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Abstract. Asymmetric combination of logics is a formal process that
develops the characteristic features of a specific logic on top of another
one. Typical examples include the development of temporal, hybrid, and
probabilistic dimensions over a given base logic. This paper argues that
this sort of combination, at least in the scope of the examples here dis-
cussed, possesses a functorial nature. Such a view gives rise to several
interesting questions. They range from the problem of combining trans-
lations (between logics), to that of ensuring property preservation along
the process, and the way different asymmetric combinations can be re-
lated through appropriate natural transformations.

1 Introduction

1.1 Motivation and Context

It is well known that software’s inherent high complexity renders formal design
and analysis a difficult challenge, still largely unmet by the current engineering
practices. Often, in fact, the formal specification of a non trivial software system
calls for different logics in order to capture specific types of requirement, or design
issues: if properties of data structures are typically captured in an equational
framework, behavioural issues will call for some sort of modal or temporal logic,
whereas probabilistic reasoning will be required in order to predict or analyse
faulty behaviour in distributed systems.

This explains the growing interest in the systematic combination of logics, an
area whose overall aim can be summed up in a simple methodological principle:
distinguish the underlying nature of the requirements to be formalised, and then
build a single logic for the whole system by combining whatever logics are suitable
to handle the types of requirement found. Actually, this idea was already stressed
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in the eighties by J. Goguen and J. Meseguer, even though only more recently
it started to gain prominence (cf. [3, 13]).

The current paper concerns asymmetric combination of logics, where the
characteristic features of a logic are developed on top of another one (whenever
found suitable we will drop the qualifier asymmetric or the subject logics in the
expression). Probably the most famous example is the process of temporalisation
[10], in which the features of a temporal logic are added on top of another logic,
often referred to as the base logic to distinguish the original machinery from
what was added. In brief, temporalisation adds a temporal dimension to the
models of a given logic, as well as syntactical machinery to suitably handle
the added dimension. The hybridisation [14] and probabilisation [2] processes
are more recent examples. The former develops a hybrid logic [1] on top of
the base one; the latter, adds probabilistic features instead. Other examples
include quantisation [4] and modalisation [9], bringing into the picture features
of quantum and modal logic, respectively.

Is there a common characterisation of these different combinations, able to
provide a suitable setting to discuss their properties? Such is the question ad-
dressed in this paper.

Our approach is based on the theory of institutions [12], an abstract charac-
terisation of logical system that encompasses syntax, semantics, and satisfaction.
Put forward by J. Goguen and R. Burstall in the late seventies, its original aim
was to develop as much Computing Science as possible in a general, uniform
way, independently of any particular logical system. This has now been achieved
to an extent even greater than originally thought. Indeed, institutions under-
lie the foundations of algebraic specification methods, and are most useful in
handling and combining different sorts of logical systems to reason about com-
putational phenomena. The universal character and resilience of institutions is
witnessed by the wide set of logics formalised and subsequently explored within
the framework. Examples go from the standard classical logics, to the most un-
conventional ones, typically capturing modern specification and programming
paradigms. To be concrete, examples include process algebras [17], temporal log-
ics [6], the Alloy language [18], coalgebraic logics [7], functional and imperative
languages [24], among with many others.

1.2 Contributions and Roadmap

Institutions are objects of a well known category I (cf. [8, 15, 24]) whose arrows
are translations between them. In this setting we argue that an asymmetric
combination of logics can, very often, be seen as an endofunctor over I. Three
examples (temporalisation, hybridisation, and probabilisation) are discussed in
detail, with their definitions (slightly) reworked to fit in the general picture.
Such a functorial perspective has several advantages: one is the possibility to lift
the combination process from logics to their translations, which also allows the
characterisation of natural transformations between asymmetric combinations.
Another interesting possibility is the study of adjoints, and property preservation
like conservativity, equivalence, and (co)limits.



As related work, the method for parametrisation of logics proposed by C.
Caleiro et al. [5] should be mentioned. In brief, a logic is parametrised by another
one if an atomic part of the first is replaced by the second; hence, the method
distinguishes a parameter to fill (the atomic part), a parametrised logic (the
‘top’ logic) and a parameter logic (the logic inserted within). More recently, J.
Rasga et al. [22, 23] proposed a method for importing logics by exploiting a
graph-theoretic approach.

In Section 2 we recall the construction of the category of institutions that
defines our framework, and slightly change the definitions of the three combi-
nations. Then, in Section 3, they are enriched to become functorial. For the
sake of simplicity and conciseness, we define an institutional abstract notion of
asymmetric combination and make, to a large extent, the necessary proofs at
this level of abstraction. We stress, however, that the paper’s main objective is
not to introduce such a notion, but rather to show that a number of asymmetric
combinations possess a functorial nature; and that this perspective paves the
way to several interesting mechanisms.

In the same section we study property preservation by these three (new)
functors in what concerns conservativity (an important property that concerns
the validation of specifications) and equivalence of institutions. We also explore
the notion of natural transformation between asymmetric combinations. Finally,
in Section 4, we conclude and suggest future lines of research.

This paper assumes that the reader has basic knowledge on Category Theory.
Whenever found suitable, we will omit subscripts in natural transformations, and
denote the underlying class of objects of any category C by |C| or just C.

2 Preliminaries

2.1 Institutions

Let us recall the core notions of the theory of institutions and revisit the three
working examples of combinations.

Definition 1. An institution I is a tuple (SignI, SenI, ModI, (|=I
Σ)Σ∈|SignI|)

where

– SignI is a category whose objects are signatures and arrows signature mor-
phisms.

– SenI : SignI → Set, is a functor that for each signature Σ ∈ |SignI| returns
a set of Σ–sentences,

– ModI : (SignI)op → Cat, is a functor that for each signature Σ ∈ |SignI|
returns a category whose objects are Σ-models and arrows Σ–model homo-
morphisms.

– |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ), is a satisfaction relation such that for each

signature morphism ϕ : Σ → Σ′ the following property holds

ModI(ϕ)(M) |=I
Σ ρ iff M |=I

Σ′ SenI(ϕ)(ρ)



for any M ∈ |ModI(Σ′)|, ρ ∈ SenI(Σ).

Notation 1. In the sequel we will refer to ModI(ϕ)(M) as the ϕ–reduct of M
and denote it by M �ϕ. When clear from the context, both the subscript and
superscript in the satisfaction relation will be dropped.

Definition 2. Consider two institutions I, I′. A comorphism (Φ, α, β) : I → I′

is a triple such that

– Φ: SignI → SignI
′
is a functor,

– α: SenI → SenI
′ · Φ is a natural transformation,

– β: ModI
′ · Φop →ModI is a natural transformation 3,

– and for any Σ ∈ |SignI|, M ∈ |ModI
′ · Φop (Σ)| and ρ ∈ SenI(Σ)

βΣ(M) |=I
Σ ρ iff M |=I′

Φ(Σ) αΣ(ρ)

Definition 3. Let us consider two comorphisms (Φ1, α1, β1) : I → I′, and
(Φ2, α2, β2) : I′ → I′′. Their composition (Φ2, α2, β2) ; (Φ1, α1, β1) : I → I′′

is defined as (Φ2, α2, β2) ; (Φ1, α1, β1) , (Φ2 ·Φ1, (α2 ◦ 1Φ1
) ·α1, β1 · (β2 ◦ 1Φop1 ))

where the white circle denotes the Godement (horizontal) composition of natural
transformations. Thus,

Φ2 · Φ1 : SignI → SignI
′′
,

(α2 ◦ 1Φ1
) · α1 : SenI → SenI

′′
· Φ2 · Φ1,

β1 · (β2 ◦ 1Φop1 ) : ModI
′′
· Φop2 · Φop1 →ModI.

Each institution I has as the identity comorphism the triple (1SignI , 1SenI , 1ModI).
Institutions and respective comorphisms form category I, mentioned in the

introduction.

2.2 Asymmetric combinations of logics (institutionally)

Considering separately each individual combination process leads to redundant
proofs. For example, to show that all of them obey the functorial laws would re-
quire a separate proof for each case. For a more abstract treatment, we introduce
the following characterisation of an asymmetric combination.
Let us start by considering categories Sign1, Sign2, and two functors

MC : (Sign1)
op → Cat, MI : (Sign2)

op → Cat.

Assume that for each ∆ ∈ |Sign1| there is a functor U(MC,∆) : M
C(∆) → Set.

Whenever no ambiguities arise, we will drop the subscript of U(MC,∆). Let us

3 (_)op applied to a functor F : C→ D induces a functor F op : Cop → Dop such that
for any object or arrow a in C, F op(a) = F (a).



further assume that given any morphism ϕ : ∆ → ∆′ of Sign1, the induced
functor MC(ϕ) makes the following diagram to commute.

MC(∆′)
MC(ϕ) //

U $$

MC(∆)

Uzz
Set

This leads to functor MC(MI) : (Sign1 × Sign2)op → Cat such that given any
pair (∆,Σ) ∈ Sign1 × Sign2, MC(MI)(∆,Σ) forms a discrete category whose
objects are triples (S,R,m) where R ∈MC(∆), U(R) = S, andm : S →MI(Σ).
Moreover, given any signature morphism ϕ1 × ϕ2 : (Σ,∆) → (Σ′, ∆′) we have
MC(MI)(ϕ1 × ϕ2) (S,R,m) , (S, MC(ϕ1)(R), M

I(ϕ2) ·m).

Definition 4. An asymmetric combination C is a tuple (SignC, SenC,MC, |=C)
such that

– SignC is a category of signatures.
– SenC is a family of functions

SenCSign : (Sign→ Set)→ (SignC × Sign→ Set)

indexed by the categories Sign in Cat.
– MC is a functor MC : (SignC)op → Cat as assumed above.
– Given functors MI : Signop → Cat, SenI : Sign→ Set, |=C is a family of

relation liftings (|=C
(∆,Σ))(∆,Σ) ∈ SignC×Sign

|=C
(∆,Σ): |M

I(Σ)| × SenI(Σ)→ |MC(MI) (∆,Σ)| × SenC(SenI)(∆,Σ)

Given an institution I, a pre institution CI, corresponding to a specific combi-
nation, is obtained as follows.

– SignCI , SignC × SignI.
– SenCI , SenC(SenI). We will assume that the sentences given by SenCI are

inductively defined. Intuitively, their atoms will include the sentences of the
base logic.

– ModCI ,MC(MI).
– Given any signature (∆,Σ) ∈ |SignCI|, |=CI

(∆,Σ), |=
C
(∆,Σ) (|=

I
Σ).

Temporalisation We are now ready to recast the three combinations of logics
in the institutional setting. We start with temporalisation since it is the simplest
of the three.

Definition 5. Given an institution I the temporalisation process returns pre
institution LI = (SignLI, SenLI,ModLI, |=LI) defined as

– Signatures. SignLI , SignL × SignI, where SignL is the one object cat-
egory 1. Since SignLI ∼= SignI, no distinction will be made, unless stated
otherwise, between the two signature categories.



– Sentences. Given a signature Σ ∈ |SignLI|, SenLI(Σ) is the smallest set
generated by grammar

ρ 3 ψ | ¬ρ | ρ ∧ ρ |Xρ | ρ Uρ

where ψ ∈ SenI(Σ). For any signature morphism ϕ : Σ → Σ′, SenLI(ϕ)
is a function that, provided a sentence ρ ∈ SenLI(Σ), replaces the base
sentences ψ ( i.e. elements of SenI(Σ) ) occurring in ρ by SenI(ϕ)(ψ); in
symbols SenLI(ϕ)(ρ) = ρ[ψ ∈ SenI(Σ) / SenI(ϕ)(ψ) ] (recall that sentences
are assumed to be inductively defined).

– Models. Given the object ? ∈ |1|, ML(?) is the category whose (unique)
element is the pair (N, suc : N→ N) (N denotes the set of natural numbers)
and U (N, suc : N → N) is N. Hence, the elements of category ModLI(Σ)
are triples (N, suc : N → N,m) (often denoted by letter M) where m : N →
|ModI(Σ)|. We will often denote m (n) by Mn.

– Satisfaction. Given a signature Σ ∈ |SignLI|, M ∈ |ModLI(Σ)|, ρ ∈
SenLI(Σ), M |= ρ iff M |=0 ρ where
M |=j ψ iffMj |= ψ for ψ ∈ SenI(Σ)
M |=j ρ ∧ ρ′ iffM |=j ρ and M |=j ρ′
M |=j ¬ρ iffM 6|=j ρ
M |=j Xρ iffM |=j+1 ρ
M |=j ρ U ρ′ iff for some k ≥ j, M |=k ρ′ and for all j ≤ i < k, M |=i ρ

Note that temporalised propositional logic coincides with the classic linear tem-
poral logic (cf. [10]).

Theorem 1. The satisfaction condition holds for LI.

Proof. In appendix.

Corollary 1. Temporalised I ( i.e. LI) is an institution.

In the sequel we will see that the other two asymmetric combinations enjoy the
same property, which is essential for their characterisation as endofunctors. Of
course, this also entails the possibility of combining a logic an arbitrary number
of times, using any of these three processes.

Probabilisation In order to handle probabilistic systems (e.g. Markov chains)
probabilisation [2] adds a probabilistic dimension to logics. In institutional terms,

Definition 6. Consider an arbitrary institution I. Its probabilised version PI =
(SignPI, SenPI,ModPI, |=PI) is defined as follows

– Signatures. SignPI , SignP × SignI, where SignP is the one object cat-
egory 1. Since SignPI ∼= SignI, no distinction will be made, unless stated
otherwise, between the two signature categories.



– Sentences. For any Σ ∈ |SignPI|, SenPI(Σ) is the smallest set generated
by grammar

ρ 3 t < t | ¬ρ | ρ ∧ ρ

for t ∈ T(Σ) (T : SignPI → Set). T(Σ) is generated by grammar

t 3 r |
∫
ψ | t+ t | t . t

where r ∈ R (the set of real numbers) and ψ ∈ SenI(Σ). Also, we have

SenPI(ϕ)(ρ) , ρ[t ∈ T(Σ) /T(ϕ)(t) ], where

T(ϕ)(t) , t[ ψ ∈ SenI(Σ) / SenI(ϕ)(ψ) ]

– Models. ModP(?) is the discrete category whose elements are probability
spaces (S, p : 2S → [0, 1]). Functor U returns the carrier set. Hence, mod-
els in ModPI(Σ) are triples (S, p,m) where m : S → ModI(Σ). For each
sentence ψ ∈ SenI(Σ) we have set m−1[ψ] , {s ∈ S : m(s) |= ψ}.

– Satisfaction. Finally, given a signature Σ ∈ |SignPI|, a model M ∈
|ModPI(Σ)|, and ρ ∈ SenPI(Σ)

Mr = r
M(

∫
ψ) = p(m−1[ψ])

M(t+t′) =Mt +Mt′

M(t.t′) =Mt . Mt′

M |= t < t′ iffMt < Mt′

M |= ¬ρ iffM 6|= ρ
M |= ρ ∧ ρ′ iffM |= ρ and M |= ρ′

Theorem 2. The satisfaction condition holds for PI.

Proof. (a) The strictly less case is a direct consequence of Lemma 2 (in ap-
pendix).

(b) The negation and implication cases follow by induction on the structure of
sentences.

Corollary 2. Probabilised I (i.e. PI) is an institution.

Example 1. Probabilised propositional logic (PPL). The probabilisation
of propositional logic returns the following logic:

– Signatures. Signatures are sets of propositional symbols P .
– Sentences. Sentences are generated by grammar ρ 3 t < t | ¬ρ |ρ∧ρ where
t is a term generated by grammar t 3 r |

∫
ψ | t+ t | t . t for r ∈ R and ψ a

propositional sentence.
– Models. Models are probability spaces equipped with a function whose do-

main is the set of outcomes and the codomain the universe of propositional
models.

With PPL we are able to give a probabilistic ‘flavour’ to propositions, stating,
for instance, that probability of p holding is less than probability of q holding,∫
p <

∫
q. Other examples of probabilised logics are discussed in [2].



Hybridisation Hybridisation [14] provides the foundations for handling differ-
ent kinds of reconfigurable systems (i.e., computational systems that change their
execution modes throughout their lifetime) in a systematic manner: in brief, the
hybrid machinery relates and pinpoints the different execution modes while the
base logic specifies the properties that are supposed to hold in each particular
mode.

Since hybridisation was originally defined in institutional terms we will just
repeat here (although with some minor differences) the original definition.

Definition 7. Category SignH is the category Set×Set whose objects are pairs
of sets (Nom,Λ). Nom denotes a set of nominal symbols, and Λ a set of modality
symbols.

Definition 8. Given an institution I, HI = (SignHI, SenHI,ModHI, |=HI) is
defined as

– Signatures. SignHI , SignH × SignI.
– Sentences. For any signature (∆,Σ) ∈ |SignHI| (with ∆ = (Nom,Λ)),
SenHI(∆,Σ) is the smallest set generated by grammar

ρ 3 i | ψ | ¬ρ | ρ ∧ ρ |@iρ | 〈λ〉ρ

where i ∈ Nom, ψ ∈ SenI(Σ), λ ∈ Λ. For any signature morphism ϕ1 ×
ϕ2 : (∆,Σ) → (∆′, Σ′), nominals, modalities, and base sentences of ρ ∈
SenHI(∆,Σ) are replaced according to ϕ1 × ϕ2 by SenHI(ϕ1 × ϕ2).

– Models. Given a signature ∆ ∈ |SignH|, MH(∆) is the discrete category
whose elements are triples (S, (Ri)i∈Nom, (Rλ)λ∈Λ) such that Ri ∈ S, and
Rλ ⊆ S × S. Functor U forgets the last two elements, keeping just the car-
rier set. For any signature morphism ϕ : (Nom,Λ) → (Nom′, Λ′), we have
MH(ϕ)(S, (R′i)i∈Nom′ , (R′λ)λ∈Λ′) , (S, (Ri)i∈Nom, (Rλ)λ∈Λ), where

Ri = R′π1(ϕ)(i)
and Rλ = R′π2(ϕ)(λ)

– Satisfaction. Given (∆,Σ) ∈ |SignHI|, a model M ∈ |ModHI(∆,Σ)| and
a sentence ρ ∈ SenHI(Σ), the satisfaction relation is defined as

M |= ρ iff M |=w ρ for all w ∈ S

where
M |=w i iff Ri = w for i ∈ Nom
M |=w ψ iff m(w) |= ψ for ψ ∈ SenI(Σ)
M |=w ¬ρ iffM 6|=w ρ
M |=w ρ ∧ ρ′ iffM |=w ρ and M |=w ρ′
M |=w @iρ iffM |=Ri ρ
M |=w 〈λ〉ρ iff there is some w′ ∈W such that (w,w′) ∈ Rλ and M |=w′

ρ

The proof that, for any institution I, hybridisation yields another institution is
given in references [14].



3 Asymmetric combinations of logics as functors

3.1 Lifting comorphisms

The three combinations of logics were revisited within the framework of insti-
tutions. We intend now to discuss them as translations between logics. We will
do this at the level of the abstract definition of a combination of logics given
above, leading thus to more powerful results, applicable not only to the three
combinations discussed, but also to any other that fits the characterisation.

Formally, given a comorphism (Φ, α, β) : I→ I′ we want any of the combina-
tion processes to map (Φ, α, β) into C(Φ, α, β) : CI→ CI′. Actually, the strategy
for such a lifting is simple: when transforming signatures, sentences or models,
we keep the top level structure and change the bottom level according to the
base comorphism. Thus,

Definition 9. A comorphism (Φ, α, β) : I→ I′ is lifted to mapping (CΦ,Cα,Cβ) :
CI→ CI′ as follows:

– Signatures. CΦ : SignCI → SignCI′ ,

CΦ , 1SignC × Φ.

– Sentences. Cα : SenCI → SenCI
′ · CΦ,

(Cα)(∆,Σ)(ρ) , ρ [ ψ ∈ SenI(Σ) / αΣ(ψ) ],

for any (∆,Σ) ∈ |SignCI|.

– Models. Cβ :ModCI
′ · CΦop →ModCI,

(Cβ)(∆,Σ) , id× id× (βΣ·),

for any (∆,Σ) ∈ |SignCI|.

Clearly, CΦ is a functor, and Cα, Cβ are natural transformations.

Lemma 1. The lifting process, as defined above, preserves identities and dis-
tributes over composition.

Proof. In appendix.

To conclude that the three combinations are endofunctors one step remains:
indeed we need to show that the lifted arrows are comorphisms. This, however,
entails the need to inspect each specific combination on its own, as they all lift
the satisfaction relation in different ways.

Theorem 3. If (Φ, α, β) is a comorphism then, for any of three combinations C
discussed above, C(Φ, α, β) is a comorphism as well.

Proof. In appendix.



3.2 Property preservation (conservativity and equivalence)

The characterisation of asymmetric combinations as endofunctors over the cate-
gory of institutions I provides a sound basis for the study of property preservation
by the corresponding combinations. Such a study is illustrated in this section
where we prove that temporalisation, probabilisation, and hybridisation preserve
conservativity and equivalence. We start with the former case.

In Computing Science a main reason to study under what conditions a logic
may be translated into another is to seek for the existence of (better) com-
putational proof support. In the institutional setting suitable translations are
defined by comorphisms, which should additionally obey to the following condi-
tion: whenever completeness is required, i.e., if one demands the validation of
the specification against all possible scenarios (models), then the comorphisms
involved must be conservative. Formally,

Definition 10. A comorphism (Φ, α, β) is conservative whenever, for each sig-
nature Σ ∈ |SignI|, βΣ is surjective on objects.

Let us describe in more detail the relevance of conservativity for validation.
Recall the satisfaction condition placed upon comorphisms. For any Σ ∈ |SignI|,
M ∈ |ModI

′ · Φop(Σ)|, and ρ ∈ SenI(Σ) we have βΣ(M) |=I
Σ ρ iff M |=I′

Φ(Σ)

αΣ(ρ). Graphically, for each Σ ∈ |SignI|

ModI(Σ)
|=I
Σ

SenI(Σ)

αΣ

��
ModI

′ · Φop(Σ)

βΣ

OO

|=I′
Φ(Σ)

SenI
′ · Φ(Σ)

Suppose we want to verify that a sentence ρ ∈ SenI(Σ) is satisfied by all mod-
els M ∈ |ModI(Σ)|. For this we resort to the comorphism by translating the
sentence (through α) into the target logic. The satisfaction condition tells us
that if the sentence satisfies all models there, then all models in the image of
βΣ will satisfy the original sentence. Of course, if βΣ is surjective on objects its
image will coincide with |ModI(Σ)| and thus we prove that the original sentence
satisfies all models in |ModI(Σ)|.

Theorem 4. A lifted conservative comorphism is still conservative.

Proof. Consider a conservative comorphism (Φ, α, β) : I→ I′, we want to prove
that for any signature (∆,Σ) ∈ |SignCI| (Cβ)(∆,Σ) = id× id×(βΣ·) is surjective
on objects. Since identities are surjective we just need to show that each f ∈
|ModI(Σ)|S has a function g ∈ |ModI

′ · Φop(Σ)|S such that f = βΣ · g. Clearly,
the condition for this to be true is that img(f) ⊆ img(βΣ), but the only way to
ensure it is to have img(βΣ) = |ModI(Σ)|. In other words, βΣ must be surjective
on objects, which is given by the assumption.



Next we show that the application of temporalisation, probabilisation, and hy-
bridisation to two equivalent logics yields again two equivalent logics.

First, recall the definition of equivalence of categories.

Definition 11. Two categories C,D are said to be equivalent if there are two
functors F : C → D, G : D → C and two natural isomorphisms ε : FG → 1D,
η : 1C → GF .

We say that G (resp. F ) is the inverse up to isomorphism of F (resp. G). Also,
we call F an equivalence of categories.

Definition 12. A comorphism (Φ, α, β) is an institution equivalence if the fol-
lowing conditions hold.

– Signatures. Φ forms an equivalence of categories.
– Sentences. α has an inverse up to semantical equivalence, i.e., a natural

transformation α−1 : SenI
′ · Φ → SenI such that for any sentence ρ ∈

SenI(Σ),

(α−1 · α)(ρ) |= ρ, ρ |= (α−1 · α)(ρ)

or more concisely, (α−1 · α)(ρ) |=| ρ.
Moreover, for any sentence ρ ∈ SenI′ · Φ(Σ), (α · α−1)(ρ) |=| ρ.

– Models. β has an inverse up to isomorphism, i.e., a natural transforma-
tion β−1 such that for any Σ ∈ |SignI|, functor β−1Σ is the inverse up to
ismorphism of βΣ.

More about equivalence of institutions can be found in documents [8, 15].

Theorem 5. A lifted institution equivalence is still an institution equivalence.

Proof. Suppose that (Φ, α, β) is an institution equivalence. Then,

– Signatures. Since Φ is an equivalence of categories, CΦ = 1SignC ×Φ must
be as well.

– Sentences. To show that for any ρ ∈ SenCI(∆,Σ), property
(
(Cα)−1 ·

Cα
)
(ρ) |=| ρ holds is, by definition of Cα, equivalent to showing that

ρ[ψ ∈ SenI(Σ) / (α−1 · α)(ψ) ] |=| ρ

This boils down to proving that (α−1 · α)(ψ) |=| ψ for any ψ ∈ SignI(Σ)
which is given by the assumption.
The proof that

(
Cα · (Cα)−1

)
(ρ) |=| ρ is analogous.

– Models. Finally, we need to show that for any (∆,Σ) ∈ |SignCI |, (Cβ)(∆,Σ)

has an inverse up to isomorphism. For this we lift β−1Σ (given by the assump-
tion) into (Cβ)−1(∆,Σ) = (id× id×β−1Σ ·). Since β−1Σ is an inverse up to isomor-
phism of βΣ it is clear that (Cβ)−1(∆,Σ) is also an inverse up to isomorphism
of (Cβ)(∆,Σ).



3.3 Natural transformations

We consider now natural transformations between asymmetric combinations of
logics, which seem to fit nicely into the picture: while lifted comorphisms map
the bottom level and keep the top, such natural transformations map the top and
keep the bottom. For example, take a natural transformation τ : L → H. It is
clear that each institution I, induces a comorphism τI : LI→ HI. Furthermore,
naturality expresses commutativity of the diagram below

LI

τI

��

L(Φ,α,β) // LI′

τI′

��
HI

H(Φ,α,β)
// HI′

for each comorphism (Φ, α, β). This means that when translating a logic whose
both levels are mapped by a composition of natural transformations and lifted
comorphisms, it does not matter which of the top or bottom level is taken first.

Let us illustrate this construction through natural transformation τ : L→ H,
which relates temporalisation to hybridisation. We will, for now, disregard the
until (U) constructor associated with L. First consider a signature N ∈ |SignH|
such thatN , ({Init}, {After,After?, Next}). Then for any signature (N,Σ) ∈
|SignHI | define the subcategory of ModHI(N,Σ) (denoted in the sequel by
MNI(N,Σ)) whose objects are triples (S,R,m) that obey to the following rules:

S = N
RInit = 0
(a, b) ∈ RNext iff b = suc(a)

(a, b) ∈ RAfter iff a < b
(a, b) ∈ RAfter? iff a ≤ b.

Definition 13. Given an institution I, define an arrow τI = (τIΦ, τIα, τIβ)
(whose subscripts we will omit whenever no ambiguities arise) where

– Signatures. τΦ : SignLI → SignHI is a functor such that τΦ (Σ) ,
(Seq,Σ) and, for any signature morphism ϕ : Σ → Σ′

τΦ (ϕ) : (Seq, Σ)→ (Seq, Σ′), τΦ (ϕ) , id× ϕ

– Sentences. Given any signature Σ ∈ |SignLI|, τα : SenLI(Σ)→ SenHI ·
τΦ(Σ) is a function such that τα(ρ) , @Initσ(ρ) where

σ(ψ) = ψ, for ψ ∈ SenI(Σ)
σ(¬ρ) = ¬σ(ρ)

σ(ρ ∧ ρ′) = σ(ρ) ∧ σ(ρ′)
σ(Xρ) = [Next] σ(ρ)

The proof that τα is a natural transformation follows through routine calcu-
lation.

– Finally, given any signature Σ ∈ |SignLI|, arrow τβ : ModHI · (τΦ)op →
ModLI is a functor such that



τβ (S,R,m) , (N, suc : N→ N,m)

Clearly, τβ is a natural transformation.

Theorem 6. τ : L→ H forms a natural transformation whenever ModHI (for
any institution I) is equal to ModNI.

Proof. In appendix.

In order to include the until constructor we need to add nominal quantification
to hybridisation, which would yield translation

σ(ρUρ′) = ∃x . 〈After?〉( x ∧ σ(ρ′)) ∧ [After?](〈After〉x⇒ σ(ρ))

Actually, to show that hybridisation with nominal quantification is also an end-
ofunctor (and the satisfaction condition for until associated with τ holds) boils
down to a routine calculation. This means that the theorem above can be repli-
cated, but with the until operator, in a straightforward manner.

4 Conclusions and future work

Asymmetric combination of logics is a promising tool for the (formal) develop-
ment of complex, heterogenous software systems. This justifies their study at
an abstract level, paving the way to general results on, for example, property
preservation along the combination process. Often such a study has been made
on a case-by-case basis (as in, for example, [9] or [20, 21]). Here we adopted a
more general perspective, closer to the work of C. Caleiro et al. [5] and J. Rasga
et al. [22, 23], but from an institutional point of view, which naturally leads to
the question what are asymmetric combination processes within the category of
institutions?

This paper provided their characterisation as endofunctors over the category
of institutions by showing how to lift comorphisms and proving that the lifted
arrows obey the functorial laws. This made clear that not only logics, but also
their translations can be combined. In the process we developed an institutional,
abstract notion of asymmetric combination of logics.

Moreover, this work hints at a set of research directions that we have only
grasped in this paper. For example, we proved, at the abstract level, that conser-
vativity (a fundamental property for safely ‘borrowing’ a theorem prover) and
equivalence are preserved by combination, but a full study needs to be done in
what regards preservation of (co)limits, namely to discuss whether the combina-
tion of the product of two logics is equivalent to the product of the corresponding
combination of the same logics.

Another research direction was set by J. Goguen in his Categorial Mani-
fest [11]: “if you have found an interesting functor, you might be well advised
to investigate its adjoints”. We studied natural transformations between such
functors and showed that they nicely complement the lifting of comorphisms:
while the latter map the bottom level and keep the top, the former map the top



and keep the bottom. We gave an example of a natural transformation between
temporalisation and hybridisation, but others deserve to be studied as well. For
example, in [14] the authors show how, given a comorphism from an institution
I to FOL, a comorphism from HI to FOL can be obtained. More generally, the
current paper shows that comorphisms can be built by lifting the original comor-
phism and then composing it with the ‘flat’ natural transformation E : C → 1I
(if it exists). In diagrammatic form,

I

C

?�

(Φ,α,β) // I′

C

?�

CI
C(Φ,α,β)

// CI′

E

hh

On a more theoretical note, the perspective taken in this paper also suggests
to look at ‘trivial’ asymmetric combinations. For example, it is straightforward
to define identisation, in which the added layer has a trivial structure, but also
trivialisation (T), which turns a logic into the trivial one (technically, the initial
object in the category of institutions I). The latter case implies that there is
a (unique) natural transformation T → C for any combination C. Actually, one
can even go further and show that T is the initial object in the category of
endofunctors over I.

From a pragmatic point of view, the incorporation of these ideas in the Hets
platform [16] paves the way for its effective use in the Software Engineering
community. Hets is often described as a “motherboard” of logics where different
“expansion cards” can be plugged in. These are individual logics (with their
particular analysers and proof tools) as well as logic translations. To make them
compatible, logics are formalised as institutions and translations as comorphisms.
Therefore Hets provides an interesting setting for the implementation of the
theory developed in this paper. Again, a specific case — that of hybridisation —
has already been implemented in the Hets platform [19].
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Appendix (Proofs)

Lemma 2. For any signature morphism ϕ : Σ → Σ′, any modelM ∈ |ModPI(Σ′)|,
and any term t ∈ T (Σ), (M�ϕ)t =MT (ϕ)(t)



Proof. By induction on the structure of terms,

(a)

(M�ϕ)r

= { interpretation of terms }

r

= { definition of T (ϕ) }

MT (ϕ)(r)

(b)

(M�ϕ)(∫
ψ
)

= { interpretation of terms }

p ( (ModI(ϕ) · m)−1[ψ] )

= { definition of m−1[ψ] }

p ( {s ∈ S :ModI(ϕ) ·m(s) |= ψ} )

= { I is an institution }

p ( {s ∈ S : m(s) |= SenI(ϕ)(ψ)} )

= { definition of m−1[ψ] }

p (m−1[ SenI(ϕ)(ψ) ] )

= { interpretation of terms }

M ∫
SenI(ϕ)(ψ)

= { definition of T (ϕ) }

M
T (ϕ)(

∫
ψ)

(c) All other cases are straightforward.

Proof of Theorem 1. By induction on the structure of sentences, namely for any
ψ ∈ SenI(Σ)



(M�ϕ) |=j ψ

⇔ { definition of |=LI }

(M�ϕ)j |= ψ

⇔ { (reduct) definition of ModLI }

Mj�ϕ|= ψ

⇔ { I is an institution }

Mj |= SenI(ϕ)(ψ)

⇔ { definition of SenLI(ϕ), definition of |=LI }

M |=j SenLI(ϕ)(ψ)

All other cases are straightforward.

Proof of Lemma 1. We start with preservation of identities.
(a) Signatures.

C(1SignI)

= { definition of CΦ }

1SignC × 1SignI

= { SignC × SignI = SignCI }

1SignCI

(b) Sentences.

C(1SenI)(∆,Σ)(ρ)

= { definition of Cα }

ρ[ ψ ∈ SenI(Σ) / (1SenI)Σ(ψ) ]

= { definition of 1SenI }

ρ

(c) Models.

C(1ModI)(∆,Σ)

= { definition of Cβ }

id× id×
(
(1ModI)Σ ·

)
= { id ·m = m }

id× id× id



In the case of distribution over composition, we reason

(a) Signatures. C(Φ2 · Φ1) = CΦ2 · CΦ1

C(Φ2 · Φ1)

= { definition of CΦ }

1SignC × (Φ2 · Φ1)

= { identity, and definition of product }

(1SignC × Φ2) · (1SignC × Φ1)

= { definition of CΦ (twice) }

CΦ2 · CΦ1

(b) Sentences. C
(
(α2 ◦ 1Φ1) · α1

)
= (Cα2 ◦ 1CΦ1) · Cα1

C((α2 ◦ 1Φ1
) · α1) (ρ)

= { definition of Cα, and composition of natural transformations }

ρ[ψ ∈ SenI(Σ) / (α2 ◦ 1Φ1
) · α1 (ψ)]

= { horizontal composition }

ρ[ψ ∈ SenI(Σ) / α2 · α1 (ψ)]

= { composition }(
ρ[ ψ ∈ SenI(Σ) / α1 (ψ) ]

)
[ ψ ∈ SenI

′
· Φ1(Σ) / α2 (ψ) ]

= { horizontal composition }(
(Cα2) ◦ 1CΦ1

)
· (Cα1)(ρ)

= { composition of natural transformations }(
(Cα2 ◦ 1CΦ1) · Cα1

)
(ρ)

(c) Models. C
(
β1 · (β2 ◦ 1Φop1 )

)
= Cβ1 · (Cβ2 ◦ 1CΦop1 )

C
(
β1 · (β2 ◦ 1Φop1 )

)
(∆,Σ)

= { definition of Cβ }

id× id×
(
(β1 · (β2 ◦ 1Φop1 )Σ ·

)
= { identity, and definition of product }(

id× id× (β1)Σ ·
)
·
(
id× id× (β2 ◦ 1Φop1 )Σ ·

)



= { horizontal composition }(
id× id× (β1)Σ ·

)
·
(
id× id× (β2)Φop1 (Σ) ·

)
= { definition of Cβ (twice) }

(Cβ1)(∆,Σ) · (Cβ2)(∆,Φop1 (Σ))

= { horizontal composition }

(Cβ1)(∆,Σ) · (Cβ2 ◦ 1CΦop1 )(∆,Σ)

= { composition of natural transformations }(
Cβ1 · (Cβ2 ◦ 1CΦop1 )

)
(∆,Σ)

Proof of Theorem 3. We start with the case of temporalisation, which follows by
induction on the structure of sentences.

(a) ψ ∈ SenI(Σ),

(Lβ)(M) |=j ψ

⇔ { definition |=LI }

(Lβ)(M)j |= ψ

⇔ { definition of Lβ }

β(Mj) |= ψ

⇔ { (Φ,α, β) is a comorphism }

Mj |= α(ψ)

⇔ { definition of Lα }

Mj |= (Lα)(ψ)

⇔ { definition of |=LI }

M |=j (Lα)(ψ)

(b) ¬ρ,

(Lβ)(M) |=j ¬ρ

⇔ { definition |=LI }

(Lβ)(M) 6|=j ρ

⇔ { induction hypothesis }

M 6|=j (Lα)(ρ)

⇔ { definition of |=LI and Lα }

M |=j (Lα)(¬ρ)



(c) The remaining cases are analogous.

In the case of probabilistation we need the lemma below.

Lemma 3. Consider a signature Σ ∈ |SignPI|, a term t ∈ T(Σ), and a model
M ∈ |ModPI′ · PΦop(Σ)|. The following property holds.(

(Pβ) (M)
)
t
=M(Pα)(t)

Proof. Follows by induction on the structure of terms.

(a) (
(Pβ)(M)

)
r

= { interpretation of terms }

Mr

= { definition of Pα }

M(Pα)(r)

(b) (
(Pβ)(M)

)∫
ψ

= { definition of Pβ interpretation of terms }

p
(
(β · m)−1[ψ]

)
= { definition of m−1[ψ] }

p
(
{s ∈ S : β · m(s) |= ψ}

)
= { (Φ,α, β) is a comorphism }

p
(
{ s ∈ S : m(s) |= α(ψ) }

)
= { definition of m−1[ψ] }

p
(
m−1[α(ψ)]

)
= { definition of Pβ and interpretation of terms }

M ∫
α(ψ)

= { definition of Pα }

M
(Pα)(

∫
ψ)

(c) The sum and multiplication cases are proved in a similar way.



The satisfaction condition for P(Φ, α, β) follows by induction on the structure
of sentences. In particular, the stricly less case is a direct consequence of the
previous lemma. Negation and implication are proved as usual.

The case of hybridisation follows, again, by induction on the structure of
sentences. Namely,

(a) i ∈ Nom,

Hβ (M) |=w i

⇔ { definition of |=H }(
Hβ (M)

)
i
= w

⇔ { definition of Hβ }

Mi = w

⇔ { definition of |=H, and Hα }

M |=w Hα (i)

(b) ψ ∈ SenI(Σ),

Hβ (M) |=w ψ

⇔ { definition of |=H }

β ·m(w) |= ψ

⇔ { (Φ,α, β) is an institution comorphism }

m(w) |= α (ψ)

⇔ { definition of |=H, and Hα }

M |=w Hα (ψ)

(c) @iρ,

Hβ (M) |=w @iρ

⇔ { definition of |=H, and
(
Hβ (M)

)
i
=Mi }

Hβ (M) |=Mi ρ

⇔ { induction hypothesis }

M |=Mi Hα (ρ)

⇔ { definition of |=H }

M |=w @i Hα (ρ)

⇔ { definition of Hα }

M |=w Hα (@iρ)



(d) 〈λ〉ρ,

Hβ (M) |=w 〈λ〉ρ

⇔ { definition of |=H, and Rλ of Hβ (M) is equal to Rλ of M }

there is a w′ such that (w,w′) ∈ Rλ and Hβ (M) |=w
′
ρ

⇔ { induction hypothesis }

there is a w′ such that (w,w′) ∈ Rλ and M |=w
′
Hα (ρ)

⇔ { definition of |=H }

M |=w 〈λ〉(Hα (ρ))

⇔ { definition of Hα }

M |=w Hα (〈λ〉ρ)

(e) The remaining cases are routine induction proofs.

Proof of Theorem 6. Follows by induction on the structure of sentences, in par-
ticular

(a) ψ ∈ SenI(Σ),

τβ (N, R,m) |=j ψ

⇔ { definition of τβ }

(N, suc : N→ N,m) |=j ψ

⇔ { definition of |=LI }

m(j) |= ψ

⇔ { definition of |=LI, definition of σ }

(N, R,m) |=j σ(ψ)

(b) Xρ,

τβ (N, R,m) |=j Xρ

⇔ { definition of |=LI }

τβ (N, R,m) |=j+1 ρ

⇔ { induction hypothesis }

(N, R,m) |=j+1 σ(ρ)

⇔ { RNext defines the successor function }

(N, R,m) |=j [Next] σ(ρ)



⇔ { definition of σ }

(N, R,m) |=j σ(Xρ)

(c) The remaining cases are proved similarly.


