, with the weights
equal to the overall relative frequencies fn;j .

As for the decision rules, the matching ratio
for a selector xn D Vj is defined by (1) as
� D fn;j for a missing value of An. An instance
with a missing value is tested with the conditions
of all the rules, and is attached to the rule whose
condition yields the maximum matching ratio –
i.e., it is assigned to the class of this rule.
(A) Strategy Anyvalue: Any Value Matches:
A missing value matches any existing attribute
value, both in learning and classification.
Therefore, a matching ratio � of any selector
is equal to 1 for any missing value.

It should be noticed that there is no uniform
scheme in machine learning for processing the
“any-value.” In some systems, an example with
a missing value for attribute An is replaced by

838 Missing Attribute Values

J.n/ examples in which the missing value is in
turn substituted by each regular value Vj ; j D

1; : : : ; J.n/. In other systems, the missing “any-
value” is substituted by any first attribute value
involved in a newly generated rule when covered
examples are being removed from the training
set; see Bruha and Franek (1996) for details.
(Ran) Strategy Random: Substitute by Random
Value A missing value of an attribute An is
substituted by a randomly selected value from
the set of its values Vj ; j D 1; : : : ; J.n/. In
case of the numerical attributes, the process used
in the routine Common is first applied, i.e., the
entire numerical range is partitioned into a pre-
specified number of equal-length intervals. A
missing value of the numerical attribute is then
substituted by the mean value of a randomly
selected interval.

At least two possibilities exist in the random
procedure. Either

• A value is randomly chosen according to the
uniform distribution – i.e., all the values have
the same chance

• A value is chosen in conformity with the
value distribution – i.e., the most frequent
value has the greatest chance of being
selected

To illustrate the difference of the strategies Any-
value and Random, consider this scheme. Let
the attribute A have three possible values, V1,
V2, V3 with the relative distribution [0.5, 0.3,
0.2]. (Here, of course, we consider class-sensitive
distribution for the learning phase, overall one for
classification.)

Strategy Anyvalue for TDIDT replaces the
missing value A D‹ by each possible value A D

Vj , j D 1; 2; 3, and these selectors (attribute-
value pairs) are utilized for selecting a new node
(during learning), or pushed down along an exist-
ing decision tree (classi-fication).

Strategy Anyvalue for covering algorithms: if
the corresponding selector in a complex is for
example, A D V3 then the selector A D‹ in
an instance is replaced by A D V3, so that the
matching always succeeds.

Let the pseudo-random number be for exam-
ple, 0.4 in the strategy Random. Then, in the first
case – i.e., uniform distribution (one can con-
sider the relative distribution has been changed
to [0.33, 0.33, 0.33]) – the missing value A D‹ is
replaced by A D V2. In the second possibility –
i.e., the actual distribution – the missing value is
replaced by A D V1.
(M) Strategy Meta Fill In: Use Another Learning
Topology for Substitution: This interesting strat-
egy utilizes another ML algorithm in order to
fill in the missing attribute values. This second
(or meta) learning algorithm uses the remaining
attribute values of a given example (instance,
observation) for determining (inducing) the miss-
ing value of the attribute An. There are several
approaches to this strategy.

The first one was designed by Breiman; it uses
a surrogate split in order to determine the missing
attribute value. We can observe that a surrogate
attribute has the highest correlation with the orig-
inal one.

Quinlan (1989) was the first to introduce the
meta-fill-in strategy; in fact, this method was
proposed by A. Shapiro during their private com-
munication. It builds a decision tree for each
attribute that attempts to derive a value of the
attribute with a missing value for a given instance
in terms of the values of other attributes of the
given instance.

Lakshminarayan et al. (1996) introduced a
more robust approach where a ML technique (na-
mely, C4.5) is used to fill in the missing values.

Ragel and Cremilleux (1998) developed a
fill-in strategy by using the association rules
paradigm. It induces a set of association rules
according to the entire training set. This method
is able to efficiently process the missing attribute
values.

Missing Value Processing Techniques
in Various ML Paradigms

As mentioned above, various missing value
processing techniques have been embedded into
various ML paradigms. We introduce four such
systems.

Missing Attribute Values 839

M

Quinlan (1986, 1989) applied missing value
techniques into ID3, the most famous TDIDT
(decision tree inducing) algorithm. His list ex-
hibits two additional routines that were not dis-
cussed above:

– The evaluation of an attribute uses the rou-
tines I , C , M , and R (i.e., reduce the ap-
parent information gain from evaluating an
attribute by the proportion of training ex-
amples with the missing value for this at-
tribute)

– When partitioning a training set using the
selected attribute, the routines I , U , C , F , A,
M were used

– The classification phase utilizes the strategies
U , C , F , M , and H (i.e., halt the
classification and assign the instance to the
most likely class)

Quinlan then combined the above routine into
triples each representing a different overall strat-
egy; however, not all the possible combinations
of these routines make sense.

His experiments revealed that the strategies
starting with R or C behave reasonably accu-
rately among them the strategy RFF is the best.
Brazdil and Bruha (1992) improved this strategy
for partitioning a training set. They combined
the strategies U and F ; therefore, they call it
R(UF)(UF) strategy.

Bruha and Franek (1996) discusses the embed-
ding of missing value strategies into the covering
algorithm CN4 (Bruha and Kockova 1994), a
large extension of the well-known CN2 (Clark
and Niblett 1989). A condition of a decision rule
has the form:

cmplx D Sq1& : : : &SqM

where Sqm; m D 1; : : : ; M , is the mth selector
testing the j th value Vj of the qmth attribute, (i.e.,
exhibiting the form xqm D Vj). For the purposes
of processing missing values, we need to define
the matching ratio of the example x and the rule’s
condition Cond. (Bruha and Franek 1996) uses
two definitions:

The product of matching ratios of its selectors:

�.x; cmplx/ D w.x/

MY
mD1

�.x; Sqm/ (2)

or their average:

�.x; cmplx/ D
w.x/

M

MX
mD1

�.x; Sqm/; (3)

where w.x/ is the weight of the example x (1
by default), and � on the right-hand side is the
selector’s matching ratio (1).

The Naive Bayes algorithm can process miss-
ing attribute values in a very simple way, because
the probabilities it works with are, in fact, the
relative frequencies discussed above: the class-
sensitive relative frequencies fr;n;j (for the learn-
ing phase) and the overall relative frequencies
fn;j (for the purposes of classification). When
learning relative frequencies, all strategies can
by applied. Only routine Fraction is useless be-
cause it copies the distribution of the rest of a
training set. When classifying an instance with
missing value An D‹, all strategies can be ap-
plied as well. Section Fraction substitutes this
instances with J.n/ instances by each known
attribute value, and each “fractioned” instance
is attached by the weight fn;j , and classified
separately.

Ragel and Cremilleux (1998) present the miss-
ing value processing strategy for the algorithm
that induced � association rules. Their algorithm
uses a modified version of the routine Ignore.
The instances with missing attribute values are
not removed from the training database but the
missing values are ignored (or “hidden”).

The experiments with the above techniques
for handling missing values have revealed the
following. In both decision tree and decision
rules inducing algorithms, the routine Ignore
is evidently the worst strategy. An Interesting
issue is that the association rule inducing
algorithms use its modified version. In case
of the decision tree inducing algorithms, the
strategy Fraction is one of the best; however,
the decision rules inducing algorithms found

http://dx.doi.org/10.1007/978-1-4899-7687-1_38

840 Missing Attribute Values

it not so efficient. The explanation for this
fact is based on different ways of processing
examples in these two paradigms: in TDIDT, all
training examples are eventually incorporated
into the decision tree generated by the learning
algorithm; on the other hand, the covering
paradigm algorithm generates rules that may
not cover all of the examples from the training
set (as some of the examples are found not to be
representable).

Although the routine Unknown is one of the
“winners” (at least in the rule inducing algorithms
and Brazdil and Bruha (1992), it is not quite
clear how one can interpret, on a philosophi-
cal as well as a semantic level, a branch in a
decision tree or a decision rule that involves a
selector with an attribute equal to “?” (missing
value). Strategy Fraction can be faced by “prob-
lems”: if an example/instance exhibits too many
missing values, then this strategy generates too
many “fractioned” examples with very negligible
weights.

One can find out that each dataset has more
or less its own “favorite” routine for processing
missing attribute values. It evidently depends
on the magnitude of noise and the source of
unknownness in each dataset. The problem of
a “favorite” strategy can be solved by various
approaches. One possibility is to create a small
“window” within a training set, and to check the
efficiency of each strategy in this window, and
then choose the most efficient one. Bruha (2003)
discusses another possibility: investigating the
advantages of utilizing the external background
(domain-specific, expert) knowledge on an at-
tribute hierarchical tree.

Also, the concept of the so-called �meta-com-
biner (Fan et al. 1996) can be utilized. A learning
algorithm processes a given training base for
each strategy for missing values independently;
thus, all the missing value strategies are utilized
in parallel and the meta-classifier makes up its
decision from the results of the base level (Bruha
2004).

The above issue – i.e., selection or com-
bination of various strategies for missing
value processing – is an open field for future
research.

Recommended Reading

Brazdil PB, Bruha I (1992) A note on processing
missing attribute values: a modified technique. In:
Workshop on machine learning, Canadian confer-
ence AI, Vancouver

Bruha I (2003) Unknown attribute value processing
by domain-specific external expert knowledge. In:
7th WSEAS international conference on systems,
Corfu

Bruha I (2004) Meta-learner for unknown attribute
values processing: dealing with inconsistency of
meta-databases. J Intell Inf Syst 22(1):71–84

Bruha I, Franek F (1996) Comparison of various rou-
tines for unknown attribute value processing: cov-
ering paradigm. Int J Pattern Recognit Artif Intell
10(8):939–955

Bruha I, Berka P (2000) Discretization and fuzzifica-
tion of numerical attributes in attribute-based learn-
ing. In: Szczepaniak PS, Lisboa PJG, Kacprzyk J
(eds) Fuzzy systems in medicine. Physica/Springer,
Heidelberg/New York, pp 112–138

Bruha I, Kockova S (1994) A support for decision
making: cost-sensitive learning system. Artif Intell
Med 6: 67–82

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3:261–283

Fan DW, Chan PK, Stolfo SJ (1996) A comparative
evaluation of combiner and stacked generalization.
In: Workshop integrating multiple learning models,
AAAI, Portland

Grzymala-Busse JW (2003) Rough set strategies to
date with missing attribute values. In: IEEE confer-
ence on proceedings of workshop on foundations
and new directions in data mining, data mining,
pp 56–63

Karmaker A, Kwer S (2005) Incorporating an EM-
approach for handling missing attribute-values in
decision tree induction. In: International conference
on hybrid intelligent systems, pp 6–11

Kononenko I (1992) Combining decisions of multiple
rules. In: du Boulay B, Sgurev V (eds) Artificial
intelligence V: methodology, systems, applications,
pp 87–96. Elsevier

Lakshminarayan K et al (1996) Imputation of missing
data using machine learning techniques. In: Confer-
ence knowledge discovery in databases (KDD-96),
pp 140–145

Li J, Cercone N (2006) Assigning missing attribute
values based on rough sets theory. In: IEEE inter-
national conference on granular computing, Atlanta,
pp 31–37

Long WJ, Zhang WX (2004) A novel measure of
compatibility and methods of missing attribute val-
ues treatment in decision tables. In: International
conference on machine learning and cybernetics,
pp 2356–2360

Quinlan JR (1986) Induction of decision trees. Mach
Learn 1:81–106

http://dx.doi.org/10.1007/978-1-4899-7687-1_536

Mixture Model 841

M

Quinlan JR (1989) Unknown attribute values in ID3.
In: Proceedings of international workshop on ma-
chine learning, pp 164–168

Ragel A, Cremilleux B (1998) Treatment of missing
values for association rules. Lecture Notes in Com-
puter Science, vol 1394, pp 258–270

Missing Values

�Missing Attribute Values

Mistake-Bounded Learning

�Online Learning

Mixture Distribution

�Mixture Model

Mixture Model

Rohan A. Baxter
Australian Taxation Office, Sydney, NSW,
Australia

Abstract

A mixture model is a probability model for
representing subpopulations within a data set.
The mixture model is built up from a weighted
combination of component probability distri-
butions. Mixture models can be estimated by
attribution partial membership to the compo-
nent distributions to individual observations in
the data set.

Synonyms

Finite mixture model; Latent class model;
Mixture distribution; Mixture modeling; Mixture
modeling

Definition

A mixture model is a collection of probability
distributions or densities D1; : : : ; Dk and mixing
weights or proportions W1; : : : ; Wk ,where k is
the number of component distributions (McLach-
lan and Peel 2000; Lindsey 1996; Duda et al.
2000).

The mixture model, P.xjD1; : : : ; Dk ; w1; : : : ;

wk/ D
kP

j D1
wj P.xjDj /, is a probability distribu-

tion over the data conditional on the component
distributions of the mixture and their mixing
weights. Mixture models can be used for density
estimation, model-based clustering or unsuper-
vised learning, and classification.

Figure 1 shows one-dimensional data plotted
along the x-axis with tick marks and a histogram
of that data. The probability densities of two
mixture models fitted to that data are then shown.
The one-component mixture model is a Gaussian
density with mean around 2 and standard devi-
ation of 2:3. The two-component mixture model
has one component with mean around 0 and one
component with mean around 4, which reflects
how these simple example data was artificially
generated. The two-component mixture model
can be used for clustering by considering each of
its components as a cluster and assigning cluster
membership based on the relative probability of a
data item belonging to that component. Data less
than 2 will have higher probability of belonging
to the Gaussian with mean 0 component.

Motivation and Background
Mixture models are easy and convenient to apply.
They trade off good power in data representation
with relative ease in building the models. When
used in clustering, a mixture model will have
a component distribution covering each cluster,
while the mixing weights reflect the relative pro-
portion of a cluster’s population. For example,
a two-component mixture model of seal skull
lengths from two different seal species may have
one component with relative proportion 0:3 and
the other 0:7 reflecting the relative frequency of
the two components.

http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_100173
http://dx.doi.org/10.1007/978-1-4899-7687-1_100242
http://dx.doi.org/10.1007/978-1-4899-7687-1_100304
http://dx.doi.org/10.1007/978-1-4899-7687-1_100306
http://dx.doi.org/10.1007/978-1-4899-7687-1_100306

842 Mixture Model

Mixture Model, Fig. 1
Mixture model example for
one-dimensional data

Estimation

In order to use mixture models, the following
choices need to be made by the modeler or by
the mixture model software, based on the char-
acteristics of a particular problem domain and its
datasets:

1. The type of the component distributions (e.g.,
Gaussian, multinomial, etc.)

2. The number of component distributions, k

3. The parameters for the component distribu-
tions (e.g., a one-dimensional Gaussian has a
mean and standard deviation as parameters,
and a higher dimensional Gaussian has a mean
vector and covariance matrix as parameters)

4. Mixing weights, Wi

5. (Optional) component labels, cj for each da-
tum xj , where j D 1 : : : n and n is the number
of data

The fifth item above, component labels, are op-
tional because they are only used in latent class
mixture model frameworks where a definite com-
ponent membership is part of the model spec-
ification. Other mixture model frameworks use
probabilistic membership of each datum to each
component distribution and so do not need ex-
plicit component labels.

The most common way of fitting distribution
parameters and mixture weights is to use the
expectation-maximization (EM) algorithm to find
the maximum likelihood estimates. The EM al-
gorithm is an iterative algorithm that, starting
with initial guesses of parameter values, com-
putes the mixing weights (the expectation step).
The next step is to then compute the parameter
values based on these weights (the maximization
step). The expectation and maximization steps
iterate and convergence is assured (Redner and
Walker 2004). However there is no guarantee
that a global optimum has been found, and so
a number of random restarts may be required
to find what other optima exist (Xu and Jordan
1996).

As an alternative to random restarts, a good
search strategy can be to modify the current best
solution, perhaps by choosing to split, merge,
delete, or add component distributions at random.
This can also be a way to explore mixture models
with different number of components (Figueiredo
and Jain 2002).

Since mixture models are a probabilistic
model class, besides EM, other methods such
as Bayesian methods or methods for graphical
models can be used. These include Markov chain
Monte Carlo inference and variational learning
(Bishop 2006).

Mixture Model 843

M

Choosing the Number of Components

The number of components in a mixture model
is often unknown when used for clustering real-
world data. There have been many methods for
choosing the number of components. The global
maximum for maximum likelihood chooses a
component for every data item, which is usu-
ally undesirable. Criteria based on information
theory or Bayesian model selection choose rea-
sonable numbers of components in many do-
mains (McLachlan and Peel 2000, Chap 6, 5).
There is no universally accepted method, because
there is no universally accepted optimality crite-
ria for clustering or density estimation. The use
of an infinite mixture model, by using an infinite
number of components, is one way to avoid
the number of component problem (Rasmussen
2000).

Types of Component Distributions

Besides Gaussian, other distributions can be used
such as Poisson (for count data), von Mises (for
data involving directions or angles), and Weibull.
Heavy-tailed distributions require particular care
because standard estimation may not work when
mean or variance is infinite (Dasgupta et al.
2005).

Another commonly needed variation is a mix-
ture model to handle a mix of continuous and
categorical features (McLachlan and Peel 2000).
For example, a binomial distribution can be used
to model male/female gender proportions and
Gaussian to model length for data relating to a
seal species sample.

A further extension is to allow components
to depend on covariates, leading to mixtures of
regression models (McLachlan and Peel 2000).
This leads to models such as mixtures of experts
and hierarchical mixtures of experts (McLachlan
and Peel 2000; Bishop 2006) which are flexi-
ble models for nonlinear regression. The com-
bination of mixture models with hidden Markov
models allows the modeling of dependent data
(McLachlan and Peel 2000).

Large Datasets

The EM algorithm can be modified to find mix-
ture models for very large datasets (Bradley et al.
2000). The modification allows for a single scan
of the data and involves identifying compressible
regions of the data.

Theory
A key issue for mixture models is learnability
(Chaudri 2009). The more the component dis-
tributions overlap, the harder they are to learn.
Higher dimensional data also makes learning
harder. Sometimes, these problems can be over-
come by increasing the data quantity, but, in
extremely hard cases, this will not work (Xu and
Jordan 1996; Srebo et al. 2006).

Another issue is the relationship between ade-
quate sample size and the number of components.
A pragmatic policy is to set minimum mixing
weights for component distributions. For exam-
ple, for a dataset of size 100, if mixing weights
are required to be greater than 0.1, this implies
a maximum of ten components that are possible
to be learned from the data with these parameter
settings.

Applications
Mixture model software is often available in the
clustering or density estimation parts of general
statistical and data mining software. More spe-
cialized mixture modeling software for clustering
data has included Autoclass (Autoclass 2010),
Snob (Snob 2010), and mclust (Mclust 2010).

Definition of Key Terms Used Above
Probability distribution: This is the probability
for each value of a random variable with discrete
values.
Probability density: This is a function of a contin-
uous random variable that describes probability at
a given point in the variable space.
Gaussian distribution: A bell-shaped probability
density function with a peak at the mean. It has
two parameters: the mean to give the location of
the peak and the standard deviation to describe
the width of the bell-shaped curve.

844 Mixture Modeling

Mixing weights: These are the parameters of the
mixture model giving the relative weights of each
component distribution. The weights are between
0 and 1 and must sum to 1. In clustering applica-
tions, the mixing weights can be interpreted as the
relative size of a cluster compared to the whole
population.

Cross-References

�Density-Based Clustering
�Density Estimation
�Expectation Maximization Clustering
�Gaussian Distribution
�Graphical Models
�Learning Graphical Models
�Markov Chain Monte Carlo
�Model-based Clustering
�Unsupervised Learning

Recommended Reading

Autoclass (2010) http://ti.arc.nasa.gov/project/
autoclass/. Last Accessed 22 Mar 2010

Bishop CM (2006) Pattern recognition and machine
learning. Springer, New York

Bradley PS, Reina CA, Fayyad UM (2000) Clustering
very large databases using EM mixture models. In:
15th international conference on pattern recogni-
tion, vol 2. Barcelona, pp 2076

Chaudri K (2010) Learning mixture models. http://
themachinelearningforum.org/index.php/overviews/
34-colt-overviews/53-learning-mixture-models.html.
June 2009, Last Accessed 21 Mar 2010

Dasgupta A, Hopcroft J, Kleinberg J, Sandler M (2005)
On learning mixtures of heavy-tailed distributions.
In: Proceedings of foundations of computer science,
Pittsburg

Duda RO, Hart PE, Stork DG (2000) Pattern classifica-
tion, 2nd edn. Wiley-Interscience, New York

Figueiredo MAT, Jain AT (2002) Unsupervised learn-
ing of finite mixture models. IEEE Trans Pattern
Anal Mach Intell 24:381–396

Lindsey BG (1996) Mixture models: theory, geometry
and applications. IMS Publishers, Hayward

McLachlan GJ, Peel D (2000) Finite mixture models.
Wiley, New York

Mclust (2010) http://www.stat.washington.edu/
mclust/. Last Accessed 22 Mar 2010

Rasmussen CE (2000) The infinite Gaussian mixture
model. In: NIPS 12. MIT Press, Cambridge, pp 554–
560

Redner RA, Walker HF (2004) Mixture densities, max-
imum likelihood and the EM algorithm. SIAM Rev
26:195–239

Snob (2010) http://www.datamining.monash.
edu.au/software/snob/. Last Accessed 22 Mar
2010

Srebo N, Shakhnarovich G, Roweis S (2006) An inves-
tigation of computational and informational limits
in Gaussian mixture modeling. In: Proceedings of
ICML, Pittsburgh

Xu L, Jordan MI (1996) On convergence properties
of the EM algorithm for Gaussian mixtures. Neural
Comput 8:129–151

Mixture Modeling

�Mixture Model

Mode Analysis

�Density-Based Clustering

Model Assessment

�Model Evaluation

Model Evaluation

Geoffrey I. Webb
Faculty of Information Technology, Monash
Clayton, Victoria, Australia

Abstract

Model evaluation is the process of assessing a
property or properties of a model.

Synonyms

Evaluation of model performance; Model assess-
ment; Assessment of model performance

http://dx.doi.org/10.1007/978-1-4899-7687-1_70
http://dx.doi.org/10.1007/978-1-4899-7687-1_210
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_554
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://ti.arc.nasa.gov/project/autoclass/
http://ti.arc.nasa.gov/project/autoclass/
http://themachinelearningforum.org/index.php/overviews/34-colt-overviews/53-learning-mixture-models.html
http://www.stat.washington.edu/mclust/
http://www.stat.washington.edu/mclust/
http://www.datamining.monash.edu.au/software/snob/
http://www.datamining.monash.edu.au/software/snob/
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_70
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_100145
http://dx.doi.org/10.1007/978-1-4899-7687-1_100308
http://dx.doi.org/10.1007/978-1-4899-7687-1_100022

Model Trees 845

M

Motivation and Background

It is often valuable to assess the efficacy of a
model that has been learned. Such assessment
is frequently relative – an evaluation of which
of several alternative models is best suited to a
specific application.

Processes and Techniques

There are many metrics by which a model may be
assessed. The relative importance of each metric
varies from application to application.

The primary considerations often relate
to predictive efficacy – how useful will the
predictions be in the particular context in which
the model is to be deployed. Measures relating
to predictive efficacy include � accuracy, � lift,
�mean absolute error, �mean squared error,
� negative predictive value, � positive predictive
value, � precision, � recall, � sensitivity,
� specificity, and various metrics based on
�ROC analysis.

Computational issues may also be important,
such as a model’s size or its execution time.

In many applications one of the most
important considerations is the ease with which
the model can be understood by the users
or how consistent is it with the users’ prior
beliefs and understanding of the application
domain.

When assessing the predictive efficacy of a
model learned from data, to obtain a reliable
estimate of its likely performance on new data,
it is essential that it not be assessed by consid-
ering its performance on the data from which
it was learned. A learning algorithm must in-
terpolate appropriate predictions for regions of
the � instance space that are not included in
the training data. It is probable that the inferred
model will be more accurate for those regions
represented in the training data than for those
that are not, and hence predictions are likely
to be less accurate for instances that were not
included in the training data. Estimates that have
been computed on the training data are called
� resubstitution estimates. For example, the error

of a model on the training data from which it was
learned is called resubstitution error.

Algorithm evaluation techniques such as
� cross-validation, � holdout evaluation, and
� bootstrap sampling are designed to provide
more reliable estimates of the accuracy of the
models learned by an algorithm than would be
obtained by assessing them on the training data.

Cross-References

�Algorithm Evaluation
�Overfitting
�ROC Analysis

Recommended Reading

Hastie T, Tibshirani R, Friedman J (2001) The ele-
ments of statistical learning. Springer, New York

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Witten IH, Frank E (2005) Data mining: practical
machine learning tools and techniques, 2nd edn.
Morgan Kaufmann, Amsterdam/Boston

Model Selection

Model selection is the process of choosing an
appropriate mathematical model from a class of
models.

Model Space

�Hypothesis Space

Model Trees

Luı́s Torgo
University of Porto, Porto, Portugal

Synonyms

Functional trees, Linear regression trees, Piece-
wise linear models

http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_474
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_582
http://dx.doi.org/10.1007/978-1-4899-7687-1_100367
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_728
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_977
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_100177
http://dx.doi.org/10.1007/978-1-4899-7687-1_100266
http://dx.doi.org/10.1007/978-1-4899-7687-1_100361

846 Model Trees

Definition

Model trees are supervised learning methods that
obtain a type of tree-based � regression model,
similar to � regression trees, with the particu-
larity of having functional models in the leaves
instead of constants. These methods address mul-
tiple regression problems. In these problems we
are usually given a training sample of n observa-
tions of a target continuous variable Y and of a
vector of p predictor variables, x D X1; � � � ; Xp .
Model trees provide an approximation of an un-
known regression function Y D f .x/ C " with
Y 2 < and " 	 N.0; 	2/. The leaves of these
trees usually contain linear regression models,
although some works also consider other types of
models.

Motivation and Background

Model trees are motivated by the purpose of
overcoming some of the known limitations of
regression trees caused by their piecewise con-
stant approximation. In effect, by using con-
stants at the leaves, regression trees provide a
coarse grained function approximation leading
to poor accuracy in some domains. Model trees
try to overcome this by using more complex
models on the leaves. Trees with linear models
in the leaves were first considered in Breiman
and Meisel (1976) and Friedman (1979). Torgo
(1997) has extended the notion of model trees to
other type of models in the tree leaves, namely,
kernel regression, later extended to other type
of local regression models (Torgo 1999, 2000).
The added complexity of the models used in the
leaves increases the computational complexity of
model trees when compared to regression trees
and also decreases their interpretability. In this
context, several works Chaudhuri et al. (1994),
Dobra and Gehrke (2002), Loh (2002), Malerba
et al. (2002), Natarajan and Pednault (2002),
Torgo (2002), Malerba (2004), Potts and Sammut
(2005), and Vogel et al. (2007) have focussed
on obtaining model trees in a computationally
efficient form.

Structure of Learning System

Approaches to model trees can be distinguished
along two dimensions: the criterion used to select
the best splits at each node, i.e., the criterion
guiding the partitioning obtained by the tree, and
the type of models used in the leaves. The choices
along the first dimension are mainly driven by
considerations of computational efficiency. In ef-
fect, the selection of the best split node involves
evaluating many candidate splits. The evaluation
of a binary split (the most common splits in tree-
based models) consists in calculating the error
reduction produced by the split, i.e.,

Δ.s; t/ D Err.t/

�

�
ntL

nt

�Err.tL/C
ntR

nt

�Err.tR/

�
(1)

where t is a tree node with sub-nodes tL and tR
originated by the split test s, while nt , ntL , and
ntR are the cardinalities of the respective sets of
observations on each of these nodes, and Err./ is
a function that estimates the error on a node being
defined as

Err.t/ D
1

nt

X
hxi ;yi i2Dt

.yi � g.Dt //
2 (2)

where Dt is the sample of cases in node t , nt is
the cardinality of this set, and g.Dt / is a function
of the cases in node t .

In standard regression trees, the function g./

is the average of the target variable Y , i.e.,
1

nt

P
hxi ;yi i2Dt

yi . This corresponds to assuming
a constant model on each leaf of the tree.
The evaluation of each candidate split requires
obtaining the models at the respective left and
right branches (Eq. 1). If this model is an average,
rather efficient incremental algorithms can be
used to evaluate all candidate splits. On the
contrary, if g./ is a linear regression model or
even other more complex models, this evaluation
is not so simple, and it is computationally very
demanding, as a result of which systems that use
this strategy (Karalic 1992) become impractical

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_717

Model Trees 847

M

for large problems. In this context, several
authors have adopted the alternative of growing
the trees assuming constant values in the leaves
and then fitting the complex models on each of
the obtained leaves (e.g. Quinlan 1992; Torgo
1997, 1999, 2000). This only requires fitting as
many models as there are leaves in the final tree.
The main drawback of this approach is that the
splits for the tree nodes are selected assuming the
leaves will have averages instead of the models
that in effect will be used. This may lead to splits
that are suboptimal for the models that will be
fit on each leaf (Malerba et al. 2002; Malerba
2004). Several authors have tried to maintain
the consistency of the split selection step with
the models used in the leaves by proposing
efficient algorithms for evaluating the different
splits. In Malerba et al. (2002) and Malerba
(2004) linear models are obtained in a stepwise
manner during tree growth. In Chaudhuri et al.
(1994), Loh (2002), and Dobra and Gehrke
(2002) the computational complexity is reduced
by transforming the original regression problem
into a classification problem. In effect, the best
split is chosen by looking at the distribution of
the sign of the residuals of a linear model fitted
locally. In Torgo (2002), Natarajan and Pednault
(2002), and Vogel et al. (2007) the problem is
addressed by proposing more efficient algorithms
to evaluate all candidate splits. Finally, Potts
and Sammut (2005) proposes an incremental
algorithm to obtain model trees that fights the
complexity of this task by imposing a limit on
the number of splits that are considered for each
node.

The most common form of model used in
leaves is � linear regression. Still, there are sys-
tems considering kernel models (Torgo 1997),
local linear models (Torgo 1999), and partial lin-
ear models (Torgo 2000). These alternatives pro-
vide smoother function approximation, although
with increased computational costs and less inter-
pretable models.

� Pruning in model trees does not bring any
additional challenges when compared to standard
regression trees, and so similar methods are used
for this over-fitting avoidance task. The same
occurs with the use of model trees for obtain-

ing predictions for new test cases. Each case is
“dropped down” the tree from the root node,
following the branches according to the logical
tests in the nodes, till a leaf is reached. The model
in this leaf is used to obtain the prediction for the
test case.

Cross References

�Random Forests
�Regression
�Regression Trees
� Supervised Learning
�Training Data

Recommended Reading

Breiman L, Meisel WS (1976) General estimates of the
intrinsic variability of data in nonlinear regression
models. J Am Stat Assoc 71:301–307

Chaudhuri P, Huang M, Loh W, Yao R (1994)
Piecewise-polynomial regression trees. Stat Sin
4:143–167

Dobra A, Gehrke JE (2002) Secret: a scalable linear
regression tree algorithm. In: Proceedings of the 8th
ACM SIGKDD international conference on knowl-
edge discovery and data mining, Edmonton

Friedman J (1979) A tree-structured approach to non-
parametric multiple regression. In: Gasser T, Rosen-
blatt M (eds) Smoothing techniques for curve es-
timation. Lecture notes in mathematics, vol 757.
Springer, Berlin/New York, pp 5–22

Karalic A (1992) Employing linear regression in re-
gression tree leaves. In Proceedings of ECAI-92,
Vienna. Wiley & Sons

Loh W (2002) Regression trees with unbiased vari-
able selection and interaction detection. Stat Sin
12:361–386

Malerba D, Appice A, Ceci M, Monopoli M (2002)
Trading-off local versus global effects of regression
nodes in model trees. In: ISMIS’02: proceedings of
the 13th international symposium on foundations of
intelligent systems, Lyon. Springer, pp 393–402

Malerba D, Esposito F, Ceci M, Appice A (2004)
Top-down induction of model trees with regression
and splitting nodes. IEEE Trans Pattern Anal Mach
Intell 26(5):612–625

Natarajan R, Pednault E (2002) Segmented regression
estimators for massive data sets. In: Proceedings of
the second SIAM international conference on data
mining (SDM’02), Arlington

Potts D, Sammut C (2005) Incremental learning of
linear model trees. Mach Learn 61(1–3):5–48

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_840

848 Model-Based Clustering

Quinlan J (1992) Learning with continuous classes.
In: Adams, Sterling (eds) Proceedings of AI’92,
Hobart. World Scientific, pp 343–348

Torgo L (1997) Functional models for regression
tree leaves. In: Fisher D (ed) Proceedings of the
14th international conference on machine learning,
Nashville. Morgan Kaufmann Publishers

Torgo L (1999) Inductive learning of tree-based re-
gression models. Ph.D. thesis, Faculty of Sciences,
University of Porto

Torgo L (2000) Partial linear trees. In: Langley P (ed)
Proceedings of the 17th International Conference on
Machine Learning (ICML 2000), Stanford. Morgan
Kaufmann Publishers, pp 1007–1014

Torgo L (2002) Computationally efficient linear re-
gression trees. In: Jajuga K, Sokolowski A, Bock
H (eds) Classification, clustering and data analysis:
recent advances and applications (Proceedings of
IFCS 2002). Studies in classification, data analysis,
and knowledge organization. Springer, Berlin/New
York, pp 409–415

Vogel D, Asparouhov O, Scheffer T (2007) Scalable
look-ahead linear regression trees. In: KDD’07: pro-
ceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, San Jose. ACM, pp 757–764

Model-Based Clustering

Arindam Banerjee and Hanhuai Shan
University of Minnesota, Minneapolis, MN,
USA

Definition

Model-based clustering is a statistical approach
to data clustering. The observed (multivariate)
data is assumed to have been generated from a fi-
nite mixture of component models. Each compo-
nent model is a probability distribution, typically
a parametric multivariate distribution. For exam-
ple, in a multivariate Gaussian mixture model,
each component is a multivariate Gaussian distri-
bution. The component responsible for generat-
ing a particular observation determines the cluster
to which the observation belongs. However, the
component generating each observation as well
as the parameters for each of the component
distributions are unknown. The key learning task
is to determine the component responsible for

generating each observation, which in turn gives
the clustering of the data. Ideally, observations
generated from the same component are inferred
to belong to the same cluster. In addition to infer-
ring the component assignment of observations,
most popular learning approaches also estimate
the parameters of each component in the pro-
cess. The strength and popularity of the methods
stem from the fact that they are applicable for a
wide variety of data types, such as multivariate,
categorical, sequential, etc., as long as suitable
component generative models can be constructed.
Such methods have found applications in several
domains such as text clustering, image process-
ing, computational biology, and climate sciences.

Structure of Learning System

Generative Model
Let X D fx1; : : : ; xng be a dataset on
which a k-clustering is to be performed. Let
p.xj�1/; : : : ; p.xj�k/ be k distributions which
form the components of the mixture model
from which the observed data is assumed to
have been generated, and let � D .�1; : : : ; �k/

denote a prior distribution over the components.
Then ‚ D .�; �/ constitutes the (unknown)
parameters of the generative mixture model,
where � D f�1; : : : ; �kg and � D f�1; : : : ; �kg.

Given the model, an observation is assumed to
be generated by the following two-step process:
(1) randomly pick a component following the dis-
crete distribution � over the components, i.e., the
hth component is chosen with the probability of
�h; (2) the observation is sampled from the com-
ponent distribution, e.g., if the hth component
was chosen, we draw a sample x � p.xj �h/.
Each observation is assumed to be statistically
independent so that they are all generated inde-
pendently following the same two-step process.

Figure 1 gives an example of data drawn
from a mixture of three (k D 3) 2-dimentional
multivariate Gaussians. In the example, the dis-
crete distribution over the component Gaussians
is given by � D .0:2; 0:3; 0:5/. The parameter
set �h, h D 1; 2; 3 for any individual multivariate
Gaussian consists of the mean vector �h and the

Model-Based Clustering 849

M

0 5 10 15

−2

0

2

4

6

8

10

12

x1

x 2

1

2

3

Model-Based Clustering, Fig. 1 Three 2-dimensional
Gaussians

z1 z2 zn

x1 x2 xn

1...k

Model-Based Clustering, Fig. 2 Bayesian network for
a finite mixture model

covariance matrix †h. For the example, we have
�1 D Œ1; 2�; �2 D Œ7; 8�; �3 D Œ16; 3�, and †1 D�

:3 0:5196
0:5196 1

�
, †2 D

�
4 �1:7321
�1:7321 3

�
,

†3 D

�
3 3:0984
3:0984 5

�
.

The generative process could be represented
as a Bayesian network as shown in Fig. 2, where
the arrows denote the dependencies among vari-
ables/parameters. In the Bayesian network, (�; �)
are the parameters of the mixture model, xi are
the observations and ´i are the latent variables
corresponding to the component which generates
xi , i D 1; : : : ; n. To generate an observation
xi , the model first samples a latent variable ´i

from the discrete distribution � , and then samples
the observation xi from component distribution
p.xj�´i /.

Learning
Given a set of observations X D fx1; : : : ; xng

assumed to have been generated from a finite
mixture model, the learning task is to infer the
latent variables ´i for each observation as well as
estimate the model parameters ‚ D .�; �/. In the
Gaussian mixture model example, the goal would
be to infer the component responsible for gen-
erating each observation and estimate the mean
and covariance for each component Gaussian as
well as the discrete distribution � over the three
Gaussians. After learning model parameters, the
posterior probability p.hjxi ; ‚/ of each observa-
tion xi belonging to each component Gaussian
gives a (soft) clustering for the observation.

The most popular approach for learning mix-
ture models is based on maximum likelihood
estimation (MLE) of the model parameters. In
particular, given the set of observations X , one
estimates the set of model parameters which
maximizes the (log-)likelihood of observing the
entire dataset X . For the finite mixture model, the
likelihood of observing any data point xi is given
by

p.xi j‚/ D

kX
hD1

�hp.xi j�h/: (1)

Since the data points in X are assumed to be
statistically independent, the log-likelihood. (In
practice, one typically focuses on maximizing the
log-likelihood log p.X j‚/ instead of the likeli-
hood p.X j‚/ due to both numerical stability and
analytical tractability). of observing the entire
dataset X is given by

log p.X j‚/ D log

nY

iD1

p.xi j�; �/

!

nX
iD1

log

kX

hD1

�hp.xi j�h/

!
: (2)

A direct application of MLE is difficult since
the log-likelihood cannot be directly optimized
with respect to the model parameters. The stan-
dard approach to work around this issue is to
use the expectation maximization (EM) algo-

850 Model-Based Clustering

rithm which entails maximizing a tractable lower
bound to the log-likelihood logp.X j‚/. To this
end, a latent variable ´i is explicitly introduced
for each xi to inform the component that xi

is generated from. The joint distribution of (xi ,
´i) is p.xi ; ´i j��/ D �´i p.xi j�´i /. Let Z D

f´1; : : : ; ´ng denote the set of latent variables
corresponding to X D fx1; : : : ; xng. The joint
log-likelihood of (X , Z) then becomes

log p.X; Zj‚/ D

nX
iD1

log p.xi ; ´i j‚/

D

nX
iD1

.log �´i C log p.xi j�´i //:

(3)

For a given set Z, it is easy to directly opti-
mize (3) with respect to the parameters ‚ D

.�; �). However, Z is actually a random vector
whose exact value is unknown. Hence, the log-
likelihood logp.X; Zj‚/ is a random variable
depending on the distribution of Z. As a result,
EM focuses on optimizing the following lower
bound based on the expectation of logp.X; Zj‚/

where the expectation is taken with respect to
some distribution p.Z/ over the latent variable
set Z. In particular, for any distribution q.Z/, we
consider the lower bound

L.q; ‚/ D E´�qŒlog p.X; Zj�/�CH.q.Z//;

(4)

where the expectation on the first term is with
respect to the posterior distribution q.Z/ and
H.q.Z// denotes the Shannon entropy of the
latent variable set Z � q.Z/. A direct calculation
shows that the difference between the true log-
likelihood in (2) and the lower bound in (4) is
exactly the relative entropy between q.Z/ and the
posterior distribution p.ZjX; ‚/, i.e.,

log p.X j‚/�L.q; ‚/

D KL.q.Z/kp.ZjX; ‚// � 0
(5)

) log p.X j‚/ � L.q; ‚/; (6)

where KL.jj/ denotes the KL-divergence or
relative entropy. As a result, when q.Z/ D

p.ZjX; ‚/, the lower bound is exactly
equal to the log-likelihood logp.X j‚/. EM
algorithms for learning mixture models work
by alternately optimizing the lower bound
L.q; ‚/ over q and ‚. Starting with an initial
guess ‚.0/ of the parameters, in iteration t

such algorithms perform the following two
steps:

E-step Maximize L.q; ‚.t�1// with respect to
q.Z/ to obtain

q.t/.Z/ D argmaxq.Z/ L.q.Z/; ‚.t�1//

D p.ZjX; ‚.t�1//:

(7)

M-step Maximize L.q.t/; ‚/ with respect to
‚, i.e.,

‚.t/ D arg‚maxL.q.t/.Z/; ‚/; (8)

which is equivalent to

‚.t/ D argmax‚

nX
iD1

E´i Œlog p.xi ; ´i j‚/�

since the second term in (4) does not
depend on ‚.

Model-based clustering of multivariate data
is often performed by learning a Mixture of
Gaussians (MoG) using the EM algorithm. In
a MoG model, the parameters corresponding to
each component are the mean and covariance for
each Gaussian given by (�h; †h/, h D 1; : : : ; k.
For a given dataset X , the EM algorithm for
learning MoG starts with an initial guess ‚.0/ for
the parameters where ‚.0/ D f.�

.0/

h
; �

.0/

h
; †

.0/

h
/,

h D 1; : : : ; kg. At iteration t , the following
updates are done:

E-step Update distributions over latent variables
´i , i D 1; : : : ; n as

Model-Based Clustering 851

M

q.t/.´j D h/ D p.´j D hjxj ; ‚.t�1//

D
�

.t�1/

h
p.xi j�

.t�1/

h
; †

.t�1/

h
; /

†k
h0D1�

.t�1/

h0
p.xi j�

.t�1/

h
; †

.t�1/

h
/
:

(9)

M-step Optimizing the lower bound over
f.�h; �h; †h/, h D 1; : : : ; kg yields

�
.t/

h
D

1

n

nX
iD1

p.hjxj ; ‚.t�1//; (10)

�
.t/

h
D

†n
iD1xi p.hjxi ; ‚.t�1//

n�
.t/

h

; (11)

†
.t/
h

D
†n

iD1.xi � �
.t/
h

/.xi � �
.t/
h

/T p.hjxi ; ‚.t�1//

n�
.t/
h

:

(12)

The iterations are guaranteed to lead to mono-
tonically non decreasing improvements of the
lower bound L.q; ‚/. The iterations are typically
run till a suitable convergence criterion is sat-
isfied. On convergence, one gets the estimates
‚ D f.�h; �h; †h/; h D 1; : : : ; kg of
the component parameters as well as the soft
clustering p.hjxi; ‚/ of individual data points.
The alternating maximization algorithm outlined
above can get stuck in a local minima or saddle
point of the objective function. In general, the
iterations are not guaranteed to converge to a
global optima. In fact, different initializations
‚.0/ of parameters can yield different final re-
sults. In practice, one typically tries a set of
different initializations and picks the best among
them according to the final value of the lower
bound obtained. Extensive empirical research has
gone into devising good initialization schemes for
EM algorithm in the context of learning mixture
models.

Recent years have seen progress in the design
and analysis of provably correct algorithms for
learning mixture models for certain well behaved
distributions, where the component distributions
are assumed to be separated from each other

in a well-defined sense. Such algorithms typi-
cally involve projecting data to a suitable lower-
dimensional space where the components sepa-
rate out and the clustering becomes simpler. One
family of algorithms rely on random projections
and are applicable to variety of problems includ-
ing that of learning mixture of Gaussians. More
recent developments include algorithms based on
spectral projections and are applicable to any log-
concave distri-butions.

Related Work
Model-based clustering is intimately related to a
wide variety of centroid-based partitional cluster-
ing algorithms. In particular, the popular kmeans
clustering algorithm can be viewed as a special
case of learning mixture of Gaussians with a
specific covariance structure. Given a dataset X ,
the kmeans problem is to find a partitioning C D

fC h; h D 1; : : : ; kg of X such that the following
objective is minimized:

J.C / D

kX
hD1

X
x2Ch

kx � �hk
2;

where �h is the mean of the points in Ch. Starting
from an initial guess at the cluster means, the
kmeans algorithm alternates between assigning
points to the nearest cluster and updating the clus-
ter means till convergence. Consider the problem
of learning a mixture of Gaussians on X such
that each Gaussian has a fixed covariance matrixP

h D ˇI , where I is the identity matrix and ˇ >

0 is a constant. Then, as ˇ ! 0, maximizing the
scaled lower bound ˇ L.q; ‚/ corresponding to
the mixture modeling problem becomes equiva-
lent to minimizing the kmeans objective. Further,
the EM algorithm outlined above reduces to the
popular kmeans algorithm. In fact, such a reduc-
tion holds for a much larger class of centroid-
based clustering algorithms based on Bregman
divergences, which are a general class of diver-
gence measures derived from convex function
and have popular divergences such as squared
Euclidean distance and KL-divergence as special
cases. Centroid-based clustering with Bregman
divergences can be viewed as a special case

852 Model-Based Control

of learning mixtures of exponential family dis-
tributions with a reduction similar to the one
from mixture of Gaussians to kmeans. Further,
non linear clustering algorithms such as ker-
nel kmeans can be viewed as a special case
of learning mixture of Gaussians in a Hilbert
space.

Recent years have seen generalizations of mix-
ture models to mixed membership models and
their non parametric extensions. Latent Dirichlet
allocation is an example of such a mixed mem-
bership model for topic modeling in text corpora.
The key novelty of mixed membership models is
that they allow a different component proportions
�x for each observation x instead of a fixed
proportion � as in mixture models. The added
flexibility yields superior performance in certain
problem domains.

Recommended Reading

Banerjee A, Merugu S, Dhillon I, Ghosh J (2005)
Clustering with Bregman divergences. J Mach Learn
Res 6:1705–1749

Bilmes J (1997) A gentle tutorial on the EM algo-
rithm and its application to parameter estimation
for Gaussian mixture and hidden Markov mod-
els. Technical Report ICSI-TR-97-02, University of
Berkeley

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet
allocation. J Mach Learn Res 3:993–1022

Dasgupta S (1999) Learning mixtures of Gaussians.
In: IEEE symposium on foundations of Computer
Science (FOCS). IEEE Press, Washington, DC

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

Kannan R, Salmasian H, Vempala S (2005) The spec-
tral method for general mixture models. In: Confer-
ence on learning theory (COLT)

McLachlan GJ, Krishnan T (1996) The EM algorithm
and extensions. Wiley-Interscience, New York

McLachlan GJ, Peel D (2000) Finite mixture models.
Wiley series in probability and mathematical statis-
tics: applied probability and statistics section. Wiley,
New York

Neal RM, Hinton GE (1998) A view of the EM al-
gorithm that justifies incremental, sparse, and other
variants. In: Jordan MI (ed) Learning in graphical
models (pp 355–368). MIT Press, Cambridge, MA

Redner R, Walker H (1984) Mixture densities, maxi-
mum likelihood and the EM algorithm. SIAM Rev
26(2):195–239

Model-Based Control

� Internal Model Control

Model-Based Reinforcement
Learning

Soumya Ray1 and Prasad Tadepalli2
1Case Western Reserve University, Cleveland,
OH, USA
2School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR,
USA

Synonyms

Indirect reinforcement learning

Definition

Model-based reinforcement learning refers to
learning optimal behavior indirectly by learning
a model of the environment by taking actions and
observing the outcomes that include the next state
and the immediate reward. The models predict
the outcomes of actions and are used in lieu of or
in addition to interaction with the environment to
learn optimal policies.

Motivation and Background

�Reinforcement Learning (RL) refers to learning
to behave optimally in a stochastic environment
by taking actions and receiving rewards (Sutton
and Barto 1998). The environment is assumed
Markovian in that there is a fixed probability
of the next state given the current state and
the agent’s action. The agent also receives an
immediate reward based on the current state and
the action. Models of the next-state distribution
and the immediate rewards are referred to as
“action models” and, in general, are not known
to the learner. The agent’s goal is to take actions,
observe the outcomes including rewards and next

http://dx.doi.org/10.1007/978-1-4899-7687-1_413
http://dx.doi.org/10.1007/978-1-4899-7687-1_100211
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Model-Based Reinforcement Learning 853

M

states, and learn a policy or a mapping from
states to actions that optimizes some performance
measure. Typically the performance measure is
the expected total reward in episodic domains
and the expected average reward per time step
or expected discounted total reward in infinite-
horizon domains.

The theory of �Markov Decision Processes
(MDPs) implies that under fairly general condi-
tions, there is a stationary policy, i.e., a time-
invariant mapping from states to actions, which
maximizes each of the above reward measures.
Moreover, there are MDP solution algorithms,
e.g., value iteration and policy iteration (Puter-
man 1994), which can be used to solve the MDP
exactly given the action models. Assuming that
the number of states is not exceedingly high, this
suggests a straightforward approach for model-
based reinforcement learning. The models can
be learned by interacting with the environment
by taking actions, observing the resulting states
and rewards, and estimating the parameters of
the action models through maximum likelihood
methods. Once the models are estimated to a
desired accuracy, the MDP solution algorithms
can be run to learn the optimal policy.

One weakness of the above approach is that
it seems to suggest that a fairly accurate model
needs to be learned over the entire domain to
learn a good policy. Intuitively it seems that we
should be able to get by without learning highly
accurate models for suboptimal actions. A related
problem is that the method does not suggest how
best to explore the domain, i.e., which states to
visit and which actions to execute to quickly learn
an optimal policy. A third issue is one of scaling
these methods, including model learning, to very
large state spaces with billions of states.

The remaining sections outline some of the
approaches explored in the literature to solve
these problems.

Theory and Methods

Systems that solve MDPs using value-based
methods can take advantage of models in at
least two ways. First, with an accurate model,

they can use offline learning algorithms that
directly solve the modeled MDPs. Second, in
an online setting, they can use the estimated
models to guide exploration and action selection.
Algorithms have been developed that exploit
MDP models in each of these ways. We describe
some such algorithms below.

Common approaches to solving MDPs given
a model are value or policy iteration (Sutton
and Barto 1998; Kaelbling et al. 1996). In these
approaches, the algorithms start with a randomly
initialized value function or policy. In value itera-
tion, the algorithm loops through the state space,
updating the value estimates of each state using
Bellman backups, until convergence. In policy
iteration, the algorithm calculates the value of the
current policy and then loops through the state
space, updating the current policy to be greedy
with respect to the backed up values. This is
repeated until the policy converges.

When the model is unknown but being esti-
mated as learning progresses, we could use value
or policy iteration in the inner loop: after updating
our current model estimate using an observed
sample from the MDP, we could solve the up-
dated MDP offline and take an action based on the
solution. However, this is computationally very
expensive. To gain efficiency, algorithms such
as �Adaptive Real-time Dynamic Programming
(ARTDP) (Barto et al. 1995) and DYNA (Sutton
1990) perform one or more Bellman updates
using the action models after each real-world
action and corresponding update to either a state-
based or state-action-based value function. Other
approaches, such as prioritized sweeping (Moore
and Atkeson 1993) and Queue-Dyna (Peng and
Williams 1993), have considered the problem of
intelligently choosing which states to update after
each iteration.

A different approach to discovering the opti-
mal policy is to use algorithms that calculate the
gradient of the utility measure with respect to
some adjustable policy parameters. The standard
policy gradient approaches that estimate the gra-
dient from immediate rewards suffer from high
variance due to the stochasticity of the domain
and the policy. Wang and Dietterich propose a
model-based policy gradient algorithm that alle-

http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_10

854 Model-Based Reinforcement Learning

viates this problem by learning a partial model
of the domain (Wang and Dietterich 2003). The
partial model is solved to yield the value function
of the current policy and the expected number of
visits to each state, which are then used to derive
the gradient of the policy in closed form. The
authors observe that their approach converges
in many fewer exploratory steps compared with
model-free policy gradient algorithms in a num-
ber of domains including a real-world resource-
controlled scheduling problem.

One of the many challenges in model-based
reinforcement learning is that of efficient explo-
ration of the MDP to learn the dynamics and the
rewards. In the “Explicit Explore and Exploit”
or E3 algorithm, the agent explicitly decides
between exploiting the known part of the MDP
and optimally trying to reach the unknown part of
the MDP (exploration) (Kearns and Singh 2002).
During exploration, it uses the idea of “balanced
wandering,” where the least executed action in
the current state is preferred until all actions are
executed a certain number of times. In contrast,
the R-Max algorithm implicitly chooses between
exploration and exploitation by using the prin-
ciple of “optimism under uncertainty” (Brafman
and Tennenholtz 2002). The idea here is to ini-
tialize the model parameters optimistically so that
all unexplored actions in all states are assumed
to reach a fictitious state that yields maximum
possible reward from then on regardless of which
action is taken. Both these algorithms are guaran-
teed to find models whose approximate policies
are close to the optimal with high probability in
time polynomial in the size and mixing time of
the MDP.

Since a table-based representation of the
model is impractical in large state spaces,
efficient model-based learning depends on com-
pact parameterization of the models. Dynamic
Bayesian networks offer an elegant way to
represent action models compactly by exploiting
conditional independence relationships and have
been shown to lead to fast convergence of models
(Tadepalli and Ok 1998). In some cases, choosing
an appropriate prior distribution over model
parameters can be important and lead to faster
learning. In recent work, the acquisition of a

model prior has been investigated in a multitask
setting (Wilson et al. 2007). In this work, the
authors use a hierarchical Bayesian model to
represent classes of MDPs. Given observations
from a new MDP, the algorithm uses the model
to infer an appropriate class (creating a new
class if none seem appropriate). It then uses the
distributions governing the inferred class as a
prior to guide exploration in the new MDP. This
approach is able to significantly speed up the
rate of convergence to optimal policy as more
environments are seen.

In recent work, researchers have explored the
possibility of using approximate models cou-
pled with policy gradient approaches to solve
hard control problems (Abbeel et al. 2006). In
this work, the approximate model is used to
calculate gradient directions for the policy pa-
rameters. When searching for an improved pol-
icy, however, the real environment is used to
calculate the utility of each intermediate policy.
Observations from the environment are also used
to update the approximate model. The authors
show that their approach improves upon model-
based algorithms which only used the approxi-
mate model while learning.

Applications

In this section, we describe some domains where
model-based reinforcement learning has been ap-
plied.

Model-based approaches have been com-
monly used in RL systems that play two-player
games (Tesauro 1995; Baxter et al. 1998).
In such systems, the model corresponds to legal
moves in the game. Such models are easy to
acquire and can be used to perform lookahead
search on the game tree. For example, the TD-
LEAF.�/ system (Baxter et al. 1998) uses the
values at the leaves of an expanded game tree at
some depth to update the estimate of the value
of the current state. After playing a few hundred
chess games, this algorithm was able to reach the
play level of a US Master.

Model-based reinforcement learning has been
used in a spoken dialog system (Singh et al.

Model-Based Reinforcement Learning 855

M

1999). In this application, a dialog is modeled as a
turn-based process, where at each step the system
speaks a phrase and records certain observations
about the response and possibly receives a re-
ward. The system estimates a model from the ob-
servations and rewards and uses value iteration to
compute optimal policies for the estimated MDP.
The authors show empirically that, among other
things, the system finds sensible policies and is
able to model situations that involve “distress
features” that indicate the dialog is in trouble.

It was shown that in complex real-world con-
trol tasks such as pendulum swing-up task on
a real anthropomorphic robot arm, model-based
learning is very effective in learning from demon-
strations (Atkeson and Schaal 1997). A model is
learned from the human demonstration of pendu-
lum swing up, and an optimal policy is computed
using a standard approach in control theory called
linear quadratic regulation. Direct imitation of
the human policy would not work in this case
due to the small differences in the tasks and the
imperfections of the robot controller. On the other
hand, model-based learning was able to learn suc-
cessfully from short demonstrations of pendulum
swing up. However, on a more difficult swing-up
task that includes pumping, model-based learning
by itself was inadequate due to the inaccuracies
in the model. They obtained better results by
combining model-based learning with learning
appropriate task parameters such as the desired
pendulum target angle at an intermediate stage
where the pendulum was at its highest point.

In more recent work, model-based RL has
been used to learn to fly a remote-controlled
helicopter (Abbeel et al. 2007). Again, the use of
model-free approaches is very difficult, because
almost any random exploratory action results in
an undesirable outcome (i.e., a crash). To learn
a model, the system bootstraps from a trajectory
that is observed by watching an expert human fly
the desired maneuvers. In each step, the system
learns a model with the observed trajectory and
finds a controller that works in simulation with
the model. This controller is then tried with the
real helicopter. If it fails to work well, the model
is refined with the new observations and the pro-
cess is repeated. Using this approach, the system

is able to learn a controller that can repeatedly
perform complex aerobatic maneuvers, such as
flips and rolls.

Model-based RL has also been applied to
other domains, such as robot juggling (Schaal and
Atkeson 1994) and job-shop scheduling (Zhang
and Dietterich 1995). Some work has also been
done that compares model-free and model-based
RL methods (Atkeson and Santamaria 1997).
From their experiments, the authors conclude
that, for systems with reasonably simple dynam-
ics, model-based RL is more data efficient, finds
better policies, and handles changing goals better
than model-free methods. On the other hand,
model-based methods are subject to errors due to
inaccurate model representations.

Future Directions

Representing and learning richer action models
for stochastic domains that involve relations, nu-
meric quantities, and parallel, hierarchical, and
durative actions is a challenging open problem.
Efficient derivation of optimal policies from such
rich representations of action models is another
problem that is partially explored in � symbolic
dynamic programming. Constructing good policy
languages appropriate for a given action model
or class of models might be useful to accelerate
learning near-optimal policies for MDPs.

Cross-References

�Adaptive Real-Time Dynamic Programming
�Autonomous Helicopter Flight Using Rein-

forcement Learning
�Bayesian Reinforcement Learning
�Efficient Exploration in Reinforcement Learn-

ing
� Symbolic Dynamic Programming

Recommended Reading

Abbeel P, Coates A, Quigley M, Ng AY (2007) An
application of reinforcement learning to aerobatic
helicopter flight. In: Advances in neural informa-

http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_10
http://dx.doi.org/10.1007/978-1-4899-7687-1_16
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_806

856 Modularity Detection

tion processing systems, vol 19. MIT, Cambridge,
pp 1–8

Abbeel P, Quigley M, Ng AY (2006) Using inaccurate
models in reinforcement learning. In: Proceedings
of the 23rd international conference on machine
learning, Pittsburgh. ACM, New York, pp 1–8

Atkeson CG, Santamaria JC (1997) A comparison
of direct and model-based reinforcement learning.
In: Proceedings of the international conference
on robotics and automation, Albuquerque. IEEE,
pp 20–25

Atkeson CG, Schaal S (1997) Robot learning from
demonstration. In: Proceedings of the fourteenth
international conference on machine learning,
Nashville, vol 4. Morgan Kaufmann, San Francisco,
pp 12–20

Barto AG, Bradtke SJ, Singh SP (1995) Learning to act
using real-time dynamic programming. Artif Intell
72(1):81–138

Baxter J, Tridgell A, Weaver L (1998) TDLeaf(�):
combining temporal difference learning with game-
tree search. In: Proceedings of the ninth Australian
conference on neural networks (ACNN’98), Bris-
bane, pp 168–172

Brafman RI, Tennenholtz M (2002) R-MAX –
a general polynomial time algorithm for near-
optimal reinforcement learning. J Mach Learn Res
2:213–231

Kaelbling LP, Littman ML, Moore AP (1996) Re-
inforcement learning: a survey. J Artif Intell Res
4:237–285

Kearns M, Singh S (2002) Near-optimal reinforce-
ment learning in polynomial time. Mach Learn
49(2/3):209–232

Moore AW, Atkeson CG (1993) Prioritized sweeping:
reinforcement learning with less data and less real
time. Mach Learn 13:103–130

Peng J, Williams RJ (1993) Efficient learning and
planning within the Dyna framework. Adapt Behav
1(4):437–454

Puterman ML (1994) Markov decision processes: dis-
crete dynamic stochastic programming. Wiley, New
York

Schaal S, Atkeson CG (1994) Robot juggling: imple-
mentation of memory-based learning. IEEE Control
Syst Mag 14(1):57–71

Singh S, Kearns M, Litman D, Walker M (1999) Rein-
forcement learning for spoken dialogue systems. In:
Advances in neural information processing systems,
Denver, vol 11. MIT, pp 956–962

Sutton RS (1990) Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. In: Proceedings of the sev-
enth international conference on machine learning,
Austin. Morgan Kaufmann, San Francisco, pp 216–
224

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Tadepalli P, Ok D (1998) Model-based average-reward
reinforcement learning. Artif Intell 100:177–224

Tesauro G (1995) Temporal difference learning and
TD-Gammon. Commun ACM 38(3):58–68

Wang X, Dietterich TG (2003) Model-based policy
gradient reinforcement learning. In: Proceedings of
the 20th international conference on machine learn-
ing, Washington, DC. AAAI, pp 776–783

Wilson A, Fern A, Ray S, Tadepalli P (2007) Multi-
task reinforcement learning: a hierarchical Bayesian
approach. In: Proceedings of the 24th international
conference on machine learning, Corvalis. Omni-
press, Madison, pp 1015–1022

Zhang W, Dietterich TG (1995) A reinforcement learn-
ing approach to job-shop scheduling. In: Proceed-
ings of the international joint conference on artificial
intelligence, Montréal. Morgan Kaufman, pp 1114–
1120

Modularity Detection

�Group Detection

MOO

�Multi-objective Optimization

Morphosyntactic Disambiguation

� POS Tagging

Most General Hypothesis

Synonyms

Maximally general hypothesis

Definition

A hypothesis, h, is a most general hypothesis if
it covers none of the negative examples and there
is no other hypothesis h0 that covers no negative
examples, such that h is strictly more specific
than h0.

http://dx.doi.org/10.1007/978-1-4899-7687-1_355
http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_643
http://dx.doi.org/10.1007/978-1-4899-7687-1_100290

Multi-agent Learning 857

M

Cross-References

�Learning as Search

Most Similar Point

�Nearest Neighbor

Most Specific Hypothesis

Synonyms

Maximally specific hypothesis

Definition

A hypothesis, h, is a most specific hypothesis if
it covers none of the negative examples and there
is no other hypothesis h0 that covers no negative
examples, such that h is strictly more general
than h0.

Cross-References

�Learning as Search

Multi-agent Learning

Yoav Shoham and Rob Powers
Stanford University, Stanford, CA, USA

Definition

Multi-agent learning (MAL) refers to settings in
which multiple agents learn simultaneously. Usu-
ally defined in a game theoretic setting, specifi-
cally in repeated games or stochastic games, the

key feature that distinguishes multi-agent learn-
ing from single-agent learning is that in the for-
mer the learning of one agent impacts the learning
of others. As a result, neither the problem defini-
tion for multi-agent learning nor the algorithms
offered follow in a straightforward way from the
single-agent case. In this first of two entries on
the subject, we focus on the problem definition.

Background

The topic of multi-agent learning (MAL hence-
forth) has a long history in game theory, almost
as long as the history of game theory itself (an-
other more recent term for the area within game
theory is interactive learning). In artificial intelli-
gence (AI), the history of single-agent learning
is of course as rich if not richer; one need not
look further than this encyclopedia for evidence.
And while it is only in recent years that AI has
branched into the multi-agent aspects of learning,
it has done so with something of a vengeance.
If in 2003 one could describe the AI literature
on MAL by enumerating the relevant articles,
today this is no longer possible. The leading
conferences routinely feature articles on MAL, as
do the journals (We acknowledge a simplification
of history here. There is definitely MAL work
in AI that predates the last few years, though
the relative deluge is indeed recent. Similarly, we
focus on AI since this is where most of the action
is these days, but there are also other areas in
computer science that feature MAL material; we
mean to include that literature here as well).

While the AI literature maintains a certain
flavor that distinguishes it from the game the-
oretic literature, the commonalities are greater
than the differences. Indeed, alongside the area of
mechanism design and perhaps the computational
questions surrounding solution concepts such as
the Nash equilibrium, MAL is today arguably one
of the most fertile interaction grounds between
computer science and game theory. The key as-
pect of MAL, which ties the work together and
which distinguishes it from single-agent learning,
is the fact that in MAL one cannot separate the
process of learning from the process of teaching.

http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_100291
http://dx.doi.org/10.1007/978-1-4899-7687-1_444

858 Multi-agent Learning

The learning of one agent causes it to change
its behavior; this causes other agents to adapt
their behavior, which in turn causes the first
agent to keep adapting too. Such reciprocal – or
interactive – learning calls not only for different
types of learning algorithms but also for different
yardsticks by which to evaluate learning. For this
reason, the literature on MAL can be confusing.
Not only do the learning techniques vary, but the
goal of learning and the evaluation measures are
diverse and often left only implicit.

We will couch our discussion in the formal
setting of stochastic games (aka Markov games).
Most of the MAL literature adopts this setting,
and indeed most of it focuses on the even more
narrow class of repeated games. Furthermore,
stochastic games also generalize Markov decision
problems (MDPs), the setting from which much
of the relevant learning literature in AI originates.
These are defined as follows.

A stochastic game can be represented as a
tuple: .N; S; EA; ER; T /. N is a set of agents in-
dexed 1; : : : ; n. S is a set of n-agent stage games.
EA D A1; : : : ; An, with Ai the set of actions

(or pure strategies) of agent i (note that we
assume the agent has the same strategy space in
all games; this is a notational convenience, but
not a substantive restriction). ER D R1; : : : ; Rn,
with Ri W S � EA ! R giving the immediate
reward function of agent i for stage game S .
T W S � EA ! ˘.S/ is a stochastic transition
function, specifying the probability of the next
stage game to be played based on the game just
played and the actions taken in it.

We also need to define a way for each agent to
aggregate the set of immediate rewards received
in each state. For finitely repeated games, we
can simply use the sum or average, while for
infinite games, the most common approaches are
to use either the limit average or the sum of
discounted awards

P1
tD1 ıt rt , where rt is the

reward received at time t .
A repeated game is a stochastic game with

only one stage game, while an MDP is a stochas-
tic game with only one agent. (Note: While most
of the MAL literature lives happily in this setting,
we would be remiss not to acknowledge the liter-
ature that does not. Certainly, one could discuss

learning in the context of extensive-form games
of incomplete and/or imperfect information. Even
farther afield, interesting studies of learning exist
in large population games and evolutionary mod-
els, particularly replicator dynamics (RD) and
evolutionary stable strategies (ESS).)

What is there to learn in stochastic games?
Here we need to be explicit about some aspects of
stochastic games that were glossed over so far. Do
the agents know the stochastic game, including
the stage games and the transition probabilities?
If not, do they at least know the specific game
being played at each stage, or only the actions
available to them? What do they see after each
stage game has been played – only their own
rewards, or also the actions played by the other
agent(s)? Do they perhaps magically see the other
agent(s)’ mixed strategy in the stage game? And
so on.

In general, games may be known or not, play
may be observable or not, and so on. We will fo-
cus on known, fully observable games, where the
other agent’s strategy (or agents’ strategies) is not
known a priori (though in some cases, there is a
prior distribution over it). In our restricted setting,
there are two possible things to learn. First, the
agent can learn the opponent’s (or opponents’)
strategy (or strategies), so that the agent can then
devise the best (or at least a good) response.
Alternatively, the agent can learn a strategy of his
own that does well against the opponents, without
explicitly learning the opponent’s strategy. The
first is sometimes called model-based learning
and the second model-free learning.

In broader settings, there is more to learn. In
particular, with unknown games, one can learn
the game itself. Some will argue that the re-
stricted setting is not a true learning setting, but
(a) much of the current work on MAL, particu-
larly in game theory, takes place in this setting,
and (b) the foundational issues we wish to tackle
surface already here. In particular, our comments
are intended to also apply to the work in the
AI literature on games with unknown payoffs,
work which builds on the success of learning
in unknown MDPs. We will have more to say
about the nature of “learning” in the setting of
stochastic games in the following sections.

Multi-agent Learning 859

M

Problem Definition

When one examines the MAL literature, one can
identify several distinct agendas at play, which
are often left implicit and conflated. A prerequi-
site for success in the field is to be very explicit
about the problem being addressed. Here we list
five distinct coherent goals of MAL research.
They each have a clear motivation and a success
criterion. They can be caricatured as follows:

1. Computational
2. Descriptive
3. Normative
4. Prescriptive, cooperative
5. Prescriptive, noncooperative

The first agenda is computational in nature.
It views learning algorithms as an iterative way
to compute properties of the game, such as so-
lution concepts. As an example, fictitious play
was originally proposed as a way of computing
a sample Nash equilibrium for zero-sum games,
and replicator dynamics has been proposed for
computing a sample Nash equilibrium in sym-
metric games. These tend not to be the most
efficient computation methods, but they do some-
times constitute quick-and-dirty methods that can
easily be understood and implemented.

The second agenda is descriptive – it asks
how natural agents learn in the context of other
learners. The goal here is to investigate formal
models of learning that agree with people’s be-
havior (typically, in laboratory experiments) or
possibly with the behaviors of other agents (e.g.,
animals or organizations). This problem is clearly
an important one and when taken seriously calls
for strong justification of the learning dynamics
being studied. One approach is to apply the ex-
perimental methodology of the social sciences.

The centrality of equilibria in game theory
underlies the third agenda we identify in MAL,
which for lack of a better term we called nor-
mative and which focuses on determining which
sets of learning rules are in equilibrium with each
other. More precisely, we ask which repeated
game strategies are in equilibrium; it just so
happens that in repeated games, most strategies

embody a learning rule of some sort. For ex-
ample, we can ask whether fictitious play and
Q-learning, appropriately initialized, are in equi-
librium with each other in a repeated Prisoner’s
Dilemma game.

The last two agendas are prescriptive; they
ask how agents should learn. The first of these
involves distributed control in dynamic systems.
There is sometimes a need or desire to decen-
tralize the control of a system operating in a
dynamic environment, and in this case, the local
controllers must adapt to each other’s choices.
This direction, which is most naturally modeled
as a repeated or stochastic common-payoff (or
“team”) game. Proposed approaches can be eval-
uated based on the value achieved by the joint
policy and the resources required, whether in
terms of computation, communication, or time
required to learn the policy. In this case, there is
rarely a role for equilibrium analysis; the agents
have no freedom to deviate from the prescribed
algorithm.

In our final agenda, termed “prescriptive, non-
cooperative,” we ask how an agent should act to
obtain high reward in the repeated (and, more
generally, stochastic) game. It thus retains the
design stance of AI, asking how to design an
optimal (or at least effective) agent for a given
environment. It just so happens that this envi-
ronment is characterized by the types of agents
inhabiting it, agents who may do some learning
of their own. The objective of this agenda is to
identify effective strategies for environments of
interest. An effective strategy is one that achieves
a high reward in its environment, where one of
the main characteristics of this environment is the
selected class of possible opponents. This class
of opponents should itself be motivated as being
reasonable and containing opponents of interest.
Convergence to an equilibrium is not a goal in
and of itself.

Recommended Reading

Requisite background in game theory can be
obtained from the many introductory texts
and most compactly from Leyton-Brown and

860 Multi-agent Learning Algorithms

Shoham (2008). Game theoretic work on multi-
agent learning is covered in Fudenberg and
Levine (1998) and Young (2004). An expanded
discussion of the problems addressed under the
header of MAL can be found in Shoham et al.
(2007) and the responses to it in Vohra and
Wellman (2007). Discussion of MAL algorithms,
both traditional and more novel ones, can be
found in the above references, as well as in
Greenwald and Littman (2007).

Fudenberg D, Levine D (1998) The theory of learning
in games. MIT, Cambridge

Greenwald A, Littman ML (eds) (2007) Special issue
on learning and computational game theory. Mach
Learn 67(1–2):3–6

Leyton-Brown K, Shoham Y (2008) Essentials of game
theory. Morgan and Claypool, San Rafael

Shoham Y, Powers WR, Grenager T (2007) If multi-
agent learning is the answer, what is the question?
Artif Intell 171(1):365–377. Special issue on foun-
dations of multiagent learning

Vohra R, Wellman MP (eds) (2007) Special issue
on foundations of multiagent learning. Artif Intell
171(1)

Young HP (2004) Strategic learning and its limits.
Oxford University Press, Oxford

Multi-agent Learning Algorithms

Yoav Shoham and Rob Powers
Stanford University, Stanford, CA, USA

Definition

Multi-agent learning (MAL) refers to settings in
which multiple agents learn simultaneously. Usu-
ally defined in a game theoretic setting, specifi-
cally in repeated games or stochastic games, the
key feature that distinguishes MAL from single-
agent learning is that in the former the learning
of one agent impacts the learning of others. As
a result, neither the problem definition for multi-
agent learning nor the algorithms offered follow
in a straightforward way from the single-agent
case. In this second of two entries on the subject,
we focus on algorithms.

Some MAL Techniques

We will discuss three classes of techniques – one
representative of work in game theory, one more
typical of work in artificial intelligence (AI), and
one that seems to have drawn equal attention
from both communities.

Model-Based Approaches
The first approach to learning we discuss, which
is common in the game theory literature, is the
model-based one. It adopts the following general
scheme:

1. Start with some model of the opponent’s strat-
egy.

2. Compute and play the best response.
3. Observe the opponent’s play and update your

model of his/her strategy.
4. Go to step 2.

Among the earliest, and probably the best-
known, instance of this scheme is fictitious play.
The model is simply a count of the plays by
the opponent in the past. The opponent is as-
sumed to be playing a stationary strategy, and the
observed frequencies are taken to represent the
opponent’s mixed strategy. Thus after five rep-
etitions of the Rochambeau game (R) in which
the opponent played .R; S; P; R; P /, the current
model of his/her mixed strategy is R D 0:4; P D

0:4; S D 0:2.
There exist many variants of the general

scheme, for example, those in which one does
not play the exact best response in step 2. This is
typically accomplished by assigning a probability
of playing each pure strategy, assigning the best
response the highest probability, but allowing
some chance of playing any of the strategies.
A number of proposals have been made of
different ways to assign these probabilities such
as smooth fictitious play and exponential fictitious
play.

A more sophisticated version of the same
scheme is seen in rational learning. The model is
a distribution over the repeated-game strategies.
One starts with some prior distribution; for ex-
ample, in a repeated Rochambeau game, the prior

Multi-agent Learning Algorithms 861

M

could state that with probability 0.5 the opponent
repeatedly plays the equilibrium strategy of the
stage game, and, for all k > 1, with probability
2�k she plays R k times and then reverts to the
repeated equilibrium strategy. After each play,
the model is updated to be the posterior obtained
by Bayesian conditioning of the previous model.
For instance, in our example, after the first non-
R play of the opponent, the posterior places
probability 1 on the repeated equilibrium play.

Model-Free Approaches
An entirely different approach that has been com-
monly pursued in the AI literature is the model-
free one, which avoids building an explicit model
of the opponent’s strategy. Instead, over time
one learns how well one’s own various possible
actions fare. This work takes place under the
general heading of reinforcement learning (we
note that the term is used somewhat differently in
the game theory literature), and most approaches
have their roots in the Bellman equations. We
start our discussion with the familiar single-agent
Q-learning algorithm for computing an optimal
policy in an unknown Markov Decision Problem
(MDP).

Q.s; a/ .1 � ˛t /Q.s; a/C ˛t ŒR.s; a/

C �V.s0/�

V .s/ max
a2A

Q.s; a/:

As is well known, with certain assumptions
about the way in which actions are selected at
each state over time and constraints on the learn-
ing rate schedule, ˛t , Q-learning can be shown to
converge to the optimal value function V �.

The Q-learning algorithm can be extended to
the multi-agent stochastic game setting by having
each agent simply ignore the other agents and
pretend that the environment is passive:

Qi .s; ai / .1 � ˛t /Qi .s; ai /C ˛t ŒRi .s; a/

C �Vi .s
0/�

Vi .s/ max
ai 2Ai

Qi .s; ai /:

Several authors have tested variations of the
basic Q-learning algorithm for MAL. However,
this approach ignores the multi-agent nature of
the setting entirely. The Q-values are updated
without regard for the actions selected by the
other agents. While this can be justified when the
opponents’ distributions of actions are station-
ary, it can fail when an opponent may adapt its
choice of actions based on the past history of the
game.

The first step in addressing this problem is
to define the Q-values as a function of all the
agents’ actions:

Qi .s; a/ .1 � ˛/Qi .s; a/

C ˛ŒRi .s; a/C �Vi .s
0/�:

We are, however, left with the question of how
to update V , given the more complex nature of
the Q-values.

For (by definition, two-player) zero-sum
stochastic games (SGs), the minimax-Q learning
algorithm updates V with the minimax of the
Q-values:

V1.s/ max
P12˘.A1/

min
a22A2

X
a12A1

P1.a1/

Q1.s; .a1; a2//:

Later work proposed other update rules for the
Q and V functions focusing on the special case
of common-payoff (or “team”) games. A stage
game is common-payoff if at each outcome all
agents receive the same payoff. The payoff is,
in general, different in different outcomes, and
thus the agents’ problem is that of coordina-
tion; indeed, these are also called games of pure
coordination.

The work on zero-sum and common-payoff
games continues to be refined and extended;
much of this work has concentrated on probably
optimal trade-offs between exploration and ex-
ploitation in unknown, zero-sum games. Another
work attempted to extend the “Bellman heritage”
to general-sum games (as opposed to zero-sum or
common-payoff games), but the results here have
been less conclusive.

862 Multi-agent Learning Algorithms

Regret Minimization Approaches
Our third and final example of prior work in
MAL is no-regret learning. It is an interesting
example for two reasons. First, it has some
unique properties that distinguish it from
the work above. Second, both the AI and
game theory communities appear to have
converged on it independently. The basic
idea goes back to early work on how to
evaluate the success of learning rules in the
mid-1950s and has since been extended and
rediscovered numerous times over the years
under the names of universal consistency,
no-regret learning, and the Bayes’ envelope.
The following algorithm is a representative
of this body of work. We start by defining
the regret, r t

i .aj ; si / of agent i for playing
the sequence of actions si instead of playing
action aj , given that the opponents played the
sequence s�i .

r t
i .aj ; si js�i / D

tX
kD1

R

aj ; sk

�i

�
�R

sk

i ; sk
�i

�
:

The agent then selects each of its actions with
probability proportional to max

�
r t

i .aj ; si /; 0

at
each time step t C 1.

Some Typical Results

One sees at least three kinds of results in the liter-
ature regarding the learning algorithms presented
above and others similar to them. These are:

1. Convergence of the strategy profile to an (e.g.,
Nash) equilibrium of the stage game in self-
play (i.e., when all agents adopt the learning
procedure under consideration).

2. Successful learning of an opponent’s strategy
(or opponents’ strategies).

3. Obtaining payoffs that exceed a specified
threshold.

Each of these types comes in many flavors;
here are some examples. The first type is perhaps
the most common in the literature, in both game

theory and AI. For example, while fictitious play
does not in general converge to a Nash equilib-
rium of the stage game, the distribution of its
play can be shown to converge to an equilibrium
in zero-sum games, 2 � 2 games with generic
payoffs, or games that can be solved by iterated
elimination of strictly dominated strategies. Sim-
ilarly in AI, minimax-Q learning is proven to
converge in the limit to the correct Q-values for
any zero-sum game, guaranteeing convergence
to a Nash equilibrium in self-play. This result
makes the standard assumptions of infinite ex-
ploration and the conditions on learning rates
used in proofs of convergence for single-agent Q-
learning.

Rational learning exemplifies results of the
second type. The convergence shown is to cor-
rect beliefs about the opponent’s repeated game
strategy; thus it follows that, since each agent
adopts a best response to their beliefs about the
other agent, in the limit the agents will converge
to a Nash equilibrium of the repeated game. This
is an impressive result, but it is limited by two
factors: the convergence depends on a very strong
assumption of absolute continuity; and the beliefs
converged to are correct only with respect to the
aspects of history that are observable given the
strategies of the agents. This is an involved topic,
and the reader is referred to the literature for more
details.

The literature on no-regret learning provides
an example of the third type of result and has
perhaps been the most explicit about the criteria
for evaluating learning rules. For example, one
pair of criteria that have been suggested is as
follows. The first criterion is that the learning
rule should be “safe,” which is defined as the
requirement that the learning rule must guarantee
at least the minimax payoff of the game. (The
minimax payoff is the maximum expected value
a player can guarantee against any possible oppo-
nent.) The second criterion is that the rule should
be “consistent.” In order to be “consistent,” the
learning rule must guarantee that it does at least
as well as the best response to the empirical distri-
bution of play when playing against an opponent
whose play is governed by independent draws
from a fixed distribution. “Universal consistency”

MultiBoosting 863

M

is then defined as the requirement that a learning
rule does at least as well as the best response to
the empirical distribution regardless of the actual
strategy the opponent is employing (this implies
both safety and consistency). The requirement
of “universal consistency” is in fact equivalent
to requiring that an algorithm exhibits no-regret,
generally defined as follows, against all oppo-
nents.

8� > 0;

�
limt!inf

�
1

t
max

aj 2Ai

r t
i .aj ; si js�i /

�
< �

�

In both game theory and artificial intelligence,
a large number of algorithms have been shown to
satisfy universal consistency or no-regret require-
ments.

Recommended Reading

Requisite background in game theory can be
obtained from the many introductory texts, and
most compactly from Leyton-Brown and Shoham
(2008). Game theoretic work on multiagent learn-
ing is covered in Fudenberg and Levine (1998)
and Young (2004). An expanded discussion of
the problems addressed under the header of MAL
can be found in Shoham et al. (2007), and the
responses to it in Vohra and Wellman (2007).
Discussion of MAL algorithms, both traditional
and more novel ones, can be found in the above
references, as well as in Greenwald and Littman
(2007).

Fudenberg D, Levine D (1998) The theory of learning
in games. MIT, Cambridge

Greenwald A, Littman ML (eds) (2007) Special issue
on learning and computational game theory. Mach
Learn 67(1–2):3–6

Leyton-Brown K, Shoham Y (2008) Essentials of
game theory. Morgan and Claypool, San Rafael

Shoham Y, Powers WR, Grenager T (2007) If multi-
agent learning is the answer, what is the question?
Artif Intell 171(1):365–377. Special issue on foun-
dations of multiagent learning

Vohra R, Wellman MP (eds) (2007) Special issue
on foundations of multiagent learning. Artif Intell
171(1)

Young HP (2004) Strategic learning and its limits.
Oxford University Press, Oxford

Multi-armed Bandit

� k-Armed Bandit

Multi-armed Bandit Problem

� k-Armed Bandit

MultiBoosting

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Definition

MultiBoosting (Webb 2000) is an approach to
�multistrategy ensemble learning that combines
features of �AdaBoost and �Bagging. The in-
sight underlying MultiBoosting is that the pri-
mary effect of AdaBoost is � bias reduction,
while the primary effect of bagging is � variance
reduction. By combining the two techniques, it is
possible to obtain both bias and variance reduc-
tion, the cumulative effect often being a greater
reduction in error than can be obtained with the
equivalent amount of computation by either Ad-
aBoost or Bagging alone. Viewed from another
perspective, as the size of an ensemble formed
by either AdaBoost or Bagging is increased, each
successive addition to the ensemble has decreas-
ing effect. Thus, if the benefit of the first few ap-
plications of AdaBoost can be combined with the
benefit of the first few applications of Bagging,
the combined benefit may be greater than simply
increasing the number of applications of one or
the other.

Algorithm

MultiBoosting operates by dividing the ensemble
of classifiers that is to be created into a number
of subcommittees. Each of these subcommittees
is formed by Wagging (Baner and Kohavi 1999),

http://dx.doi.org/10.1007/978-1-4899-7687-1_424
http://dx.doi.org/10.1007/978-1-4899-7687-1_424
http://dx.doi.org/10.1007/978-1-4899-7687-1_574
http://dx.doi.org/10.1007/978-1-4899-7687-1_917
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_74

864 Multi-criteria Optimization

MultiBoosting. Tablel MultiBoost Algorithm
MultiBoost
input:

• S0, a sequence of m labeled examples
h.x1; y1/; : : : ; .xm; ym/i with labels yj 2 Y .

• base learning algorithm BaseLearn.
• integer T specifying the number of iterations.
• vector of integers Ii specifying the iteration at which

each subcommittee i � 1 should terminate.

1. S1 D S0 with instance weights assigned to be 1.
2. set k D 1.
3. For t D 1 to T
4. If Ik D t then
5. reweight St .
6. increment k.
7. Ct D BaseLearn.S 0/.

8. �t D
˙xj 2St WCt .xj /¤yj

weight.xj /

m
.

9. if �t > 0:5 then
10. reweight St .
11. increment k.
12. go to 7.
13. otherwise if �t D 0 then
14. set ˇt to 10�10

15. reweight St .
16. increment k.
17. otherwise,
18. ˇt D �t

.1��t /
.

19. StC1 D St .
20. For each xj 2 StC1,
21. divide weight .xj / by 2�t if Ct .xj / ¤ yj and

2 .1 � �t / otherwise.
22. if weight .xj / < 10�8, set weight .xj / to 10�8

Output the final classifier: C �.x/ D
argmaxy2Y

P
tICt .x/Dy log 1

ˇt
.

a variant of Bagging that utilizes weighted in-
stances and, hence, is more readily integrated
with AdaBoost. The ensemble is formed by ap-
plying AdaBoost to these subcommittees. The
resulting algorithm is presented in Table 1. The
learned ensemble classifier is C , and the t th
member of the ensemble is Ct . Each St is a vector
of n weighted training objects whose weights
always sum to n. The weights change from turn to
turn (the turns indicated by the subscript t). The
base training algorithm BaseLearn should more
heavily penalize errors on training instances with
higher weights. "t is the weighted error of Ct on
Si . ˇt is a weight assigned to the t th classifier,

C t . The operation rewieght St sets the weights
of the objects in St to random values drawn
from the continuous Poisson distribution and then
standardizes them to sum to n. The code set with
a grey background is the code added to AdaBoost
in order to create MultiBoost.

Cross-References

�AdaBoost
�Bagging
�Ensemble Learning
�Multistrategy Ensemble Learning

Recommended Reading

Bauer E, Kohavi R (1999) An empirical comparison of
voting classification algorithms: bagging, boosting,
and variants. Mach Learn 36(1):105–139

Webb GI (2000) MultiBoosting: a technique for
combining boosting and wagging. Mach Learn
40(2):159–196

Multi-criteria Optimization

�Multi-objective Optimization

Multi-Instance Learning

Soumya Ray1, Stephen Scott2, and
Hendrik Blockeel3;4

1Case Western Reserve University, Cleveland,
OH, USA
2University of Nebraska, Lincoln, NE, USA
3Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
4Leiden Institute of Advanced Computer
Science, Heverlee, Belgium

Synonyms

Multiple-instance learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_917
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_574
http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_578

Multi-Instance Learning 865

M

Definition

Multiple-Instance (MI) learning is an extension
of the standard supervised learning setting. In
standard supervised learning, the input consists
of a set of labeled instances each described by
an attribute vector. The learner then induces a
concept that relates the label of an instance to
its attributes. In MI learning, the input consists
of labeled examples (called “bags”) consisting
of multisets of instances, each described by an
attribute vector, and there are constraints that
relate the label of each bag to the unknown labels
of each instance. The MI learner then induces a
concept that relates the label of a bag to the at-
tributes describing the instances in it. This setting
contains supervised learning as a special case: if
each bag contains exactly one instance, it reduces
to a standard supervised learning problem.

Motivation and Background

The MI setting was introduced by Dietterich et al.
(1997) in the context of drug activity prediction.
Drugs are typically molecules that fulfill some
desired function by binding to a target. If we
wish to learn the characteristics responsible for
binding, a possible representation of the problem
is to represent each molecule as a set of low
energy shapes or conformations, and describe
each conformation using a set of attributes. Each
such bag of conformations is given a label cor-
responding to whether the molecule is active
or inactive. To learn a classification model, an
algorithm assumes that every instance in a bag
labeled negative is actually negative, whereas at
least one instance in a bag labeled positive is
actually positive with respect to the underlying
concept.

From a theoretical viewpoint, MI learning oc-
cupies an intermediate position between standard
propositional supervised learning and first-order
relational learning. Supervised learning is a spe-
cial case of MI learning, while MI learning is a
special case of first-order learning. It has been
argued that the MI setting is a key transition be-
tween standard supervised and relational learning

DeRaedt (1998). At the same time, theoretical
results exist that show that, under certain assump-
tions, certain concept classes that are probably
approximately correct (PAC)-learnable (see PAC
Learning) in a supervised setting remain PAC-
learnable in an MI setting. Thus, the MI setting is
able to leverage some of the rich representational
power of relational learners while not sacrificing
the efficiency of propositional learners. Figure 1
illustrates the relationships between standard su-
pervised learning, MI learning, and relational
learning.

Since its introduction, a wide variety of tasks
have been formulated as MI learning problems.
Many new algorithms have been developed, and
well-known supervised learning algorithms ex-
tended, to learn MI concepts. A great deal of
work has also been done to understand what kinds
of concepts can and cannot be learned efficiently
in this setting. In the following sections, we
discuss the theory, methods, and applications of
MI learning in more detail.

Structure of the Problem

The general MI classification task in shown in
Fig. 2. The MI regression task is defined analo-
gously by substituting a real-valued response for
the classification label. In this case, the constraint
used by the learning algorithm is that the response
of any bag is equal to the response of at least
one of the instances in it, for example, it could
be equal to the largest response over all the
instances.

Notice the following problem characteris-
tics:

• The number of instances in each bag can vary
independently of other bags. This implies in
particular that an MI algorithm must be able to
handle bags with as few as one instance (this
is a supervised learning setting) to bags with
large numbers of instances.

• The number of instances in any positive bag
that are “truly positive” could be many more
than one – in fact, the definition does not rule

866 Multi-Instance Learning

Multi-Instance Learning,
Fig. 1 The relationship
between supervised,
multiple-instance (MI), and
relational learning. (a) In
supervised learning, each
example (geometric figure)
is labeled. A possible
concept that explains the
example labels shown is
“the figure is a rectangle.”
(b) In MI learning, bags of
examples are labeled. A
possible concept that
explains the bag labels
shown is “the bag contains
at least one figure that is a
rectangle.” (c) In relational
learning, objects of
arbitrary structure are
labeled. A possible concept
that explains the object
labels shown is “the object
is a stack of three figures
and the bottom figure is a
rectangle”

a b c

Multi-Instance Learning, Fig. 2 Statement of the multiple-instance classification problem

out the case where all instances in a positive
bag are “truly positive.”

• The problem definition does not specify how
the instances in any bag are related to each
other.

Theory and Methods

In this section we discuss some of the key al-
gorithms and theoretical results in MI learning.
We first discuss the methods and results for MI
classification. Then we discuss the work on MI
regression.

Multiple-Instance Classification
Axis-Parallel Rectangles (APRs) are a concept
class that early work in MI classification focused
on. These generative concepts specify upper and
lower bounds for all numeric attributes describing
each instance. An APR is said to “cover” an
instance if the instance lies within it. An APR
covers a bag if it covers at least one instance
within it. The learning algorithm tries to find an
APR such that it covers all positive bags and does
not cover any negative bags.

An algorithm called “iterated-discrimination”
was proposed by Dietterich et al. (1997) to learn
APRs from MI data. This algorithm has two
phases. In the first phase, it iteratively chooses

Multi-Instance Learning 867

M

a set of “relevant” attributes and grows an APR
using this set. This phase results in the construc-
tion of a very “tight” APR that covers just positive
bags. In the second phase, the algorithm expands
this APR so that with high probability a new
positive instance will fall within the APR. The
key steps of the algorithm are outlined below.
Note that initially, all attributes are considered to
be “relevant.”

The algorithm starts by choosing a random
instance in a positive bag. Let us call this instance
I1. The smallest APR covering this instance is
a point. The algorithm then expands this APR
by finding the smallest APR that covers any
instance from a yet uncovered positive bag; call
the newly covered instance I2. This process is
continued, identifying new instances I3, . . . , Ik ,
until all positive bags are covered. At each step,
the APR is “backfitted” in a way that is reminis-
cent of the later Expectation-Maximization (EM)
approaches: each earlier choice is revisited, and
Ij is replaced with an instance from the same bag
that minimizes the current APR (which may or
may not be the same as the one that minimized it
at step j).

This process yields an APR that imposes max-
imally tight bounds on all attributes and covers
all positive bags. Based on this APR, a new set of
“relevant” attributes is selected as follows. An at-
tribute’s relevance is determined by how strongly
it discriminates against negative instances, i.e.,
given the current APR bounds, how many neg-
ative instances the attribute excludes. Features
are then chosen iteratively and greedily accord-
ing to how relevant they are until all negative
instances have been excluded. This yields a sub-
set of (presumably relevant) attributes. The APR
growth procedure in the previous paragraph is
then repeated, with the size of an APR redefined
as its size along relevant attributes only. The APR
growth and attribute selection phases are repeated
until the process converges.

The APR thus constructed may still be too
tight, as it fits narrowly around the positive
bags in the dataset. In the second phase of the
algorithm, the APR bounds are further expanded
using a kernel density estimate approach. Here,
a probability distribution is constructed for each

relevant attribute using Gaussian distributions
centered at each instance in a positive bag. Then,
the bounds on that attribute are adjusted so that
with high probability, any positive instance will
lie within the expanded APR.

Theoretical analyses of APR concepts have
been performed along with the empirical ap-
proach, using Valiant’s “probably approximately
correct” (PAC) learning model (Valiant 1984). In
early work (Long and Tan 1998), it was shown
that if each instance was drawn according to
a fixed, unknown product distribution over the
rational numbers, independently from every other
instance, then an algorithm could PAC-learn
APRs. Later, this result was improved in two
ways (Auer et al. 1998). First, the restriction that
the individual instances in each bag come from
a product distribution was removed. Instead,
each instance is generated by an arbitrary
probability distribution (though each instance
in a bag is still generated independently and
identically distributed (iid) according to that
one distribution). Second, the time and sample
complexities for PAC-learning APRs were
improved. Specifically, the algorithm described
in this work PAC-learns APRs in

O

�
d 3n2

�2
log

nd log.1=ı/

�
log

d

ı

�

using

O

�
d 2n2

�2
log

d

ı

�

time-labeled training bags. Here, d is the dimen-
sion of each instance, n is the (largest) number
of instances per training bag, and " and ı are
parameters to the algorithm. A variant of this
algorithm was empirically evaluated and found to
be successful (Auer 1997).

Diverse Density (Maron 1998; Maron and
Lozano-Pérez 1998) is a probabilistic generative
framework for MI classification. The idea behind
this framework is that, given a set of positive
and negative bags, we wish to learn a concept
that is “close” to at least one instance from each
positive bag, while remaining “far” from every

868 Multi-Instance Learning

instance in every negative bag. Thus, the concept
must describe a region of instance space that is
“dense” in instances from positive bags, and is
also “diverse” in that it describes every positive
bag. More formally, let

DD.t/ D
1

Z

 Y
i

Pr.t jBC
i /
Y

i

Pr.t jB�
i /

!
;

where t is a candidate concept, BC
i represents

the i th positive bag, and B�
i represents the i th

negative bag. We seek a concept that maximizes
DD(t). The concept generates the instances of
a bag, rather than the bag itself. To score a
concept with respect to a bag, we combine t ’s
probabilities for instances using a function based
on noisy-OR Pearl (1998):

Pr.t jBC
i /1.1 �

Y
j

.1 � Pr.BC
ij 2 t /// (1)

Pr.t jB�
i /1

Y
j

.1 � Pr.B�
ij 2 t // (2)

Here, the instances BC
ij and B�

ij belonging to t are
the “causes” of the “event” that “t is the target.”
The concept class investigated by Maron (1998)
is the class of generative Gaussian models, which
are parameterized by the mean � and a “scale”
s D 1

2�2 :

Pr.Bij 2 t /1e�
P

k.sk.Bijk��k/2/;

where k ranges over attributes. Figure 3 illus-
trates a concept that Diverse Density might learn
when applied to an MI dataset.

Diverse Density with k disjuncts is a variant
of Diverse Density that has also been investi-
gated (Maron 1998). This is a class of disjunctive
Gaussian concepts, where the probability of an
instance belonging to a concept is given by the
maximum probability of belonging to any of the
disjuncts.

EM-DD (Zhang and Goldman 2001) is an ex-
ample of a class of algorithms that try to identify
the “cause” of a bag’s label using EM. These al-
gorithms sometimes assume that there is a single

instance in each bag that is responsible for the
bag’s label (though variants using “soft EM” are
possible). The key idea behind this approach is
as follows: from each positive bag, we take a
random instance and assume that this instance
is the relevant one. We learn a hypothesis from
these relevant instances and all negative bags.
Next, for each positive bag, we replace the current
relevant instance by the instance most consistent
with the learned hypothesis (which will initially
not be the chosen instance in general). We then
relearn the hypothesis with these new instances.
This process is continued until the set of chosen
instances does not change (or alternatively, the
objective function of the classifier reaches a fixed
point). This procedure has the advantage of being
computationally efficient, since the learning algo-
rithm only uses one instance from each positive
bag. This approach has also been used in MI
regression described later.

“Upgraded” supervised learning algorithms
can be used in a MI setting by suitably modifying
their objective functions. Below, we summarize
some of the algorithms that have been derived in
this way.

1. �Decision Tree induction algorithms have
been adapted to the MI setting (Blockeel et al.
2005). The standard algorithm measures the
quality of a split on an attribute by considering
the class label distribution in the child nodes
produced. In the MI case, this distribution is
uncertain, because the true instance labels
in positive bags are unknown. However,
some rules have been identified that lead
to empirically good MI trees: (1) use an
asymmetric heuristic that favors early creation
of pure positive (rather than negative) leaves,
(2) once a positive leaf has been created,
remove all other instances of the bags covered
by this leaf; (3) abandon the depth-first or
breadth-first order in which nodes are usually
split, adopting a best-first strategy instead
(indeed, because of (2), the result of tree
learning is now sensitive to the order in which
the nodes are split).

2. �Artificial Neural Networks have been
adapted to the MI setting by representing

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_921

Multi-Instance Learning 869

M

A

B

C

f 1

f 2

Multi-Instance Learning, Fig. 3 An illustration of the
concept that Diverse Density searches for on a simple
MI dataset with three positive bags and one negative
bag, where each instance (represented by the geometric
figures) is described by two attributes, f1 and f2. Each
type of figure represents one bag, i.e., all triangles belong
to one bag, all circles belong to a second bag, and so
forth. The bag containing the red circles is negative, while
the other bags are positive. Region C is a region of high

density, because several instances belong to that region.
Region A is a region of high “Diverse Density,” because
several instances from different positive bags belong to
that region, and no instances from negative bags are
nearby. Region B shows a concept that might be learned if
the learning algorithm assumed that all instances in every
positive bag are positive (Figure adapted from Maron
1998)

the bag classifier as a network that combines
several copies of a smaller network, which
represents the instance classifier, with a
smooth approximation of the max combining
function (Ramon and DeRaedt 2000). Weight
update rules for a backpropagation algorithm
working on this network have been derived.
Later work on MI neural networks has been
performed independently by others (Zhou and
Zhang 2002).

3. �Logistic Regression has been adapted to
the MI setting by using it as an instance-
based classifier and combining the instance-
level probabilities using functions like soft-
max (Ray and Craven 2005) and arithmetic
and geometric averages (Xu and Frank 2004).

4. The k-Nearest Neighbor algorithm has been
adapted to the MI setting by using set-based
distance metrics, such as variants based on the
Hausdorff distance. However, this alone does

not solve the problem – it is possible for a pos-
itive bag to be mistakenly classified negative if
it contains a “true negative” instance that hap-
pens to be much closer to negative instances in
other negative bags. To solve this, a “Citation-
kNN” (Wang and Zucker 2000) approach has
been proposed that also considers, for each
bag B , the labels of those bags for which B

is a nearest neighbor.
5. �Support Vector Machines have been adapted

to the MI setting in several ways. In one
method, the constraints in the quadratic pro-
gram for SVMs is modified to account for the
fact that certain instance labels are unknown
but have constraints relating them (Andrews
et al. 2003). In another method, new kernels
are designed for MI data by modifying stan-
dard supervised SVM kernels (Gartner et al.
2002) or designing new kernels (Tao et al.
2004). The modification allows these MI ker-

http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

870 Multi-Instance Learning

nels to distinguish between positive and nega-
tive bags if the supervised kernel could distin-
guish between (“true”) positive and negative
instances.

6. �Rule learning algorithms have been adapted
to the MI setting in two ways. One method
has investigated upgrading a supervised rule-
learner, the ripper system (Cohen 1995), to the
MI setting by modifying its objective function
to account for bags and addressing several
issues that resulted. Another method has in-
vestigated using general purpose relational al-
gorithms, such as foil (Quinlan 1990) and tilde
(Blockeel and De Raedt 1998), and providing
them with an appropriate � inductive bias so
that they learn the MI concepts. Further, it has
been observed that techniques from MI learn-
ing can also be used inside relational learning
algorithms (Alphonse and Matwin 2002).

A large-scale empirical analysis of several
such propositional supervised learning algo-
rithms and their MI counterparts has been
performed (Ray and Craven 2005). This analysis
concludes that (1) no single MI algorithm
works well across all problems. Thus, different
inductive biases are suited to different problems,
(2) some MI algorithms consistently perform
better than their supervised counterparts but
others do not (hence for these biases there seems
room for improvement), and (3) assigning a
larger weight to false positives than to false
negatives is a simple but effective method to
adapt supervised learning algorithms to the MI
setting. It was also observed that the advantages
of MI learners may be more pronounced if
they would be evaluated on the task of labeling
individual instances rather than bags.

Along with “upgrading” supervised learning
algorithms, a theoretical analysis of supervised
learners learning with MI data has been carried
out (Blum and Kalai 1998). In particular, the MI
problem has been related to the problem of learn-
ing in the presence of classification noise (i.e.,
each training example’s label is flipped with some
probability < 1=2). This implies that any concept
class that is PAC-learnable in the presence of
such noise is also learnable in the MI learning

model when each instance of a bag is drawn
iid. Since many concept classes are learnable
under this noise assumption (using e.g., statistical
queries Kearns 1998), Blum and Kalai’s result
implies PAC learnability of many concept classes.
Further, they improved on previous learnability
results (Auer et al. 1998) by reducing the number
of training bags required for PAC learning by
about a factor of n with only an increase in time
complexity of about logn=".

Besides these positive results, a negative
learnability result describing when it is hard
to learn concepts from MI data is also known
(Auer et al. 1998). Specifically, if the instances of
each bag are allowed collectively to be generated
according to an arbitrary distribution, learning
from MI examples is as hard as PAC-learning
disjunctive normal form (DNF) formulas from
single-instance examples, which is an open
problem in learning theory that is believed to
be hard. Further, it has been showed that if
an efficient algorithm exists for the non-iid
case that outputs as its hypothesis an axis-
parallel rectangle, then NP = RP (Randomized
Polynomial time, see e.g., Papadimitriou 1994),
which is very unlikely.

Learning from structured MI data has received
some attention (McGovern and Jensen 2003). In
this work, each instance is a graph, and a bag
is a set of graphs (e.g., a bag could consist of
certain subgraphs of a larger graph). To learn the
concepts in this structured space, the authors use
a modified form of the Diverse Density algorithm
discussed above. As before, the concept being
searched for is a point (which corresponds to
a graph in this case). The main modification
is the use of the size of the maximal common
subgraph to estimate the probability of a concept
– i.e., the probability of a concept given a bag
is estimated as proportional to the size of the
maximal common subgraph between the concept
and any instance in the bag.

Multiple-Instance Regression
Regression problems in an MI setting have
received less attention than the classification
problem. Two key directions have been explored
in this setting. One direction extends the well-

http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_390

Multi-Instance Learning 871

M

known standard � linear regression method to
the MI setting. The other direction considers
extending various MI classification methods to a
regression setting.

In MI Linear Regression (Ray and Page 2001)
(referred to as multiple-instance regression in the
cited work), it is assumed that the hypothesis
underlying the data is a linear model with Gaus-
sian noise on the value of the dependent variable
(which is the response). Further, it is assumed
that it is sufficient to model one instance from
each bag, i.e., that there is some primary instance
which is responsible for the real-valued label.
Ideally, one would like to find a hyperplane that
minimizes the squared error with respect to these
primary instances. However, these instances are
unknown during training. The authors conjecture
that, given enough data, a good approximation to
the ideal is given by the “best-fit” hyperplane,
defined as the hyperplane that minimizes the
training set squared error by fitting one instance
from each bag such that the response of the fitted
instance most closely matches the bag response.
This conjecture will be true if the nonprimary in-
stances are not a better fit to a hyperplane than the
primary instances. However, exactly finding the
“best-fit” hyperplane is intractable. It is shown
that the decision problem “Is there a hyperplane
which perfectly fits one instance from each bag?”
is NP-complete for arbitrary numbers of bags,
attributes, and at most three instances per bag.
Thus, the authors propose an approximation algo-
rithm which iterates between choosing instances
and learning linear regression models that best fit
them, similar to the EM-DD algorithm described
earlier.

Another direction has explored extending MI
classification algorithms to the regression setting.
This approach (Dooly et al. 2002) uses algo-
rithms like Citation-kNN and Diverse Density
to learn real-valued concepts. To predict a real
value, the approach uses the average of the near-
est neighbor responses or interprets the Gaussian
“probability” as a real number for Diverse Den-
sity.

Recent work has analyzed the Diverse
Density-based regression in the online model
(Angluin 1988; Littlestone 1988) (see � online

learning). In the online model, learning proceeds
in trials, where in each trial a single example is
selected adversarially and given to the learner
for classification. After the learner predicts a
label, the true label is revealed and the learner
incurs a loss based on whether its prediction
was correct. The goal of the online learner is to
minimize the loss over all trials. Online learning
is harder than PAC learning in that there are some
PAC-learnable concept classes that are not online
learnable.

In the regression setting above (Dooly et al.
2006), there is a point concept, and the label of
each bag is a function of the distance between
the concept and the point in the bag closest to
the target. It is shown that similar to Auer et
al.’s lower bound, learning in this setting using
labeled bags alone is as hard as learning DNF.
They then define an MI membership query (MI-
MQ) in which an adversary defines a bag B D

fp1; : : : ; png and the learner is allowed to ask
an oracle for the label of bag B C Ev D fp1 C

Ev; : : : ; pn C Evg for any d -dimensional vector Ev.
Their algorithm then uses this MI-MQ oracle to
online learn a real-valued MI concept in time
O.dn2/.

Applications

In this section, we describe domains where MI
learning problems have been formulated.

Drug activity was the motivating application
for the MI representation (Dietterich et al. 1997).
Drugs are typically molecules that fulfill some
desired function by binding to a target. In this
domain, we wish to predict how strongly a given
molecule will bind to a target. Each molecule is
a three-dimensional entity and takes on multiple
shapes or conformations in solution. We know
that for every molecule showing activity, at least
one of its low energy conformations possesses
the right shape for interacting with the target.
Similarly, if the molecule does not show drug-like
activity, none of its conformations possess the
right shape for interaction. Thus, each molecule is
represented as a bag, where each instance is a low
energy conformation of the molecule. A well-

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_618

872 Multi-Instance Learning

known example from this domain is the MUSK
dataset. The positive class in this data consists of
molecules that smell “musky.” This dataset has
two variants, MUSK1 and MUSK2, both with
similar numbers of bags, with MUSK2 having
many more instances per bag.

Content-Based Image Retrieval is another do-
main where the MI representation has been used
(Maron and Lozano-Pérez 1998; Zhang et al.
2002). In this domain, the task is to find images
that contain objects of interest, such as tigers, in
a database of images. An image is represented
by a bag. An instance in a bag corresponds to
a segment in the image, obtained by some seg-
mentation technique. The underlying assumption
is that the object of interest is contained in (at
least) one segment of the image. For example, if
we are trying to find images of mountains in a
database, it is reasonable to expect most images
of mountains to have certain distinctive segments
characteristic of mountains. An MI learning algo-
rithm should be able to use the segmented images
to learn a concept that represents the shape of a
mountain and use the learned concept to collect
images of mountains from the database.

The identification of protein families has been
framed as an MI problem (Tao et al. 2004). The
objective in that work is to classify given protein
sequences according to whether they belong to
the family of thioredoxin-fold proteins. The given
proteins are first aligned with respect to a motif
that is known to be conserved in the members
of the family. Each aligned protein is represented
by a bag. A bag is labeled positive if the protein
belongs to the family, and negative otherwise.
An instance in a bag corresponds to a position
in a fixed length sequence around the conserved
motif. Each position is described by a vector of
attributes; each attribute describes the properties
of the amino acid at that position, and is smoothed
using the same properties from its neighbors.

Text Categorization is another domain that
has used the MI representation (Andrews et al.
2003; Ray and Craven 2005). In this domain,
the task is to classify a document as belonging
to a certain category or not. Often, whether the
document belongs to the specified category is
the function of a few passages in the document.

These passages are however not labeled with the
category information. Thus, a document could
be represented as a set of passages. We assume
that each positive document (i.e., that belongs to
the specified category) has at least one passage
that contains words that indicate category mem-
bership. On the other hand, a negative document
(that does not belong to the category) has no
passage that contain words indicating category
membership. This formulation has been used to
classify whether MEDLINE documents should
be annotated with specific MeSH terms (Andrews
et al.) and to determine if specific documents
should be annotated with terms from the Gene
Ontology (Ray and Craven 2005).

Time-series data from the hard drives have
been used to define an MI problem (Murray et al.
2005). The task here is to distinguish drives that
fail from others. Each hard drive is a bag. Each
instance in the bag is a fixed-size window over
timepoints when the drive’s state was measured
using certain attributes. In the training set, each
drive is labeled according to whether it failed
during a window of observation. An interesting
aspect to prediction in this setting is that it is done
online, i.e., the algorithm learns a classifier for
instances, which is applied to each instance as it
becomes available in time. The authors learn a
naı̈ve Bayes model using an EM-based approach
to solve this problem.

Discovering useful subgoals in reinforcement
learning has been formulated as an MI problem
(McGovern and Barto 2001). Imagine that a robot
has to get from one room to another by passing
through a connecting door. If the robot knew of
the existence of the door, it could decompose
the problem into two simpler subproblems to be
solved separately: getting from the initial location
in the first room to the door, and then getting from
the door to its destination. How could the robot
discover such a “useful subgoal?” One approach
formulates this as an MI problem. Each trajectory
of the robot, where the robot starts at the source
and then moves for some number of time steps, is
considered to be a bag. An instance in a bag is a
state of the world, that records observations such
as, “is the robot’s current location a door?” Tra-
jectories that reach the destination are positive,

Multi-Instance Learning 873

M

while those that do not are negative. Given this
data, we can learn a classifier that predicts which
states are more likely to be seen on successful tra-
jectories than on unsuccessful ones. These states
are taken to be useful subgoals. In the previous
example, the MI algorithm could learn that the
state “location is a door” is a useful subgoal,
since it appears on all successful trajectories, but
infrequently on unsuccessful ones.

Future Directions

MI learning remains an active research area.
One direction that is being explored relaxes the
“Constraints” in Fig. 2 in different ways (Tao
et al. 2004; Weidmann et al. 2003). For example,
one could consider constraints where at least a
certain number (or fraction) of instances have
to be positive for a bag to be labeled positive.
Similarly, it may be the case that a bag is labeled
positive only if it does not contain a specific
instance. Such relaxations are often studied as
“generalized multiple-instance learning.”

One such generalization of MI learning has
been formally studied under the name “geomet-
ric patterns.” In this setting, the target concept
consists of a collection of APRs, and a bag is
labeled positive if and only if (1) each of its points
lies in a target APR, and (2) every target APR
contains a point. Noise-tolerant PAC algorithms
(Goldman and Scott 1999) and online algorithms
(Goldman et al. 2001) have been presented for
such concept classes. These algorithms make no
assumptions on the distribution used to generate
the bags (e.g., instances might not be generated
by an iid process). This does not violate Auer et
al.’s lower bound since these algorithms do not
scale with the dimension of the input space.

Another recent direction explores the con-
nections between MI and semi-supervised learn-
ings. Semi-supervised learning generally refers
to learning from a setting where some instance
labels are unknown. MI learning can be viewed as
one example of this setting. Exploiting this con-
nection between MI learning and other methods
for semi-supervised learning, recent work (Rah-
mani and Goldman 2006) proposes an approach

where an MI problem is transformed into a semi-
supervised learning problem. An advantage of the
approach is that it automatically also takes into
account unlabeled bags.

Cross-References

�Artificial Neural Networks
�Attribute
�Classification
�Data Set
�Decision Tree
�Expectation Maximization Clustering
� First-Order Logic
�Gaussian Distribution
� Inductive Logic Programming
�Kernel Methods
�Linear Regression
�Nearest Neighbor
�Noise
�Online Learning
� PAC Learning
�Relational Learning
� Supervised Learning

Recommended Reading

Alphonse E, Matwin S (2002) Feature subset selection
and inductive logic programming. In: Proceedings
of the 19th international conference on machine
learning, pp 11–18. Morgan Kaufmann, San Fran-
cisco

Andrews S, Tsochantaridis I, Hofmann T (2003) Sup-
port vector machines for multiple-instance learning.
In Becker S, Thrun S, Obermayer K (eds) Advances
in neural information processing systems, vol 15.
MIT Press, Cambridge, MA, pp 561–568

Angluin D (1988) Queries and concept learning. Mach
Learn 2(4):319–342

Auer P (1997) On learning from multi-instance exam-
ples: empirical evaluation of a theoretical approach.
In: Proceeding of 14th international conference on
machine learning, pp 21–29. Morgan Kaufmann,
San Francisco

Auer P, Long PM, Srinivasan A (1998) Approximating
hyper-rectangles: learning and pseudorandom sets. J
Comput Syst Sci 57(3):376–388

Blockeel H, De Raedt L (1998) Top-down induction
of first order logical decision trees. Artif Intell
101(1–2):285–297

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

874 Multi-Instance Learning

Blockeel H, Page D, Srinivasan A (2005) Multi-
instance tree learning. In: Proceedings of 22nd in-
ternational conference on machine learning, Bonn,
pp 57–64

Blum A, Kalai A (1998) A note on learning
from multiple-instance examples. Mach Learn J
30(1):23–29

Cohen WW (1995) Fast effective rule induction. In:
Proceedings of the 12th international conference on
machine learning. Morgan Kaufmann, San Fran-
cisco

DeRaedt L (1998) Attribute-value learning versus in-
ductive logic programming: the missing links. In:
Proceedings of the eighth international conference
on inductive logic programming. Springer, New
York, pp 1–8

Dietterich T, Lathrop R, Lozano-Perez T (1997) Solv-
ing the multiple-instance problem with axis-parallel
rectangles. Artif Intell 89(1–2):31–71

Dooly DR, Goldman SA, Kwek SS (2006) Real-valued
multiple-instance learning with queries. J Comput
Syst Sci 72(1):1–15

Dooly DR, Zhang Q, Goldman SA, Amar RA (2002)
Multiple-instance learning of real-valued data. J
Mach Learn Res 3:651–678

Gartner T, Flach PA, Kowalczyk A, Smola AJ (2002)
Multi-instance kernels. In: Sammut C, Hoffmann
A (eds) Proceedings of the 19th international con-
ference on machine learning, pp 179–186. Morgan
Kaufmann, San Francisco

Goldman SA, Kwek SK, Scott SD (2001) Agnostic
learning of geometric patterns. J Comput Syst Sci
6(1):123–151

Goldman SA, Scott SD (1999) A theoretical and em-
pirical study of a noise-tolerant algorithm to learn
geometric patterns. Mach Learn 37(1):5–49

Kearns M (1998) Efficient noise-tolerant learning from
statistical queries. J ACM 45(6):983–1006

Long PM, Tan L (1998) PAC learning axis-aligned
rectangles with respect to product distributions from
multiple-instance examples. Mach Learn 30(1):7–
21

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maron O (1998) Learning from ambiguity. PhD thesis,
Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA

Maron O, Lozano-Pérez T (1998) A framework for
multiple-instance learning. In: Jordan MI, Kearns
MJ, Solla SA (eds) Advances in neural information
processing systems, vol 10. MIT Press, Cambridge,
MA, pp 570–576

McGovern A, Barto AG (2001) Automatic discovery
of subgoals in reinforcement learning using diverse
density. In: Proceedings of the 18th international
conference on machine learning. Morgan Kauf-
mann, San Francisco, pp 361–368

McGovern A, Jensen D (2003) Identifying predic-
tive structures in relational data using multiple in-

stance learning. In: Proceedings of the 20th interna-
tional conference on machine learning. AAAI Press,
Menlo Park, pp 528–535

Murray JF, Hughes GF, Kreutz-Delgado K (2005)
Machine learning methods for predicting failures in
hard drives: A multiple-instance application. J Mach
Learn Res 6:783–816

Papadimitriou C (1994) Computational complexity.
Addison-Wesley, Boston

Pearl J (1998) Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
Kaufmann, San Mateo

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Rahmani R, Goldman SA (2006) MISSL: Multiple-
instance semi-supervised learning. In: Proceedings
of the 23rd international conference on machine
learning, pp 705–712. ACM Press, New York

Ramon J, DeRaedt L (2000) Multi instance neural
networks. In: Proceedings of ICML-2000 workshop
on attribute-value and relational learning

Ray S, Craven M (2005) Supervised versus multiple-
instance learning: an empirical comparison. In: Pro-
ceedings of the 22nd international conference on
machine learning. ACM Press, New York, pp 697–
704

Ray S, Page D (2001) Multiple instance regression.
In: Proceedings of the 18th international confer-
ence on machine learning. Morgan Kaufmann,
Williamstown

Tao Q, Scott SD, Vinodchandran NV (2004) SVM-
based generalized multiple-instance learning via
approximate box counting. In: Proceedings of the
21st international conference on machine learn-
ing. Morgan Kaufmann, San Francisco, pp 779–
806

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1134–1142

Wang J, Zucker JD (2000) Solving the multiple-
instance problem: a lazy learning approach. In: Pro-
ceedings of the 17th international conference on ma-
chine learning. Morgan Kaufmann, San Francisco,
pp 1119–1125

Weidmann N, Frank E, Pfahringer B (2003) A
two-level learning method for generalized multi-
instance problems. In: Proceedings of the Euro-
pean conference on machine learning. Springer,
Berlin/Heidelberg, pp 468–479

Xu X, Frank E (2004) Logistic regression and boosting
for labeled bags of instances. In: Proceedings of
the Pacific-Asia conference on knowledge discovery
and data mining, Sydney, pp 272–281

Zhang Q, Goldman S (2001) EM-DD: an im-
proved multiple-instance learning technique. In:
Advances in Neural Information Processing Sys-
tems. MIT Press, Cambridge, MA, pp 1073–
1080

Zhang Q, Yu W, Goldman S, Fritts J (2002) Content-
based image retrieval using multiple-instance learn-
ing. In: Proceedings of the 19th international confer-

Multi-label Learning 875

M

ence on machine learning. Morgan Kaufmann, San
Francisco, pp 682–689

Zhou ZH, Zhang ML (2002) Neural networks for
multi-instance learning. Technical Report, Nanjing
University, Nanjing

Multi-label Learning

Zhi-Hua Zhou1 and Min-Ling Zhang2

1National Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing,
China
2School of Computer Science and Engineering,
Southeast University, Nanjing, China

Abstract

Multi-label learning is an important machine
learning setting where each example is associ-
ated with multiple class labels simultaneously.
Firstly, definition, motivation and background,
and learning system structure for multi-label
learning are introduced. Secondly, multi-
label evaluation measures and the issue
of label correlation are discussed. Thirdly,
basic ideas and technical details on four
representative multi-label learning algorithms
are considered. Lastly, theory, extensions, and
future challenges on multi-label learning are
introduced.

Definition

Multi-label learning is an extension of the stan-
dard supervised learning setting. In contrast to
standard supervised learning where one training
example is associated with a single class label,
in multi-label learning, one training example is
associated with multiple class labels simultane-
ously. The multi-label learner induces a function
that is able to assign multiple proper labels (from
a given label set) to unseen instances. Multi-label
learning reduces to standard supervised learning
by restricting the number of class labels per
instance to one.

Motivation and Background

Most classification learning approaches treat the
class values as disjoint – each object may belong
only to a single class, such as on or off. Some ap-
plications, however, have categories that are not
mutually exclusive – a single object may belong
to multiple classes (Zhang and Zhou 2014). For
instance, in text categorization, a news document
on presidential election can cover multiple topics
such as politics, economics, diplomacy, and TV
debate (Schapire and Singer 2000); in image
classification, a natural scene image can contain
multiple sceneries such as the sky, sea, boat, and
beach (Boutell et al. 2004). Actually, multi-label
objects are often encountered in many applica-
tions such as bioinformatics, multimedia content
annotation, information retrieval, and web mining
(Zhang and Zhou 2014).

The goal of multi-label learning is to induce
a function that can predict a subset of labels
for an unseen instance from a given label set.
Research into this important problem emerged in
early 2000 and significant research progress has
followed (Zhang and Zhou 2014).

Structure of Learning System

Let X D Rd denote the d -dimensional instance
space and Y D fy1; y2; : : : ; yqg denote the label
space consisting of q class labels. Given the
multi-label training set D D f.xi ; Yi / j 1 � i �

mg, the task of multi-label learning is to learn a
function h W X 7! 2Y mapping from the instance
space to the powerset of the label space. For each
multi-label training example .xi ; Yi /, xi 2 X is
a d -dimensional feature vector and Yi � Y is the
set of class labels associated with xi . The learned
function h. � / predicts the proper label set for any
unseen instance x as h.x/ � Y .

An alternative model to h. � / returned by most
multi-label learning systems corresponds to a
real-valued function f W X � Y 7! R. Here,
f .x; y/ can be regarded as the predictive confi-
dence of y 2 Y being a proper label for x. In
other words, for the multi-label example .x; Y /,
the predictive output f .x; y0/ on relevant label

876 Multi-label Learning

y0 2 Y should be larger than the predictive
output f .x; y00/ on irrelevant label y00 … Y ,
i.e., f .x; y0/ > f .x; y00/. By referring to a
threshold function t W X 7! R, h. � / can be
derived from the real-valued function f . � ; � / by:
h.x/ D fy j f .x; y/ > t.x/; y 2 Yg.

Evaluation Measures
In standard supervised learning, popular mea-
sures used to evaluate the learning performance
include accuracy, precision, recall, etc. In
multi-label learning, however, these single-
label evaluation measures cannot be adopted
directly due to the multi-label nature of the data.
Therefore, a number of evaluation measures
have been designed for multi-label learning.
These measures can be roughly categorized
into two groups, i.e., example-based measures
and label-based measures (Zhang and Zhou
2014). Example-based measures evaluate the
generalization performance of the learned multi-
label predictor on each test example separately
and then return the mean value across the
test set; label-based measures evaluate the
generalization performance of the predictor on
each class label separately and then return the
macro-/micro-averaging value across all class
labels.

Let S D f.xi ; Yi / j 1 � i � pg denote
the multi-label test set, and h. � / (or equivalently
f . � ; � /) denote the learned multi-label predictor.
Typical example-based measures include:

• Subset Accuracy: 1
p

Pp
iD1ŒŒh.xi / D Yi ��. This

measure evaluates the proportion of test exam-
ples whose predicted label set coincides with
the ground-truth label set. Here, ŒŒ��� returns 1
if predicate � holds and 0 otherwise.

• Hamming Loss: 1
p

Pp
iD1

1
q
jh.xi /ΔYi j. This

measure evaluates the proportion of misclas-
sified instance-label pairs, i.e., a relevant label
is missed or an irrelevant label is predicted.
Here, Δ stands for the symmetric difference
between two sets and j � j measures the cardi-
nality of a set.

• One-Error: 1
p

Pp
iD1ŒŒarg maxy2Y f .xi ; y/ …

Yi ��. This measure evaluates the proportion of

test examples whose top-1 predicted label fails
to be a relevant label.

• Coverage: 1
p

Pp
iD1maxy2Yi

rankf .xi ; y/�1.
This measure evaluates the number of steps
needed to move down the ranked label list
so as to cover all relevant labels of the test
example. Here, rankf .x; y/ returns the rank
of class label y within label space Y according
to the descending order specified by f .x; � /.

• Ranking Loss: 1
p

Pp
iD1

1
jYi jj NYi j

jf.y0; y00/j

f .x; y0/ � f .xi ; y00/; .y0; y00/ 2 Yi � NYigj.
This measure evaluates the proportion of
incorrectly ordered label pairs, i.e., an
irrelevant label yields larger output value than
a relevant label. Here, NYi is the complementary
set of Yi in Y .

• Average Precision: 1
p

Pp
iD1

1
jYi j

P
y2Yi

jfy0jrankf .xi ;y0/�rankf .xi ;y/;y02Yi gj

rankf .xi ;y/
.

This measure evaluates the average proportion
of labels ranked higher than a relevant label
y 2 Yi that are also relevant.

For hamming loss, one-error, coverage, and rank-
ing loss, the smaller the value, the better the
generalization performance. For other example-
based measures, the larger the value, the better
the performance.

For label-based measures, to characterize the
binary classification performance of the predictor
on each label yj 2 Y , four basic quantities
regarding the test examples are commonly used:
TPj (#true positive), FPj (#false positive), TNj

(#true negative), and FNj (#false negative). It
is evident that most binary classification mea-
sures can be derived based on these quantities.
Let B.TPj ; FPj ; TNj ; FNj / denote a certain
binary classification measure, label-based multi-
label measures can be defined in either of the
following ways:

• Macro-B: 1
q

Pq
j D1 B.TPj ; FPj ; TNj ; FNj /.

This multi-label measure is derived by assum-
ing equal importance for each label.

• Micro-B: B.
Pq

j D1 TPj ;
Pq

j D1 FPj ;
Pq

j D1

TNj ;
Pq

j D1 FNj /. This multi-label measure
is derived by assuming equal importance for
each example.

Multi-label Learning 877

M

Among popular choices of B 2 faccuracy;

precision; recal l; F g, the larger the macro-
/micro-B value, the better the performance.

Label Correlation
The major challenge of learning from multi-
label data lies in the potentially tremendous-sized
output space. Here, the number of possible label
sets to be predicted grows exponentially as the
number of class labels increases. For example,
a label space with a moderate number of 20
class labels will lead to more than 1 million
(i.e., 220) possible label sets. Thus, many label
sets will rarely have examples appearing in the
training set, leading to poor performance if they
are learned separately.

To deal with the challenge of huge output
space, a common practice is to exploit the la-
bel correlation to facilitate the learning process
(Zhang and Zhou 2014). For instance, the prob-
ability of an image having label Africa would be
high if we know it already has labels grassland
and lions; a document is unlikely to be labeled as
recreation if it is related to legislation and police.
Actually, the fundamental issue distinguishing
multi-label learning from traditional supervised
learning lies in the fact that in multi-label learning
it is crucial to exploit the label relations.

A widely-used strategy is to estimate the cor-
relation among labels directly from the train-
ing examples based on the assumed correlation
model. Based on the order of correlations be-
ing modeled, the estimation techniques can be
roughly categorized into three categories:

(a) First-order techniques tackling multi-label
learning task in a label-by-label style and
thus ignoring the coexistence of other labels,
such as decomposing the multi-label learning
problem into a number of independent
binary classification problems (one per label)
(Boutell et al. 2004; Zhang and Zhou 2007)

(b) Second-order techniques tackling multi-label
learning task by considering pairwise corre-
lations between labels, such as the ranking
between relevant and irrelevant labels (Elis-
seeff and Weston 2002; Schapire and Singer
2000)

(c) High-order techniques tackling multi-label
learning task by considering high-order
correlations among labels, such as assuming
the correlations among all labels (Read
et al. 2011) or random subsets of labels
(Tsoumakas et al. 2011)

Another strategy is to adopt domain knowledge
about label relations as input to the multi-label
learning algorithms. One conventional source of
domain knowledge corresponds to the label hi-
erarchies (or taxonomies) available in some ap-
plications such as text classification (Rousu et al.
2005). There is also a recent strategy which tries
to discover and exploit label relations during the
procedure of learning the multi-label predictors
(Zhang and Zhou 2014).

Learning Algorithms
To design learning algorithms for multi-label
data, two complementary philosophies naturally
arise. On one hand, algorithm adaptation
methods work by fitting algorithms to data,
i.e., adapting popular standard supervised
learning algorithms to deal with multi-label
data. On the other hand, problem transformation
methods work by fitting data to algorithms, i.e.,
transforming multi-label data to accommodate
other well-established learning frameworks.
During the past decade, lots of algorithms have
been developed following these philosophies
(Zhang and Zhou 2014). This section briefly
introduces four representative algorithms,
including algorithm adaptation methods ML-
KNN (multi-label k-nearest neighbor) (Zhang and
Zhou 2007) and RANK-SVM (ranking support
vector machine) (Elisseeff and Weston 2002),
as well as problem transformation methods CC
(classifier chain) (Read et al. 2011) and RAKEL

(random k-labelsets) (Tsoumakas et al. 2011).
These algorithms are simply chosen to manifest
the essentials of two key design philosophies,
which by no means exclude the importance of
other multi-label learning algorithms.

ML-KNN adapts the k-nearest neighbor tech-
nique to deal with multi-label data (Zhang and
Zhou 2007). Specifically, the maximum a posteri-
ori (MAP) rule is utilized to make prediction for

878 Multi-label Learning

unseen instance by reasoning with the labeling
information from its neighbors. Given the multi-
label training set D and unseen instance x, let
N .x/ denote the set of k nearest neighbors of
x identified in D. Accordingly, the following
statistics can be calculated based on the labeling
information of the neighbors in N .x/: Cj DP

.xi ;Yi /2N .x/ŒŒyj 2 Yi ��. Namely, Cj records the
number of neighbors which take the j -th class
label yj as their relevant label. Let P.Hj j Cj /

represent the posterior probability that the event
of Hj (i.e., x has yj as its relevant label) holds
under the condition of Cj (i.e., x has exactly Cj

neighbors with relevant label yj). Similarly, let
P.:Hj j Cj / represent the posterior probability
that Hj does not hold under the same condition.
Based on the MAP rule, the label set for x is
predicted by

Y D fyj j P.Hj j Cj /

> P.:Hj j Cj /; 1 � j � qg (1)

According to the Bayes rule, we have P.Hj j

Cj / / P.Hj / �P.Cj j Hj / and P.:Hj j

Cj / / P.:Hj / �P.Cj j :Hj /. Therefore,
it suffices to make prediction by estimating the
prior probabilities fP.Hj /, P.:Hj /g and the
likelihoods fP.Cj j Hj /, P.Cj j :Hj /g.
These probabilistic terms can be estimated from
the training set via the frequency counting strat-
egy (Zhang and Zhou 2007). In general, ML-
KNN assumes label independence in its learning
procedure and optimizes the evaluation measure
of hamming loss (or equivalently macro-/micro-
accuracy).

RANK-SVM adapts large margin methods to
deal with multi-label data (Elisseeff and Weston
2002). Specifically, a set of linear classifiers are
optimized to minimize the empirical ranking loss.
Given the learning system with q linear classifiers
W D f.wj ; bj / j 1 � j � qg, its margin
over each multi-label training example .xi ; Yi /

corresponds to

�i D min
.yj ;yk/2Yi � NYi

hwj � wk ; xi i C bj � bk

jjwj � wkjj

(2)

Here, h � ; � i returns the inner product between
two vectors. Conceptually, Eq. (2) considers the
signed L2-distance of xi to the decision hy-
perplane of every relevant-irrelevant label pair
.yj ; yk/: hwj � wk ; xi C bj � bk D 0, and then
returns the minimum as the margin on .xi ; Yi /.
Accordingly, the margin of the learning system
on the whole training set D is min.xi ;Yi /2D �i .
Under the ideal case that the learning system
can properly rank every relevant-irrelevant label
pair for each training example, the large margin
optimization problem turns out to be

min
W

max
1�j <k�q

jjwj � wkjj
2

s:t: W hwj � wk ; xi i C bj � bk � 1

1 � i � m; .yj ; yk/ 2 Yi � NYi (3)

By approximating max by sum and intro-
ducing slack variables to accommodate violated
constraints, Eq. (3) can be re-formulated as

min
fW;Ξg

qX
j D1

jjwj jj
2CC

mX
iD1

1

jYi jj NYi j

X
.yj ;yk/2Yi � NYi

ijk

s:t: W hwj � wk ; xi i C bj � bk � 1 �
ijk

ijk � 0; 1 � i � m; .yj ; yk/ 2 Yi � NYi

(4)

Here, Ξ D f
ijk j 1 � i � m; .yj ; yk/ 2 Yi � NYig

is the set of slack variables. The first objective
term in Eq. (4) corresponds to the margin of the
learning system, whereas the second objective
term corresponds to the empirical ranking loss.
The solution to Eq. (4) can be found by invoking
standard quadratic programming (QP) procedure
in its primal form or incorporating kernel trick
in its dual form. The label set for unseen in-
stance is predicted by thresholding the output of
each classifier in W . In general, RANK-SVM as-
sumes second-order label correlations (relevant-
irrelevant label pair) in its learning procedure and
optimizes the evaluation measure of ranking loss.

CC transforms the multi-label learning prob-
lem into a chain of binary classification prob-
lems. Specifically, subsequent classifiers in the

Multi-label Learning 879

M

chain are built upon the predictions of preceding
ones. Without loss of generality, suppose all the
class labels in Y are ordered in a chain: y1

y2 � � � yq . For the j -th class label yj in
the chain, a corresponding binary training set can
be constructed by taking the relevancy of each
preceding label as an extra feature to the instance:

Dj D
˚�

Œxi ; prei
j �; �.Yi ; yj /

j 1 � i � m

�
where prei

j D .�.Yi ; y1/; : : : ; �.Yi ; yj �1//T

(5)

Here, �.Y; y/ D ŒŒy 2 Y �� represents the binary
assignment of class label y w.r.t. label set Y . As
shown in Eq. (5), each instance xi is appended
with an extra feature vector prei

j representing
the relevancy of those labels preceding yj . After
that, a binary classifier gj W X � f0; 1gj �1 7!

f0; 1g can be induced for yj by utilizing some
binary learning algorithm B, i.e., gj � B.Dj /.
For unseen instance x, its label set is predicted
by traversing the classifier chain iteratively. The
predicted binary assignment of yj on x, denoted
as �x

j , are recursively determined by

�x
1 D g1.x/

�x
j D gj .Œx; �x

1 ; : : : ; �x
j �1�/ .2 � j � q/ (6)

Therefore, the predicted label set corresponds
to: Y D fyj j �x

j D 1; 1 � j � qg.
Evidently, the chaining order over the class labels
has significant influence on the effectiveness of
CC. To account for the effect of chaining order,
an ensemble of classifier chains can be built with
diverse random chaining orders. In general, CC
assumes high-order label correlations (among all
labels) in its learning procedure and optimizes the
evaluation measure of hamming loss (or equiva-
lently macro-/micro-accuracy).

RAKEL transforms the multi-label learning
problem into an ensemble of multi-class classi-
fication problems. Specifically, each component
learner in the ensemble is generated by consider-
ing a random subset of Y . Let Sk � Y denote a
k-labelset which contains k random class labels
in Y . Accordingly, let 	Sk

W 2Sk 7! N denote

the injective function mapping from the power
set of Sk to natural numbers. In view of Sk ,
a corresponding multi-class training set can be
constructed by shrinking the original label space
Y into Sk :

DSk
D
˚�

xi ; 	Sk
.Yi \ Sk/

j 1 � i � m

�
(7)

Here, the set of newly transformed labels in DSk

corresponds to ΓSk
D f	Sk

.Yi \ Sk/ j 1 �
i � mg. As shown in Eq. (7), each instance
xi is transformed into a multi-class single-label
example by mapping the intersection between
Yi and Sk into a new label in ΓSk

. After that,
a multi-class classifier gSk

W X 7! ΓSk
can

be induced for Sk by utilizing some multi-class
learning algorithm M, i.e., gSk

 � M.DSk
/. To

entirely explore the original label space Y with
k-labelsets, an ensemble of n random k-labelsets
S.r/

k
.1 � r � n/ can be created where each

of them leads to a multi-class classifier gS.r/

k

. � /.

For unseen instance x, its label set is predicted by
referring to the following two quantities:

�.x; yj / D

nX
rD1

hh
yj 2 S.r/

k

ii

�.x; yj / D

nX
rD1

��
yj 2 	�1

S.r/

k

gS.r/

k

.x/
���

(8)

Conceptually, �.x; yj / counts the maximum
number of votes that yj can receive from the
ensemble, whereas �.x; yj / counts the actual
number of votes that yj does receive from the
ensemble. Therefore, the predicted label set cor-
responds to: Y D fyj j �.x; yj /=�.x; yj / >

0:5; 1 � j � qg. In general, CC assumes
high-order label correlations (among subsets of
labels) in its learning procedure and optimizes the
evaluation measure of subset accuracy (measured
w.r.t. k-labelset).

It is worth mentioning that many multi-label
learning algorithms mainly work under the sce-
narios where the label space Y contains mod-
erate number (tens or hundreds) of class labels.
Nonetheless, in many applications the number
of class labels in Y can be huge. For instance,

880 Multi-label Learning

a web page may be annotated with relevant la-
bels from the pool of more than one million
Wikipedia categories. In such case, the compu-
tational complexity of many multi-label learn-
ing algorithms might be prohibitively high. Even
for binary decomposition, which is the simplest
way to learn from multi-label data, building one
independent classifier for each label is still too
computational demanding given the huge number
of class labels. Therefore, specific strategies need
to be employed to handle huge number of labels.
One feasible strategy is to find a low-dimensional
embedding of the original label space by ex-
ploiting the sparsity of relevant labels, where the
classification model is built within the embedded
label space (Weston et al. 2011). Another strat-
egy is to partition the original label space into
different clusters based on tree structure, where
the classification model is built within each leaf
node (Agrawal et al. 2013).

Theory

Multi-label loss functions are usually non-convex
and discontinuous, making them difficult to opti-
mize directly. Therefore, in practice, most learn-
ing algorithms resort to optimizing (convex) sur-
rogate loss functions. There are several theoret-
ical studies about the consistency of surrogate
loss functions, i.e., whether the expected risk of
surrogate loss of a learner converges to the Bayes
risk of multi-label loss as the training set size
increases. Recently, a necessary and sufficient
condition has been provided for the consistency
of multi-label learning based on surrogate loss
functions (Gao and Zhou 2011).

For hamming loss, the state-of-the-art multi-
label learning approaches are proven to be incon-
sistent (Gao and Zhou 2011). For ranking loss, it
has been shown that none pairwise convex surro-
gate loss defined on label pairs can be consistent;
therefore, the partial ranking loss is introduced
for multi-label learning, and some pairwise con-
sistent surrogate loss function are provided (Gao
and Zhou 2011). The univariate convex surrogate
loss defined on single label can be consistent with
partial ranking loss based on a reduction to the

bipartite ranking problem (Dembczyński et al.
2012) although the reduction relaxes the original
target.

Extensions

Multi-instance multi-label learning (MIML)
(Zhou et al. 2012) tries to induce a function
hMIML W 2X 7! 2Y from a training set f.Xi ; Yi / j

1 � i � mg, where Xi � X is a set of instances
and Yi is the set of class labels associated with Xi .
The major difference between MIML and multi-
label learning lies in the fact that each example
in MIML is represented by a set of instances
rather than a single instance. This framework is
suitable to tasks involving complicated objects
with inherent structures; e.g., a text document
can be represented by a set of instances each
corresponds to a section or paragraph. In addition
to exploit the structural information for learning
the predictor, MIML also offers the possibility
of discovering the relation between semantic
meanings and input patterns; e.g., it is possible
to discover that the document owes a specific tag
because of its several special paragraphs.

Superset label learning (SLL) (Liu and Diet-
terich 2012) tries to induce a function hSLL W

X 7! Y from a training set f.xi ; Si / j 1 �
i � mg, where xi 2 X is an instance and Si �

Y is the set of candidate labels associated with
xi such that the (unknown) ground-truth label
yi belongs to Si . The major difference between
SLL and multi-label learning lies in the fact that
each example in SLL is associated with multiple
candidate labels among which only one label is
valid. This framework is suitable to tasks where
superset labeling information is readily available;
e.g., a face in an image can be associated with all
the names mentioned in the image’s surrounding
texts where only one name is valid.

Label distribution learning (LDL) (Geng et al.
2013) tries to induce a function fLDL W X 7!

P.Y/ from a training set f.xi ;Di / j 1 �

i � mg, where xi is an instance and Di D

fd 1
i ; d 2

i ; � � � ; d
q
i g is the probability mass of the q

labels associated with xi such that d
j
i � 0 .1 �

Multi-objective Optimization 881

M

j � q/ and
Pq

j D1 d
j
i D 1. The major difference

between LDL and multi-label learning lies in the
fact that the associated labeling information for
each example in LDL is real-valued probability
mass rather than discrete-valued binary labels.
This framework is suitable to tasks where the
degree of labeling importance is inherently dif-
ferent; e.g., entities appearing in a natural scene
have different importance in implying its scenic
concepts.

Future Challenges

There are many research challenges to be ad-
dressed in the future. Firstly, label relations play
a critical role in multi-label learning; however,
there lacks principled mechanism for label rela-
tion exploitation. Secondly, it is generally diffi-
cult to get accurate and complete label annota-
tions, particularly when each example has many
labels. Thus, it is important to develop multi-
label learning approaches that can learn from
partially labeled data. Moreover, multi-label data
usually suffers from inherent class imbalance
and unequal misclassification costs; taking these
properties into full consideration is desirable.

Recommended Reading

Agrawal R, Gupta A, Prabhu Y, Varma M (2013)
Multi-label learning with millions of labels: recom-
mending advertiser bid phrases for web pages. In:
Proceedings of the 22nd international conference on
world wide web, Rio de Janeiro, pp 13–24

Boutell MR, Luo J, Shen X, Brown CM (2004) Learn-
ing multi-label scene classification. Pattern Recog-
nit 37(9):1757–1771

Dembczyński K, Kotłowski W, Hüllermeier E (2012)
Consistent multilabel ranking through univariate
loss minimization. In: Proceedings of the 29th in-
ternational conference on machine learning, Edin-
burgh, pp 1319–1326

Elisseeff A, Weston J (2002) A kernel method
for multi-labelled classification. In: Dietterich TG,
Becker S, Ghahramani Z (eds) Advances in neural
information processing systems, vol 14. MIT Press,
Cambridge, pp 681–687

Gao W, Zhou Z-H (2011) On the consistency of multi-
label learning. In: Proceedings of the 24th annual

conference on learning theory, Budapest, pp 341–
358

Geng X, Yin C, Zhou Z-H (2013) Facial age estimation
by label distribution learning. IEEE Trans Pattern
Anal Mach Intell 35(10):2401–2412

Liu L, Dietterich T (2012) A conditional multino-
mial mixture model for superset label learning.
In: Bartlett P, Pereira FCN, Burges CJC, Bottou
L, Weinberger KQ (eds) Advances in neural in-
formation processing systems, vol 25. MIT Press,
Cambridge, pp 557–565

Read J, Pfahringer B, Holmes G, Frank E (2011)
Classifier chains for multi-label classification. Mach
Learn 85(3):333–359

Rousu J, Saunders C, Szedmak S, Shawe-Taylor J
(2005) Learning hierarchical multi-category text
classification models. In: Proceedings of the 22nd
international conference on machine learning,
Bonn, pp 774–751

Schapire RE, Singer Y (2000) Boostexter: a boosting-
based system for text categorization. Mach Learn
39(2/3):135–168

Tsoumakas G, Katakis I, Vlahavas I (2011) Random k-
labelsets for multi-label classification. IEEE Trans
Knowl Data Eng 23(7):1079–1089

Weston J, Bengio S, Usunier N (2011) WSABIE:
scaling up to large vocabulary image annotation. In:
Proceedings of the 22nd international joint confer-
ence on artificial intelligence, Barcelona, pp 2764–
2770

Zhang M-L, Zhou Z-H (2007) ML-kNN: a lazy learn-
ing approach to multi-label learning. Pattern Recog-
nit 40(7):2038–2048

Zhang M-L, Zhou Z-H (2014) A review on multi-label
learning algorithms. IEEE Trans Knowl Data Eng
26(8):1819–1837

Zhou Z-H, Zhang M-L, Huang S-J, Li Y-F (2012)
Multi-instance multi-label learning. Artif Intell
176(1):2291–2320

Multi-objective Optimization

Synonyms

MOO; Multi-criteria optimization; Vector opti-
mization

Definition

Multi-criteria optimization is concerned with the
optimization of a vector of objectives, which can
be the subject of a number of constraints or

http://dx.doi.org/10.1007/978-1-4899-7687-1_100312
http://dx.doi.org/10.1007/978-1-4899-7687-1_100317
http://dx.doi.org/10.1007/978-1-4899-7687-1_100501

882 Multiple Classifier Systems

bounds. The goal of multi-objective optimization
is usually to find or to approximate the set of
Pareto-optimal solutions. A solution is Pareto-
optimal if it cannot be improved in one objective
without getting worse in another one.

Multiple Classifier Systems

�Ensemble Learning

Multiple-Instance Learning

Soumya Ray1, Stephen Scott2, and
Hendrik Blockeel3;4

1Case Western Reserve University, Cleveland,
OH,
USA
2University of Nebraska, Lincoln, NE, USA
3Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
4Leiden Institute of Advanced Computer
Science, Heverlee, Belgium

Definition

Multiple-instance (MI) learning is an extension
of the standard supervised learning setting. In
standard supervised learning, the input consists
of a set of labeled instances each described by
an attribute vector. The learner then induces a
concept that relates the label of an instance to
its attributes. In MI learning, the input consists
of labeled examples (called “bags”) consisting
of multisets of instances, each described by an
attribute vector, and there are constraints that
relate the label of each bag to the unknown labels
of each instance. The MI learner then induces
a concept that relates the label of a bag to the
attributes describing the instances in it. This
setting contains supervised learning as a special
case: if each bag contains exactly one instance,
it reduces to a standard supervised learning
problem.

Motivation and Background

The MI setting was introduced by Dietterich et al.
(1997) in the context of drug activity prediction.
Drugs are typically molecules that fulfill some
desired function by binding to a target. If we
wish to learn the characteristics responsible for
binding, a possible representation of the prob-
lem is to represent each molecule as a set of
low-energy shapes or conformations and describe
each conformation using a set of attributes. Each
such bag of conformations is given a label cor-
responding to whether the molecule is active or
inactive. To learn a classification model, an algo-
rithm assumes that every instance in a bag labeled
negative is actually negative, whereas at least
one instance in a bag labeled positive is actually
positive with respect to the underlying concept.

From a theoretical viewpoint, MI learning
occupies an intermediate position between stan-
dard propositional supervised learning and first-
order relational learning. Supervised learning is a
special case of MI learning, while MI learning is
a special case of first-order learning. It has been
argued that the MI setting is a key transition
between standard supervised and relational
learning (DeRaedt 1998). At the same time,
theoretical results exist that show that, under
certain assumptions, certain concept classes
that are probably approximately correct (PAC)-
learnable (see PAC learning) in a supervised
setting remain PAC-learnable in an MI setting.
Thus, the MI setting is able to leverage some
of the rich representational power of relational
learners while not sacrificing the efficiency
of propositional learners. Figure 1 illustrates
the relationships between standard supervised
learning, MI learning, and relational learning.

Since its introduction, a wide variety of tasks
have been formulated as MI learning problems.
Many new algorithms have been developed, and
well-known supervised learning algorithms ex-
tended, to learn MI concepts. A great deal of
work has also been done to understand what kinds
of concepts can and cannot be learned efficiently
in this setting. In the following sections, we
discuss the theory, methods, and applications of
MI learning in more detail.

http://dx.doi.org/10.1007/978-1-4899-7687-1_252

Multiple-Instance Learning 883

M

a b c

Multiple-Instance Learning, Fig. 1 The relationship
between supervised, multiple-instance (MI), and rela-
tional learning. (a) In supervised learning, each example
(geometric figure) is labeled. A possible concept that
explains the example labels shown is “the figure is a
rectangle.” (b) In MI learning, bags of examples are

labeled. A possible concept that explains the bag labels
shown is “the bag contains at least one figure that is a
rectangle.” (c) In relational learning, objects of arbitrary
structure are labeled. A possible concept that explains the
object labels shown is “the object is a stack of three figures
and the bottom figure is a rectangle”

Structure of the Problem

The general MI classification task is shown
in Fig. 2. The MI regression task is defined
analogously by substituting a real-valued
response for the classification label. In this

case, the constraint used by the learning
algorithm is that the response of any bag
is equal to the response of at least one of
the instances in it, for example, it could be
equal to the largest response over all the
instances.

884 Multiple-Instance Learning

Multiple-Instance Learning, Fig. 2 Statement of the multiple-instance classification problem

Notice the following problem characteris-
tics:

• The number of instances in each bag can vary
independently of other bags. This implies in
particular that an MI algorithm must be able to
handle bags with as few as one instance (this
is a supervised learning setting) to bags with
large numbers of instances.

• The number of instances in any positive bag
that are “truly positive” could be many more
than one – in fact, the definition does not rule
out the case where all instances in a positive
bag are “truly positive.”

• The problem definition does not specify how
the instances in any bag are related to each
other.

Theory and Methods

In this section, we discuss some of the key al-
gorithms and theoretical results in MI learning.
We first discuss the methods and results for MI
classification. Then we discuss the work on MI
regression.

Multiple-Instance Classification
Axis-parallel rectangles (APRs) are a concept
class that early work in MI classification focused
on. These generative concepts specify upper and
lower bounds for all numeric attributes describing
each instance. An APR is said to “cover” an
instance if the instance lies within it. An APR
covers a bag if it covers at least one instance
within it. The learning algorithm tries to find an

APR such that it covers all positive bags and does
not cover any negative bags.

An algorithm called “iterated discrimination”
was proposed by Dietterich et al. (1997) to learn
APRs from MI data. This algorithm has two
phases. In the first phase, it iteratively chooses
a set of “relevant” attributes and grows an APR
using this set. This phase results in the construc-
tion of a very “tight” APR that covers just positive
bags. In the second phase, the algorithm expands
this APR so that with high probability, a new
positive instance will fall within the APR. The
key steps of the algorithm are outlined below.
Note that initially, all attributes are considered to
be “relevant.”

The algorithm starts by choosing a random
instance in a positive bag. Let us call this instance
I1. The smallest APR covering this instance is
a point. The algorithm then expands this APR
by finding the smallest APR that covers any
instance from a yet uncovered positive bag; call
the newly covered instance I2. This process is
continued, identifying new instances I3; : : : ; Ik ,
until all positive bags are covered. At each step,
the APR is “backfitted” in a way that is reminis-
cent of the later Expectation-Maximization (EM)
approaches: each earlier choice is revisited, and
Ij is replaced with an instance from the same bag
that minimizes the current APR (which may or
may not be the same as the one that minimized it
at step j).

This process yields an APR that imposes max-
imally tight bounds on all attributes and covers
all positive bags. Based on this APR, a new set of
“relevant” attributes is selected as follows. An at-
tribute’s relevance is determined by how strongly

Multiple-Instance Learning 885

M

it discriminates against negative instances, i.e.,
given the current APR bounds, how many neg-
ative instances the attribute excludes. Features
are then chosen iteratively and greedily accord-
ing to how relevant they are until all negative
instances have been excluded. This yields a sub-
set of (presumably relevant) attributes. The APR
growth procedure in the previous paragraph is
then repeated, with the size of an APR redefined
as its size along relevant attributes only. The APR
growth and attribute selection phases are repeated
until the process converges.

The APR thus constructed may still be too
tight, as it fits narrowly around the positive
bags in the dataset. In the second phase of the
algorithm, the APR bounds are further expanded
using a kernel density estimate approach. Here,
a probability distribution is constructed for each
relevant attribute using Gaussian distributions
centered at each instance in a positive bag. Then,
the bounds on that attribute are adjusted so that
with high probability, any positive instance will
lie within the expanded APR.

Theoretical analyses of APR concepts have
been performed along with the empirical ap-
proach, using Valiant’s “probably approximately
correct” (PAC)-learning model (Valiant 1984). In
early work (Long and Tan 1998), it was shown
that if each instance was drawn according to
a fixed, unknown product distribution over the
rational numbers, independently from every other
instance, then an algorithm could PAC-learn
APRs. Later, this result was improved in two
ways (Auer et al. 1998). First, the restriction that
the individual instances in each bag come from
a product distribution was removed. Instead,
each instance is generated by an arbitrary
probability distribution (though each instance
in a bag is still generated independently and
identically distributed (iid) according to that
one distribution). Second, the time and sample
complexities for PAC-learning APRs were
improved. Specifically, the algorithm described
in this work PAC-learns APRs in

O

�
d 3n2

�2
log

nd log.1=ı/

�
log

d

ı

�

using

O

�
d 2n2

�2
log

d

ı

�

time-labeled training bags. Here, d is the dimen-
sion of each instance, n is the (largest) number
of instances per training bag, and � and ı are
parameters to the algorithm. A variant of this
algorithm was empirically evaluated and found to
be successful (Auer 1997).

Diverse Density (Maron 1998; Maron and
Lozano-Pérez 1998) is a probabilistic generative
framework for MI classification. The idea behind
this framework is that, given a set of positive
and negative bags, we wish to learn a concept
that is “close” to at least one instance from each
positive bag, while remaining “far” from every
instance in every negative bag. Thus, the concept
must describe a region of instance space that is
“dense” in instances from positive bags and is
also “diverse” in that it describes every positive
bag. More formally, let

DD.t/ D
1

Z

 Y
i

Pr
�
t jBC

i

Y
i

Pr
�
t jB�

i

!
;

where t is a candidate concept, BC
i represents

the i th positive bag, and B�
i represents the i th

negative bag. We seek a concept that maximizes
DD.t/. The concept generates the instances of
a bag, rather than the bag itself. To score a
concept with respect to a bag, we combine t ’s
probabilities for instances using a function based
on noisy-OR (Pearl 1998):

Pr.t jBC
i / /

0
@1 �

Y
j

1 � Pr

BC

ij 2 t
��1A

(1)

Pr
�
t jB�

i

/
Y

j

�
1 � Pr

�
B�

ij 2 t

(2)

Here, the instances BC
ij and B�

ij belonging to t are
the “causes” of the “event” that “t is the target.”
The concept class investigated by Maron (1998)
is the class of generative Gaussian models, which

886 Multiple-Instance Learning

A

B

C

f1

f2

Multiple-Instance Learning, Fig. 3 An illustration of
the concept that Diverse Density searches for on a simple
MI dataset with three positive bags and one negative
bag, where each instance (represented by the geometric
figures) is described by two attributes, f1 and f2. Each
type of figure represents one bag, i.e., all triangles belong
to one bag, all circles belong to a second bag, and so
forth. The bag containing the red circles is negative, while
the other bags are positive. Region C is a region of high

density, because several instances belong to that region.
Region A is a region of high “Diverse Density,” because
several instances from different positive bags belong to
that region, and no instances from negative bags are
nearby. Region B shows a concept that might be learned if
the learning algorithm assumed that all instances in every
positive bag are positive (Figure adapted from Maron and
Lozano-Pérez (1998))

are parameterized by the mean � and a “scale”
s D 1

2�2 :

Pr.Bij 2 t / / e�
P

k.sk.Bijk��k/2/;

where k ranges over attributes. Figure 3 illus-
trates a concept that Diverse Density might learn
when applied to an MI dataset.

Diverse Density with k disjuncts is a variant
of Diverse Density that has also been investi-
gated (Maron 1998). This is a class of disjunctive
Gaussian concepts, where the probability of an
instance belonging to a concept is given by the
maximum probability of belonging to any of the
disjuncts.

EM-DD (Zhang and Goldman 2001) is an ex-
ample of a class of algorithms that try to identify
the “cause” of a bag’s label using EM. These al-
gorithms sometimes assume that there is a single
instance in each bag that is responsible for the

bag’s label (though variants using “soft EM” are
possible). The key idea behind this approach is
as follows: from each positive bag, we take a
random instance and assume that this instance
is the relevant one. We learn a hypothesis from
these relevant instances and all negative bags.
Next, for each positive bag, we replace the current
relevant instance by the instance most consistent
with the learned hypothesis (which will initially
not be the chosen instance in general). We then
relearn the hypothesis with these new instances.
This process is continued until the set of chosen
instances does not change (or alternatively, the
objective function of the classifier reaches a fixed
point). This procedure has the advantage of being
computationally efficient, since the learning algo-
rithm only uses one instance from each positive
bag. This approach has also been used in MI
regression described later.

Multiple-Instance Learning 887

M

“Upgraded” supervised learning algorithms
can be used in an MI setting by suitably modi-
fying their objective functions. Below, we sum-
marize some of the algorithms that have been
derived in this way.

1. �Decision Tree induction algorithms have
been adapted to the MI setting (Blockeel et al.
2005). The standard algorithm measures the
quality of a split on an attribute by considering
the class label distribution in the child nodes
produced. In the MI case, this distribution is
uncertain, because the true instance labels
in positive bags are unknown. However,
some rules have been identified that lead
to empirically good MI trees: (1) use an
asymmetric heuristic that favors early creation
of pure positive (rather than negative) leaves;
(2) once a positive leaf has been created,
remove all other instances of the bags covered
by this leaf; (3) abandon the depth-first or
breadth-first order in which nodes are usually
split, adopting a best-first strategy instead
(indeed, because of (2), the result of tree
learning is now sensitive to the order in which
the nodes are split).

2. �Artificial Neural Networks have been
adapted to the MI setting by representing
the bag classifier as a network that combines
several copies of a smaller network, which
represents the instance classifier, with a
smooth approximation of the max combining
function (Ramon and DeRaedt 2000). Weight
update rules for a backpropagation algorithm
working on this network have been derived.
Later work on MI neural networks has been
performed independently by others (Zhou and
Zhang 2002).

3. �Logistic Regression has been adapted
to the MI setting by using it as an
instance-based classifier and combining the
instance-level probabilities using functions
like softmax (Ray and Craven 2005) and
arithmetic and geometric averages (Xu and
Frank 2004).

4. The � k-Nearest Neighbor algorithm has been
adapted to the MI setting by using set-based
distance metrics, such as variants based on the

Hausdorff distance. However, this alone does
not solve the problem – it is possible for a pos-
itive bag to be mistakenly classified negative if
it contains a “true negative” instance that hap-
pens to be much closer to negative instances in
other negative bags. To solve this, a “Citation-
kNN” (Wang and Zucker 2000) approach has
been proposed that also considers, for each
bag B , the labels of those bags for which B

is a nearest neighbor.
5. � Support Vector Machines have been adapted

to the MI setting in several ways. In one
method, the constraints in the quadratic pro-
gram for SVMs is modified to account for the
fact that certain instance labels are unknown
but have constraints relating them (Andrews
et al. 2003). In another method, new kernels
are designed for MI data by modifying stan-
dard supervised SVM kernels (Gartner et al.
2002) or designing new kernels (Tao et al.
2004). The modification allows these MI ker-
nels to distinguish between positive and nega-
tive bags if the supervised kernel could distin-
guish between (“true”) positive and negative
instances.

6. �Rule learning algorithms have been adapted
to the MI setting in two ways. One method
has investigated upgrading a supervised rule-
learner, the RIPPER system (Cohen 1995), to
the MI setting by modifying its objective func-
tion to account for bags and addressing sev-
eral issues that resulted. Another method has
investigated using general-purpose relational
algorithms, such as FOIL (Quinlan 1990) and
TILDE (Blockeel and De Raedt 1998), and pro-
viding them with an appropriate � inductive
bias so that they learn the MI concepts. Fur-
ther, it has been observed that techniques from
MI learning can also be used inside relational
learning algorithms (Alphonse and Matwin
2002).

A large-scale empirical analysis of several
such propositional supervised learning algo-
rithms and their MI counterparts has been
performed (Ray and Craven 2005). This analysis
concludes that (1) no single MI algorithm works
well across all problems (thus, different inductive

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_390

888 Multiple-Instance Learning

biases are suited to different problems), (2) some
MI algorithms consistently perform better than
their supervised counterparts but others do not
(hence, for these biases, there seems room for
improvement), and (3) assigning a larger weight
to false positives than to false negatives is a
simple but effective method to adapt supervised
learning algorithms to the MI setting. It was also
observed that the advantages of MI learners may
be more pronounced if they would be evaluated
on the task of labeling individual instances rather
than bags.

Along with “upgrading” supervised learning
algorithms, a theoretical analysis of supervised
learners learning with MI data has been carried
out (Blum and Kalai 1998). In particular, the MI
problem has been related to the problem of learn-
ing in the presence of classification noise (i.e.,
each training example’s label is flipped with some
probability <1/2). This implies that any concept
class that is PAC-learnable in the presence of
such noise is also learnable in the MI learning
model when each instance of a bag is drawn
iid. Since many concept classes are learnable un-
der this noise assumption (using, e.g., statistical
queries Kearns 1998), Blum and Kalai’s result
implies PAC learnability of many concept classes.
Further, they improved on previous learnability
results (Auer et al. 1998) by reducing the number
of training bags required for PAC learning by
about a factor of n with only an increase in time
complexity of about log n=�.

Besides these positive results, a negative
learnability result describing when it is hard to
learn concepts from MI data is also known (Auer
et al. 1998). Specifically, if the instances of each
bag are allowed collectively to be generated
according to an arbitrary distribution, learning
from MI examples is as hard as PAC-learning
disjunctive normal form (DNF) formulas from
single-instance examples, which is an open
problem in learning theory that is believed to be
hard. Further, it has been shown that if an efficient
algorithm exists for the non-iid case that outputs
as its hypothesis an axis-parallel rectangle,
then NP = RP (Randomized Polynomial time;
see, e.g., Papadimitriou 1994), which is very
unlikely.

Learning from structured MI data has received
some attention (McGovern and Jensen 2003). In
this work, each instance is a graph, and a bag
is a set of graphs (e.g., a bag could consist of
certain subgraphs of a larger graph). To learn the
concepts in this structured space, the authors use
a modified form of the Diverse Density algorithm
discussed above. As before, the concept being
searched for is a point (which corresponds to
a graph in this case). The main modification
is the use of the size of the maximal common
subgraph to estimate the probability of a concept
– i.e., the probability of a concept given a bag
is estimated as proportional to the size of the
maximal common subgraph between the concept
and any instance in the bag.

Multiple-Instance Regression
Regression problems in an MI setting have
received less attention than the classification
problem. Two key directions have been explored
in this setting. One direction extends the well-
known standard � linear regression method to
the MI setting. The other direction considers
extending various MI classification methods to a
regression setting.

In MI linear regression (Ray and Page 2001)
(referred to as multiple-instance regression in the
cited work), it is assumed that the hypothesis
underlying the data is a linear model with Gaus-
sian noise on the value of the dependent variable
(which is the response). Further, it is assumed
that it is sufficient to model one instance from
each bag, i.e., that there is some primary instance
which is responsible for the real-valued label.
Ideally, one would like to find a hyperplane that
minimizes the squared error with respect to these
primary instances. However, these instances are
unknown during training. The authors conjecture
that, given enough data, a good approximation to
the ideal is given by the “best-fit” hyperplane,
defined as the hyperplane that minimizes the
training set squared error by fitting one instance
from each bag such that the response of the fitted
instance most closely matches the bag response.
This conjecture will be true if the nonprimary in-
stances are not a better fit to a hyperplane than the
primary instances. However, exactly finding the

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Multiple-Instance Learning 889

M

“best-fit” hyperplane is intractable. It is shown
that the decision problem “Is there a hyperplane
which perfectly fits one instance from each bag?”
is NP -complete for arbitrary numbers of bags,
attributes, and at most three instances per bag.
Thus, the authors propose an approximation algo-
rithm which iterates between choosing instances
and learning linear regression models that best fit
them, similar to the EM-DD algorithm described
earlier.

Another direction has explored extending MI
classification algorithms to the regression setting.
This approach (Dooly et al. 2002) uses algo-
rithms like Citation-kNN and Diverse Density
to learn real-valued concepts. To predict a real
value, the approach uses the average of the near-
est neighbor responses or interprets the Gaussian
“probability” as a real number for Diverse Den-
sity.

Recent work has analyzed the Diverse
Density-based regression in the online model (An-
gluin 1988; Littlestone 1988) (see �Online
Learning). In the online model, learning proceeds
in trials, where in each trial a single example is
selected adversarially and given to the learner
for classification. After the learner predicts a
label, the true label is revealed and the learner
incurs a loss based on whether its prediction
was correct. The goal of the online learner is to
minimize the loss over all trials. Online learning
is harder than PAC learning in that there are some
PAC-learnable concept classes that are not online
learnable.

In the regression setting above (Dooly et al.
2006), there is a point concept, and the label of
each bag is a function of the distance between
the concept and the point in the bag closest
to the target. It is shown that similar to Auer
et al.’s lower bound, learning in this setting using
labeled bags alone is as hard as learning DNF.
They then define an MI membership query (MI-
MQ) in which an adversary defines a bag B D

fp1; : : : ; png and the learner is allowed to ask
an oracle for the label of bag B C Ev D fp1 C

Ev; : : : ; pn C Evg for any d -dimensional vector Ev.
Their algorithm then uses this MI-MQ oracle to
online learn a real-valued MI concept in time
O.dn2/.

Applications

In this section, we describe domains where MI
learning problems have been formulated.

Drug activity was the motivating application
for the MI representation (Dietterich et al. 1997).
Drugs are typically molecules that fulfill some
desired function by binding to a target. In this
domain, we wish to predict how strongly a given
molecule will bind to a target. Each molecule is
a three-dimensional entity and takes on multiple
shapes or conformations in solution. We know
that for every molecule showing activity, at least
one of its low-energy conformations possesses
the right shape for interacting with the target.
Similarly, if the molecule does not show drug-like
activity, none of its conformations possess the
right shape for interaction. Thus, each molecule
is represented as a bag, where each instance
is a low-energy conformation of the molecule.
A well-known example from this domain is the
MUSK dataset. The positive class in this data
consists of molecules that smell “musky.” This
dataset has two variants, MUSK1 and MUSK2,
both with similar numbers of bags, with MUSK2
having many more instances per bag.

Content-Based Image Retrieval is another do-
main where the MI representation has been used
(Maron and Lozano-Pérez 1998; Zhang et al.
2002). In this domain, the task is to find images
that contain objects of interest, such as tigers, in
a database of images. An image is represented
by a bag. An instance in a bag corresponds to
a segment in the image, obtained by some seg-
mentation technique. The underlying assumption
is that the object of interest is contained in (at
least) one segment of the image. For example, if
we are trying to find images of mountains in a
database, it is reasonable to expect most images
of mountains to have certain distinctive segments
characteristic of mountains. An MI learning algo-
rithm should be able to use the segmented images
to learn a concept that represents the shape of a
mountain and use the learned concept to collect
images of mountains from the database.

The identification of protein families has been
framed as an MI problem (Tao et al. 2004). The
objective in that work is to classify given protein

http://dx.doi.org/10.1007/978-1-4899-7687-1_618

890 Multiple-Instance Learning

sequences according to whether they belong to
the family of thioredoxin-fold proteins. The given
proteins are first aligned with respect to a motif
that is known to be conserved in the members
of the family. Each aligned protein is represented
by a bag. A bag is labeled positive if the protein
belongs to the family, and negative otherwise.
An instance in a bag corresponds to a position
in a fixed length sequence around the conserved
motif. Each position is described by a vector of
attributes; each attribute describes the properties
of the amino acid at that position and is smoothed
using the same properties from its neighbors.

Text Categorization is another domain that
has used the MI representation (Andrews et al.
2003; Ray and Craven 2005). In this domain,
the task is to classify a document as belonging
to a certain category or not. Often, whether the
document belongs to the specified category is
the function of a few passages in the document.
These passages are however not labeled with the
category information. Thus, a document could
be represented as a set of passages. We assume
that each positive document (i.e., that belongs to
the specified category) has at least one passage
that contains words that indicate category mem-
bership. On the other hand, a negative document
(that does not belong to the category) has no
passage that contains words indicating category
membership. This formulation has been used to
classify whether MEDLINE documents should
be annotated with specific MeSH terms (Andrews
et al.) and to determine if specific documents
should be annotated with terms from the Gene
Ontology (Ray and Craven 2005).

Time-series data from the hard drives have
been used to define an MI problem (Murray et al.
2005). The task here is to distinguish drives that
fail from others. Each hard drive is a bag. Each
instance in the bag is a fixed-size window over
timepoints when the drive’s state was measured
using certain attributes. In the training set, each
drive is labeled according to whether it failed
during a window of observation. An interesting
aspect to prediction in this setting is that it is done
online, i.e., the algorithm learns a classifier for
instances, which is applied to each instance as it
becomes available in time. The authors learn a

naı̈ve Bayes model using an EM-based approach
to solve this problem.

Discovering useful subgoals in reinforcement
learning has been formulated as an MI prob-
lem (McGovern and Barto 2001). Imagine that
a robot has to get from one room to another by
passing through a connecting door. If the robot
knew of the existence of the door, it could decom-
pose the problem into two simpler subproblems
to be solved separately: getting from the initial
location in the first room to the door and then
getting from the door to its destination. How
could the robot discover such a “useful subgoal?”
One approach formulates this as an MI problem.
Each trajectory of the robot, where the robot
starts at the source and then moves for some
number of time steps, is considered to be a bag.
An instance in a bag is a state of the world,
which records observations such as “is the robot’s
current location a door?” Trajectories that reach
the destination are positive, while those that do
not are negative. Given this data, we can learn
a classifier that predicts which states are more
likely to be seen on successful trajectories than
on unsuccessful ones. These states are taken to
be useful subgoals. In the previous example, the
MI algorithm could learn that the state “location
is a door” is a useful subgoal, since it appears
on all successful trajectories, but infrequently on
unsuccessful ones.

Future Directions

MI learning remains an active research area.
One direction that is being explored relaxes the
“constraints” in Fig. 2 in different ways (Tao et al.
2004; Weidmann et al. 2003). For example, one
could consider constraints where at least a certain
number (or fraction) of instances have to be
positive for a bag to be labeled positive. Similarly,
it may be the case that a bag is labeled positive
only if it does not contain a specific instance.
Such relaxations are often studied as “generalized
multiple-instance learning.”

One such generalization of MI learning has
been formally studied under the name “geometric
patterns.” In this setting, the target concept con-

Multiple-Instance Learning 891

M

sists of a collection of APRs, and a bag is labeled
positive if and only if (1) each of its points lies in
a target APR and (2) every target APR contains
a point. Noise-tolerant PAC algorithms (Goldman
and Scott 1999) and online algorithms (Goldman
et al. 2001) have been presented for such concept
classes. These algorithms make no assumptions
on the distribution used to generate the bags
(e.g., instances might not be generated by an iid
process). This does not violate Auer et al.’s lower
bound since these algorithms do not scale with
the dimension of the input space.

Another recent direction explores the con-
nections between MI and semi-supervised learn-
ings. Semi-supervised learning generally refers
to learning from a setting where some instance
labels are unknown. MI learning can be viewed as
one example of this setting. Exploiting this con-
nection between MI learning and other methods
for semi-supervised learning, recent work (Rah-
mani and Goldman 2006) proposes an approach
where an MI problem is transformed into a semi-
supervised learning problem. An advantage of the
approach is that it automatically also takes into
account unlabeled bags.

Cross-References

�Artificial Neural Network
�Attribute
�Classification
�Data Set
�Decision Tree
�Expectation Maximization Clustering
� First-Order Logic
�Gaussian Distribution
� Inductive Logic Programming
�Kernel Methods
�Linear Regression
�Multi-Instance Learning
�Nearest Neighbor
�Noise
�Online Learning
� PAC Learning
�Relational Learning
� Supervised Learning

Recommended Reading

Alphonse E, Matwin S (2002) Feature subset selection
and inductive logic programming. In: Proceedings
of the 19th international conference on machine
learning, Sydney. Morgan Kaufmann, San Fran-
cisco, pp 11–18

Andrews S, Tsochantaridis I, Hofmann T (2003) Sup-
port vector machines for multiple-instance learning.
In: Becker S, Thrun S, Obermayer K (eds) Advances
in neural information processing systems, vol 15.
MIT, Cambridge, pp 561–568

Angluin D (1988) Queries and concept learning. Mach
Learn 2(4):319–342

Auer P (1997) On learning from multi-instance exam-
ples: empirical evaluation of a theoretical approach.
In: Proceedings of the 14th international conference
on machine learning, Nashville. Morgan Kaufmann,
San Francisco, pp 21–29

Auer P, Long PM, Srinivasan A (1998) Approximating
hyper-rectangles: learning and pseudorandom sets. J
Comput Syst Sci 57(3):376–388

Blockeel H, De Raedt L (1998) Top-down induction of
first order logical decision trees. Artif Intell 101(1–
2):285–297

Blockeel H, Page D, Srinivasan A (2005) Multi-
instance tree learning. In: Proceedings of 22nd in-
ternational conference on machine learning, Bonn,
pp 57–64

Blum A, Kalai A (1998) A note on learning
from multiple-instance examples. Mach Learn J
30(1):23–29

Cohen WW (1995) Fast effective rule induction. In:
Proceedings of the 12th international conference on
machine learning, Tahoe City. Morgan Kaufmann,
San Francisco

DeRaedt L (1998) Attribute-value learning versus
inductive logic programming: the missing links.
In: Proceedings of the eighth international confer-
ence on inductive logic programming, Madison.
Springer, New York, pp 1–8

Dietterich T, Lathrop R, Lozano-Perez T (1997) Solv-
ing the multiple-instance problem with axis-parallel
rectangles. Artif Intell 89(1–2):31–71

Dooly DR, Goldman SA, Kwek SS (2006) Real-valued
multiple-instance learning with queries. J Comput
Syst Sci 72(1):1–15

Dooly DR, Zhang Q, Goldman SA, Amar RA (2002)
Multiple-instance learning of real-valued data. J
Mach Learn Res 3:651–678

Gartner T, Flach PA, Kowalczyk A, Smola AJ
(2002) Multi-instance kernels. In: Sammut C, Hoff-
mann A (eds) Proceedings of the 19th inter-
national conference on machine learning, Syd-
ney. Morgan Kaufmann, San Francisco, pp 179–
186

Goldman SA, Kwek SK, Scott SD (2001) Agnostic
learning of geometric patterns. J Comput Syst Sci
6(1):123–151

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_955
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

892 Multi-relational Data Mining

Goldman SA, Scott SD (1999) A theoretical and em-
pirical study of a noise-tolerant algorithm to learn
geometric patterns. Mach Learn 37(1):5–49

Kearns M (1998) Efficient noise-tolerant learning from
statistical queries. J ACM 45(6):983–1006

Long PM, Tan L (1998) PAC learning axis-aligned
rectangles with respect to product distributions from
multiple-instance examples. Mach Learn 30(1):7–
21

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maron O (1998) Learning from ambiguity. PhD thesis,
Department of Electrical Engineering and Computer
Science, MIT, Cambridge

Maron O, Lozano-Pérez T (1998) A framework for
multiple-instance learning. In: Jordan MI, Kearns
MJ, Solla SA (eds) Advances in neural information
processing systems, Denver, vol 10. MIT, Cam-
bridge, pp 570–576

McGovern A, Barto AG (2001) Automatic discovery
of subgoals in reinforcement learning using diverse
density. In: Proceedings of the 18th international
conference on machine learning, Williamstown.
Morgan Kaufmann, San Francisco, pp 361–368

McGovern A, Jensen D (2003) Identifying predictive
structures in relational data using multiple instance
learning. In: Proceedings of the 20th international
conference on machine learning, Washington, DC.
AAAI, Menlo Park, pp 528–535

Murray JF, Hughes GF, Kreutz-Delgado K (2005)
Machine learning methods for predicting failures in
hard drives: a multiple-instance application. J Mach
Learn Res 6:783–816

Papadimitriou C (1994) Computational complexity.
Addison-Wesley, Boston

Pearl J (1998) Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
Kaufmann, San Mateo

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Rahmani R, Goldman SA (2006) MISSL: multiple-
instance semi-supervised learning. In: Proceedings
of the 23rd international conference on machine
learning, Pittsburgh. ACM, New York, pp 705–712

Ramon J, DeRaedt L (2000) Multi instance neural
networks. In: Proceedings of ICML-2000 workshop
on attribute-value and relational learning

Ray S, Craven M (2005) Supervised versus multiple-
instance learning: an empirical comparison. In: Pro-
ceedings of the 22nd international conference on
machine learning, Bonn. ACM, New York, pp 697–
704

Ray S, Page D (2001) Multiple instance regression.
In: Proceedings of the 18th international conference
on machine learning, Williamstown. Morgan Kauf-
mann

Tao Q, Scott SD, Vinodchandran NV (2004) SVM-
based generalized multiple-instance learning via
approximate box counting. In: Proceedings of the

21st international conference on machine learning,
Banff. Morgan Kaufmann, San Francisco, pp 779–
806

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1134–1142

Wang J, Zucker JD (2000) Solving the multiple-
instance problem: a lazy learning approach. In:
Proceedings of the 17th international conference on
machine learning, Stanford. Morgan Kaufmann, San
Francisco, pp 1119–1125

Weidmann N, Frank E, Pfahringer B (2003) A two-
level learning method for generalized multi-instance
problems. In: Proceedings of the European con-
ference on machine learning, Cavtat-Dubrovnik.
Springer, Berlin/Heidelberg, pp 468–479

Xu X, Frank E (2004) Logistic regression and boosting
for labeled bags of instances. In: Proceedings of
the Pacific-Asia conference on knowledge discovery
and data mining, Sydney, pp 272–281

Zhang Q, Goldman S (2001) EM-DD: an improved
multiple-instance learning technique. In: Advances
in neural information processing systems, Vancou-
ver. MIT, pp 1073–1080

Zhang Q, Yu W, Goldman S, Fritts J (2002) Content-
based image retrieval using multiple-instance learn-
ing. In: Proceedings of the 19th international con-
ference on machine learning, Sydney. Morgan Kauf-
mann, San Francisco, pp 682–689

Zhou ZH, Zhang ML (2002) Neural networks for
multi-instance learning. Technical report, Nanjing
University, Nanjing

Multi-relational Data Mining

Luc De Raedt
Department of Computer Science, Katholieke
Universiteit Leuven, Heverlee, Leuven, Belgium

Synonyms

Inductive logic programming; Relational learn-
ing; Statistical relational learning

Definition

Multi-relational data mining is the subfield of
knowledge discovery that is concerned with
the mining of multiple tables or relations in a
database. This allows it to cope with structured
data in the form of complex data that cannot

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_786

Must-Link Constraint 893

M

easily be represented using a single table, or an
� attribute as is common in machine learning.

Relevant techniques of multi-relational data
mining include those from relational learning,
statistical relational learning, and inductive logic
programming.

Cross-References

� Inductive Logic Programming

Recommended Reading

Dzeroski S, Lavrac N (eds) (2001) Relational data
mining. Springer, Berlin

Multistrategy Ensemble Learning

Definition

Every � ensemble learning strategy might be
expected to have unique effects on the base
learner. Combining multiple ensemble learning
algorithms might hence be expected to provide
benefit. For example, �Multi-Boosting combines
�AdaBoost and a variant of �Bagging,
obtaining most of AdaBoost’s � bias reduction
coupled with most of Bagging’s � variance

reduction. Similarly, �Random Forests combines
Bagging’s variance reduction with �Random
Subspaces’ bias reduction.

Cross-References

�Ensemble Learning
�MultiBoosting
�Random Forests

Recommended Reading

Webb GI, Zheng Z (2004) Multistrategy ensemble
learning: reducing error by combining ensemble
learning techniques. IEEE Trans Knowl Data Eng
16(8): 980–991

Multitask Learning

� Inductive Transfer

Must-Link Constraint

A pairwise constraint between two items indi-
cating that they should be placed into the same
cluster in the final partition.

http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_567
http://dx.doi.org/10.1007/978-1-4899-7687-1_917
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_567
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_138

	M
	Machine Learning and Game Playing
	Motivation and Background
	Structure of the Learning System
	Learning of Evaluation Functions
	Learning Search Control
	Monte Carlo Tree Search
	Opening Book Learning
	Pattern Discovery
	Player Modeling
	Commercial Computer Games

	Cross-References
	Recommended Reading

	Machine Learning for IT Security
	Definition
	Motivation and Background
	Structure of Learning System
	Misuse Detection
	Anomaly Detection

	Cross-References
	Recommended Reading

	Manhattan Distance
	Synonyms
	Definition
	Cross-References

	Margin
	Definition
	Cross-References

	Market Basket Analysis
	Markov Chain
	Markov Chain Monte Carlo
	Synonyms
	Definition
	Motivation
	The Algorithm
	The Metropolis Algorithm
	Burn-In and Convergence
	Gibbs Sampling
	Cross-References
	Recommended Reading

	Markov Decision Processes
	Synonyms
	Definition
	Optimality Criteria
	Finite Horizon
	Infinite Horizon Discounted
	Average Reward
	Value Determination
	Bellman Equations
	Linear Programming Solutions
	Bellman Error Minimization
	Control Methods
	Representations

	Greedy Algorithms Versus Search
	Cross-References
	Recommended Reading

	Markov Model
	Markov Net
	Markov Network
	Synonyms
	Definition
	Cross-References

	Markov Process
	Synonyms
	Recommended Reading

	Markov Random Field
	Markovian Decision Rule
	Synonyms
	Definition

	Maxent Models
	Maximally General Hypothesis
	Maximally Specific Hypothesis
	Maximum Entropy Models for Natural Language Processing
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Representing Evidence
	Combining the Evidence
	Relationship to Maximum Likelihood
	Parameter Estimation

	Applications
	Part-of-Speech Tagging
	Model Specification
	Training Data
	Search for Best Sequence

	Other NLP Applications

	Future Directions
	Recommended Reading

	McDiarmid's Inequality
	Synonyms
	Definition

	MCMC
	Mean Absolute Deviation
	Mean Absolute Error
	Synonyms
	Definition
	Cross-References

	Mean Error
	Mean Shift
	Synonyms
	Definition
	Extensions
	Softwares
	Recommended Reading

	Mean Squared Error
	Synonyms
	Definition
	Cross-References

	Measurement Scales
	Definition
	Categorical versus Numeric
	Levels of Measurement Scales
	Summary
	Recommended Reading

	Medicine: Applications of Machine Learning
	Motivation
	Structure of the Problem
	Diversity of Representations
	Medical Tasks
	Diagnosis and Medication
	Prognosis and Quality of Care Assessment
	Verification and Validation
	Intelligent Search in Medical Literature
	Epidemiology and Outbreak Detection

	Cross-References
	Recommended Reading

	Memory-Based
	Memory-Based Learning
	Merge-Purge
	Message
	Meta-combiner
	Metaheuristic
	Metalearning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Metalearning System
	Employing Metaknowledge to Select Machine Learning Algorithms
	Input to and Output from the Metalearning System
	Acquisition of Metaknowledge
	Algorithm Selection and Hyperparameter Optimization
	Applying Metalearning to Workflow Design for KDD
	Cross-References
	Recommended Reading

	Minimum Cuts
	Minimum Description Length Principle
	Philosophy
	Theory
	Universal Data Compression
	Behavior of MDL-Based Learning Methods

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Minimum Message Length
	Definition
	Motivation and Background
	Theory
	Example with Binomial Distribution
	Approximations
	Applications
	Model-Based Clustering or Mixture Models
	Probabilistic Finite-State Machines
	Decision Trees
	Causal Nets ch547-1:bib16,ch547-1:bib17,ch547-1:bib8
	Future Directions
	Definition of Key Terms Used Above
	Cross-References
	Recommended Reading

	Mining a Stream of Opinionated Documents
	Missing Attribute Values
	Synonyms
	Definition
	Strategies for Missing Value Processing
	Missing Value Processing Techniques in Various ML Paradigms
	Recommended Reading

	Missing Values
	Mistake-Bounded Learning
	Mixture Distribution
	Mixture Model
	Synonyms
	Definition
	Motivation and Background

	Estimation
	Choosing the Number of Components
	Types of Component Distributions
	Large Datasets
	Theory
	Applications
	Definition of Key Terms Used Above

	Cross-References
	Recommended Reading

	Mixture Modeling
	Mode Analysis
	Model Assessment
	Model Evaluation
	Synonyms
	Motivation and Background
	Processes and Techniques
	Cross-References
	Recommended Reading

	Model Selection
	Model Space
	Model Trees
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	Model-Based Clustering
	Definition
	Structure of Learning System
	Generative Model
	Learning
	Related Work

	Recommended Reading

	Model-Based Control
	Model-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Theory and Methods
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Modularity Detection
	MOO
	Morphosyntactic Disambiguation
	Most General Hypothesis
	Synonyms
	Definition
	Cross-References

	Most Similar Point
	Most Specific Hypothesis
	Synonyms
	Definition
	Cross-References

	Multi-agent Learning
	Definition
	Background
	Problem Definition
	Recommended Reading

	Multi-agent Learning Algorithms
	Definition
	Some MAL Techniques
	Model-Based Approaches
	Model-Free Approaches
	Regret Minimization Approaches

	Some Typical Results
	Recommended Reading

	Multi-armed Bandit
	Multi-armed Bandit Problem
	MultiBoosting
	Definition
	Algorithm
	Cross-References
	Recommended Reading

	Multi-criteria Optimization
	Multi-Instance Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Problem
	Theory and Methods
	Multiple-Instance Classification
	Multiple-Instance Regression

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Multi-label Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Evaluation Measures
	Label Correlation
	Learning Algorithms

	Theory
	Extensions
	Future Challenges
	Recommended Reading

	Multi-objective Optimization
	Synonyms
	Definition

	Multiple Classifier Systems
	Multiple-Instance Learning
	Definition
	Motivation and Background
	Structure of the Problem
	Theory and Methods
	Multiple-Instance Classification
	Multiple-Instance Regression

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Multi-relational Data Mining
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Multistrategy Ensemble Learning
	Definition
	Cross-References
	Recommended Reading

	Multitask Learning
	Must-Link Constraint

