
Noname manuscript No.
(will be inserted by the editor)

Using Constraints to Diagnose Faulty Spreadsheets

Rui Abreu · Birgit Hofer · Alexandre

Perez · Franz Wotawa

the date of receipt and acceptance should be inserted later

Abstract Spreadsheets can be viewed as a highly flexible programming environ-
ment for end-users. Spreadsheets are widely adopted for decision making, and may
have a serious economical impact for the business. However, spreadsheets are stag-
geringly prone to errors. Hence, approaches for aiding the process of pinpointing
the faulty cells in a spreadsheet are of great value. We present a constraint-based
approach, ConBug, for debugging spreadsheets. The approach takes as input a
(faulty) spreadsheet and a test case that reveals the fault and computes a set of
diagnosis candidates for the debugging problem. Therefore, we convert the spread-
sheet and a test case to a constraint satisfaction problem. We perform an empirical
evaluation with 78 spreadsheets from different sources, where we demonstrate that
our approach is light-weight and efficient. From our experimental results, we con-
clude that ConBug helps end-users to pinpoint faulty cells.

Keywords Spreadsheets · Debugging · Constraints

1 Introduction

Spreadsheet tools, such as Microsoft Excel1, iWork’s Numbers2, and OpenOffice’s
Calc3, can be viewed as programming environments for non-professional program-

Rui Abreu · Alexandre Perez
Dept. of Informatics Engineering, University of Porto, Porto, Portugal
E-mail: rui@computer.org, alexandre.perez@fe.up.pt

Birgit Hofer · Franz Wotawa
Institute for Software Technology, Graz University of Technology, Graz, Austria
E-mail: bhofer@ist.tugraz.at, wotawa@ist.tugraz.at

1 http://office.microsoft.com/en-gb/excel/
2 http://www.apple.com/iwork/numbers/
3 http://www.openoffice.org/product/calc.html

2 Rui Abreu et al.

mers [27]. These so-called “end-user” programmers4 vastly outnumber professional
ones: the US Bureau of Labor and Statistics estimates that more than 55 million
people use spreadsheets and databases at work on a daily basis [27,22,23]. Despite
this trend, as a programming language, spreadsheets lack support for abstraction,
testing, encapsulation, or structured programming. As a consequence, spreadsheets
are error-prone. As a matter of fact, numerous studies have shown that existing
spreadsheets contain redundancy and errors at an alarmingly high rate [14,38].
As an example disastrous financial consequences due to spreadsheet calculating
errors, the Board of the West Baraboo Village, USA, found out on December 9,
2011 that they will be paying $400,0000 more on the estimated total cost for the
10-year borrowing than originally projected5.

In the software engineering domain, constraints have been used for various
purposes like verification [15], debugging [13,41], program understanding [40] as
well as testing [20,21]. Some of the proposed techniques use constraints to state
specification knowledge like pre- and post-conditions. Others use constraints for
modeling purposes or extract the constraints directly from the source code.

In this paper, we propose a constraint-based approach for debugging spread-
sheets, dubbed ConBug. This paper is an extension of the work published in [7],
[8] and [25]. The approach takes as input a spreadsheet and the set of user expec-
tations, and produces as output a set of diagnosis candidates. User expectations
express the cells that, according the user, reveal failures on the spreadsheet. Di-
agnosis candidates are explanations for the misbehavior in user expectations. The
main contribution of this paper is the profound explanation of the approach and
an extended empirical evaluation using spreadsheets from different sources. This
paper extends previous work [7], [8], [25] as follows:

– The description of the ConBug approach has been expanded. In contrast to
previous work, we now explain the conversion different types of expressions.

– All algorithms are enhanced by a time complexity and termination analysis.
– The running example to illustrate basic concepts has been improved.
– The modeling of a spreadsheet constraint satisfaction problem with the con-

straint solver Minion is discussed in detail.
– The empirical evaluation of our approach is extended from 5 to 78 spreadsheets.
– A comparison of ConBug to spectrum-based fault localization is given in the

empirical evaluation.

In the remainder of this paper, we make use of a running example to illustrate
the basic concepts of ConBug. Despite of being a contrived example, it serves
well the purpose of demonstrating how our approach works. Figure 1 shows this
example spreadsheet stemming from the EUSES spreadsheet corpus [18]. This
spreadsheet is used to calculate the wages of the workers (cells F2:F3) and the
total working hours (cell D4). For the sake of clarity, we have reduced the num-
ber of columns and rows compared to the original spreadsheet. In this example

4 We are aware that there exist different types of spreadsheet usage scenarios: quickly written
calculations and spreadsheets carefully written for long-term use. The first type often contains
careless mistakes that can be easily detected with the help of pattern identification mecha-
nisms that are already implemented in most of the available spreadsheet tools. The second
spreadsheet type often contains faults that are difficult to detect and localize. In this paper,
we therefore focus on the localization of the latter one.

5 http://www.wiscnews.com/baraboonewsrepublic/news/local/article 7672b6c6-22d5-11e1-
8398-001871e3ce6c.html

Using Constraints to Diagnose Faulty Spreadsheets 3

(a) Correct spreadsheet (b) Faulty spreadsheet

Should be

B2:C2

(c) Formula view of Figure 1(b)

Fig. 1 Running example stemming from the EUSES spreadsheet corpus [18]

spreadsheet, users may quickly pinpoint the source of the problems by manually
inspecting the formulas, but this spreadsheet serves well to illustrate how our
approach works. Figure 1(a) illustrates the correct version of this spreadsheet,
Figure 1(b) a faulty variant of the same spreadsheet.

Figure 1(c) shows the formula view of the faulty spreadsheet from Figure 1(b).
In this faulty spreadsheet, the computation of the total hours for the worker
“Green” (cell D2) is faulty because the programmer of the spreadsheet uninten-
tionally set a wrong area for the SUM formula. This happens for example when a
programmer adds a new week but forgets to adapt some calculations. Because of
this fault, the wage of the worker “Green” (cell F2) and the total hours (cell D4)
compute the wrong values (observed failures). An example of a diagnosis candidate
for this concrete example is cell D2 or the cells D4 and F2 together.

The remainder of this paper is organized as follows: Section 2 deals with the
basic definitions required in the spreadsheet domain. The spreadsheet debugging
problem and the constraint satisfaction problem are stated. Section 3 explains the
conversion of a spreadsheet debugging problem into a constraint satisfaction prob-
lem. In Section 4, we introduce an algorithm for computing diagnosis candidates
given a constraint satisfaction debugging problem. The design and the results
of the empirical evaluation are discussed in Section 5. The evaluation comprises
single, double and triple faults. In addition, the conversion of spreadsheets into
Minion constraints is demonstrated. Section 6 deals with the related work and
Section 7 concludes the paper and discusses future work.

2 Basic Definitions

The aim of this section is to define the spreadsheet debugging problem. Therefore,
we assume a spreadsheet programming language L with syntax and semantics
similar to, e.g., Microsoft Excel. In order to be self-contained, we adopt a subset
of the definitions of the syntax and semantics for L from [25] to our approach.

A spreadsheet consists of cells. Each cell c has an expression `(c) and a
value ν(c) . The expression of a cell `(c) can either be empty or an expression
written in the language L. If no expression is explicitly declared for a cell, the

4 Rui Abreu et al.

function ` returns the value 0. The value of a cell c is determined by its expression.
It can be either undefined ε, an error ⊥, or any number, boolean or string value.

Each cell can be accessed by its column and row number. In most spreadsheet
languages, the rows are numbered whereas columns have a corresponding letter.
For example, A3 denotes the cell at column 1 and row 3. For simplicity, we assume
a function ϕ that maps the cell names from a set CELLS to their corresponding
position (x, y) in the matrix where x represents the column and y the row number.
The functions ϕx and ϕy return the column and row number of a cell respectively.

For referencing several cells at once, areas are used. We define areas as follows:

Definition 1 An area is a set consisting of all cells that are within the area that
is spanned by the cells c1, c2 ∈ CELLS . Formally:

c1:c2≡def
{
c ∈ CELLS

∣∣∣∣ϕx(c1) ≤ ϕx(c) ≤ ϕx(c2) &
ϕy(c1) ≤ ϕy(c) ≤ ϕy(c2)

}
(1)

Obviously, every area is a subset of the set of cells (c1:c2 ⊆ CELLS).
Below, we introduce the language L for representing expressions that are used

to compute values for cells. This language takes the values of cells and constants
together with operators and conditionals to compute values for other cells. The
language is a functional language, i.e., only one value is computed for a specific
cell. Moreover, recursive functions are not allowed.

Definition 2 (Syntax of L) The syntax of L is recursively defined as follows:

– Constants k representing ε, number, boolean, or string values are elements of
L (i.e., k ∈ L).

– All cell names are elements of L (i.e., CELLS ⊂ L).
– Areas c1 : c2 are elements of L.
– If e1, e2, . . . , en are elements of the language (e1, e2, . . . , en ∈ L), then the fol-

lowing expressions are also elements of L:
– (e1) is an element of L.
– If o is an operator (o ∈ {+, -,*,/, <,=, >}), then e1 o e2 is an element of L.
– A function call f(e1, . . . ,en) is an element of L where f denotes functions

like IF, SUM, AVG, etc.

The semantics of L is defined by means of an interpretation function J·K that
maps an expression e ∈ L to a value. The value is ε if no value can be determined
or ⊥ if a type error occurs. Otherwise it is either a number, a boolean, or a string.

Definition 3 (Semantics of L) Let e be an expression from L and ν a function
mapping cell names to values. We define the semantic of L recursively as follows:

– If e is a constant k, then the constant is given back as result, i.e., JeK = k.
– If e denotes a cell name c, then its value is returned, i.e., JeK = ν(c).
– If e is of the form (e1), then JeK = Je1K.
– If e is of the form e1 o e2, then its evaluation is defined as follows:

– If either Je1K = ⊥ or Je2K = ⊥, then Je1 o e2K = ⊥.
– else if either Je1K = ε or Je2K = ε, then Je1 o e2K = ε.
– else if o ∈ {+, -,*,/, <,=, >}, then

Je1 o e2K =

{
Je1K o Je2K if all sub-expressions evaluate to a number
⊥ otherwise

Using Constraints to Diagnose Faulty Spreadsheets 5

– If e is of the form f(e1, . . . ,en), then the value returned by the implementation
of the function f is returned. Let fI be the implementation of the function f .
The semantics of the call to a function is defined as follows:
Jf(e1, . . . ,en)K = fI(Je1K, . . . , JenK)
The return value might be ⊥ in case of type errors or mismatches of arguments.

The function ρ : L 7→ 2CELLS returns the set of referenced cells. Formally, we
define ρ as follows:

Definition 4 (The function ρ) Let e ∈ L be an expression. We define the refer-
enced cells function ρ recursively as follows:

– If e is a constant, then ρ(e) = ∅.
– If e is a cell c, then ρ(e) = {c}.
– If e = (e1), then ρ(e) = ρ(e1).
– If e = e1 o e2, then ρ(e) = ρ(e1) ∪ ρ(e2).
– If e = f(e1, . . . ,en), then ρ(e) =

⋃n
i=1 ρ(ei).

Definition 5 (The function CONE) Given a spreadsheet Π and a cell c ∈ Π,
we define the function cone recursively as follows:

cone(c) = c ∪
⋃

c′∈ρ(c)
cone(c′) (2)

Example 1 The cone for cell D4 from our running example from Figure 1(c) is

cone(D4) = {B2, B3, C3, D2, D3, D4}.

Having defined the fundamentals of spreadsheets, we are now able to focus on
the aspects of debugging spreadsheets. For this, we define the terms direct data
dependency, input and output as follows:

Definition 6 (Direct data dependency) A cell c is direct data dependent on
another cell c′ if and only if the cell c′ is referenced in `(c) :

dd(c′, c)⇔ c′ ∈ ρ(l(c))

Example 2 For our running example from Figure 1(c), we have the following direct

data dependencies (amongst other data dependencies): dd(B2, B4) and dd(B3, B4).

Definition 7 (Input/Output cell) An input cell c is a cell that does not reference
another cell c′, i.e. there exists no direct data dependency from any cell c′ to c.
Conversely, an output cell c is a cell that is not referenced by another cell c′, i.e.
there exists no direct data dependency from c to any other cell c′.

Input(Π) = {c|(@dd(c′, c) ∧ ∃cr : CELLS|dd(c, cr))} (3)

Output(Π) = {c|@dd(c, c′)} (4)

Example 3 According to the formula view from our running example (see Fig-

ure 1(c)), we have six input cells (B2:C3 and E2:E3) and five output cells (B4:D4 and

F2:F3). For the sake of clarity, we do not consider cells containing strings in this

example.

For defining test cases, we introduce environments:

6 Rui Abreu et al.

Definition 8 (Environment) An environment is a set of pairs (x, v) where x is a
cell and v its value. In an environment there is only one pair for a cell.

With the definition of input and output cells and environments, we are able to
define the terms test case and failing test case as follows:

Definition 9 (Test case) A test case for a spreadsheet Π ∈ L is a tuple (I,O)
where I is the input environment specifying the values of all input cells used in Π,
and O the output environment defining the expected output values (not necessarily
specifying values for all output cells). An output cell for which no value is specified
in O can have an arbitrary value.

Example 4 For example, a test case for the spreadsheet from Figure 1 is

IΠ : {B2 = 23; C2 = 31; B3 = 35; C3 = 34; E2 = 15; E3 = 17}, and

OΠ : {F2 = 810; F3 = 1173; B4 = 58; C4 = 65; D4 = 123}.

Definition 10 (Failing test case) A test case is failing if there exists at least one
output cell which calculated value differs from the expected value.

Example 5 For the spreadsheet from Figure 1(c) the test case given in Example 4

is a failing test case because the computed output for the cells D4 (D4 = 92) and E2

(E2 = 345) differ from the expected output (D4 = 123; E2 = 810).

From the definition of failing test cases, we derive the definition of passing test
cases as follows:

¬(Π fails test case(I,O))⇔ Π passes test case (I,O) (5)

With these definitions, we are able to state the spreadsheet debugging problem:

Definition 11 (Spreadsheet debugging problem) Let Π ∈ L be a spreadsheet
and T a failing test case of Π, then (Π,T) is a debugging problem.

A solution to the debugging problem is the identification of parts of the spread-
sheet (set of cells) responsible for the detected misbehavior. We call such a set of
cells an explanation. We have defined the debugging problem as a fault localization
problem. Therefore, ConBug is designed as an approach to pinpoint certain cells
of the spreadsheet. However, ConBug does not make suggestions how to change
these cells so that the spreadsheet Π passes all test cases.

Many approaches are capable of returning explanations including [32,6,9,39,
28] and [13,42] among others. These approaches are designed for hardware descrip-
tion languages and imperative programming languages. Most of them focus on the
fault localization process. Weimer et al. [39] propose an approach that delivers
suggestions how to change a program in order to correct a fault. In this paper, we
follow the debugging approach based on constraints, i.e., [13,42]. In particular, the
approach makes use of the program’s constraint representation to compute possi-
ble fault candidates. Therefore, debugging is reduced to solving the corresponding
constraint satisfaction problem (CSP).

Using Constraints to Diagnose Faulty Spreadsheets 7

Definition 12 (Constraint Satisfaction Problem (CSP)) A constraint satisfac-
tion problem is a tuple (V,D,CON) where V is a set of variables defined over a set
of domains D connected to each other by a set of arithmetic and boolean relations,
called constraints CON. A solution for a CSP represents a valid instantiation of
the variables V with values from D such that none of the constraints from CON
is violated.

The variables used in a CSP are not necessarily cells used in a spreadsheet.
We discuss the representation of spreadsheets as a CSP in the next section.

3 CSP representation of spreadsheets

In order to solve the previously stated debugging problem, we have to convert
spreadsheets into constraints. There exist some differences between the conversion
of ordinary sequential programs and the conversion of spreadsheets: In [42,30], the
authors introduce the conversion based on three steps: (1) removing loops, (2) pro-
viding a static single assignment form and (3) final compilation to constraints. In
the domain of spreadsheets, there are (in almost all practical cases) no loops and
every cell can only be defined once. Hence, there is no need for loop removal and
the static single assignment form.

The basic idea of the conversion of the content of a spreadsheet into constraints
is to use equations instead of assignments. The advantage of using equations in-
stead of assignments is the directions of calculations: Assignments allow to deduce
from the input to the output, but not vice versa. In contrast, equations allow to
derive conclusions in both directions.

Example 6 The cell F3 from our running example from Figure 1(c) contains the ex-

pression `(F3) = D3 ∗ E3. Instead of using an assignment form (F3 = D3 ∗ E3), we

use an equation: F3 == D3 ∗ E3. This allows to deduce from the value of F3 to the

value of D3 or E3.

Algorithm ConvertExpression (Algorithm 1) illustrates the conversion. A
constant or cell is represented by itself (Lines 1 to 3). Expressions in parentheses are
converted by converting the expressions without the parentheses (Lines 4 to 7). For
an expression of the form e1 o e2, we convert e1 and e2 separately into constraints,
and assign a new intermediate variable for each converted sub-expression (Lines 8
to 14). Therefore, an expression e ∈ L might be translated into several constraints.
Representative for the functions f , we demonstrate the conversion of the functions
IF, SUM, and AND:

– Let ψ(cond, e1, e2, result) be a constraint that ensures the relationship of
cond, e1, e2 and result as follows: If cond is true, result must be equal to the
value of e1. Otherwise result must be equal to the value of e2 (Lines 15 to 21).

– Let SUM(c1...c2, result) be a constraint that ensures that the sum of the values
contained in the area c1:c2 is equal to the value of result (Lines 22 to 25).

– Let AND(c1...c2, result) be a constraint that ensures that result = true if all
cn are true otherwise result = false (Lines 26 to 29).

The other functions can be straightforwardly converted making use of appro-
priate equations and other constraints.

8 Rui Abreu et al.

Algorithm 1 ConvertExpression

Require: Expression e ∈ L
Ensure: [CON, var] with CON as a set of constraints, and var as the name of an auxiliary

variable, a cell name or a constant
1: if e is a cell name or constant then
2: return [∅, e]
3: end if
4: if e is of the form (e) then
5: Let [CON,aux] = ConvertExpression(e)
6: return [CON, aux]
7: end if
8: if e is of the form e1 o e2 then
9: Let [CON1,aux1] = ConvertExpression(e1)

10: Let [CON2,aux2] = ConvertExpression(e2)
11: Generate a new variable result
12: Create a new constraint CON accordingly to the given operator o, which defines the

relationship between aux1, aux2, and result
13: return [CON1 ∪ CON2 ∪ CON, result]
14: end if
15: if e is of the form if(e1;e2;e3) then
16: Let [CON1,aux1] = ConvertExpression(e1)
17: Let [CON2,aux2] = ConvertExpression(e2)
18: Let [CON3,aux3] = ConvertExpression(e3)
19: Generate a new variable result
20: return [CON1 ∪ CON2 ∪ CON3 ∪ Ψ(aux1, aux2, aux3, result), result]
21: end if
22: if e is of the form sum(c1:c2) then
23: Generate a new variable result
24: return [SUM(c1...c2, result), result]
25: end if
26: if e is of the form and(c1:c2) or and(c1, . . . , c2) then
27: Generate a new variable result
28: return [AND(c1...c2, result), result]
29: end if

For encoding of the debugging problem, we introduce a special boolean variable
AB(c) for a cell c, that represents the ‘health’ status of the cell c: either the formula
in c is correct or AB(c) = true. More formally:

AB(c)∨ conc

assuming conc is the constraint encoding of the content stored in cell c in the
constraint programing language.

Algorithm ConvertSpreadsheet (Algorithm 2) illustrates the conversion of
a Spreadsheet Π into a set of constraints. ConvertSpreadsheet takes a spread-
sheet as input and returns a set of constraints as output. For all cells contained
in Π the formulae are recursively converted into constraints using the function
ConvertExpression (Algorithm 1). The returned variable of ConvertExpression

is set equal to the current cell and connected to the abnormal variable AB(c)
through a logical or. Finally, the algorithm returns all created constraints.

Using Constraints to Diagnose Faulty Spreadsheets 9

Algorithm 2 ConvertSpreadsheet

Require: Spreadsheet Π
Ensure: Set of constraints CONΠ representing the spreadsheet Π
1: Let CONΠ be an empty set
2: for cell c ∈ Π do
3: if c is a formula cell then
4: [con1,aux] = ConvertExpression(`(c))
5: conc = EQUAL(c, aux)
6: CONΠ = CONΠ ∪ con1 ∪ (ABc ∨ conc)
7: end if
8: end for
9: return CONΠ

Example 7 When applying Algorithm 2 to our running example from Figure 1(c), we

obtain the following constraints:

CONΠ = { SUM(B2, B3, result1)
ABB4 ∨ EQUAL(B4, result1)
SUM(C2, C3, result2)
ABC4 ∨ EQUAL(C4, result2)
SUM(B2, result3)
ABD2 ∨ EQUAL(D2, result3)
SUM(B3, C3, result4)
ABD3 ∨ EQUAL(D3, result4)
SUM(D2, D3, result5)
ABD4 ∨ EQUAL(D4, result5)
MULT(D2, E2, result6)
ABF2 ∨ EQUAL(F2, result6)
MULT(D3, E3, result7)
ABF3 ∨ EQUAL(F3, result7)}.

The CSP representation of a program Π is given by the tuple (VΠ , D,CONΠ).
VΠ represents all non-empty cells of a program Π and all auxiliary variables created
when calling the function ConvertExpression. The variables are defined over the
domains D = {Integer,Boolean}6.

Example 8 The CSP representation of our running example from Figure 1(c) consists

of CONΠ from Example 7 enhanced by the used variables VΠ and their domains D:

VΠ = { ABB4, ABC4, ABD2, ABD3, ABD4, ABF2, ABF3

B2, B3, B4, C2, C3, C4, D2, D3, D4, E2, E3, F2, F3
result1, result2, result3, result4, result5, result6, result7}

D = { ABB4, ABC4, ABD2, ABD3, ABD4, ABF2, ABF3 : BOOLEAN

B2, B3, B4, C2, C3, C4, D2, D3, D4, E2, E3, F2, F3 : INTEGER

result1, result2, result3, result4, result5, result6, result7 : INTEGER}.

The time complexity of Algorithm 2 is O(|Π| ∗ |e|) where |Π| is the number
of cells in the spreadsheet and |e| the maximum size of the expressions used in

6 In principle, other domains like Real numbers are possible. For the sake of clarity, we
restrict the domains to Integer and Boolean in this paper. This is not a general limitation of
the approach.

10 Rui Abreu et al.

the cells. This expression size corresponds to the number of operators, constants,
and references in the expression. The Algorithm once iterates over all cells (i.e.,
|Π| cells) and invokes Algorithm 1 for each cell. The complexity of the conversion
of an expression depends on the complexity of the expression itself. Therefore,
the complexity of Algorithm 1 is O(|e|). In theory, expressions can be arbitrary
deeply nested and they can have an arbitrary number of subexpressions. However,
in practice the nesting of formulas are limited. Moreover, for every spreadsheet
there is a maximum expression size. Algorithms 1 and 2 clearly terminate since
spreadsheets consist of a finite number of cells and expressions consist of a finite
number of sub-expressions.

4 Debugging

Debugging of a spreadsheet requires the existence of a failing test case. Therefore,
we need a set of constraints encoding a failing test case (I,O): For all (x, v) ∈ I
the constraint EQUAL(x, v) is added to the constraint system. For all (y, w) ∈ O
the constraint EQUAL(y, w) is added. Let CONTC denote the constraints resulted
from converting the given test case. Then, the CSP corresponding to the debugging
problem of a spreadsheet Π is now represented by the tuple

(VΠ , D,CONΠ ∪CONTC).

For convenience, we assume a function ConvertTest that implements the
conversion of the failing test case into constraints: ConvertTest takes the failing
test case as input and returns a set of constraints as output.

Example 9 For our running example from Figure 1 and the test case from Example 4,

the function ConvertTest returns the following constraints:

CONTC = EQUAL(B2, 23)
EQUAL(C2, 31)
EQUAL(B3, 35)
EQUAL(C3, 34)
EQUAL(E2, 15)
EQUAL(E3, 17)
EQUAL(F2, 810)
EQUAL(F3, 1173)
EQUAL(B4, 58)
EQUAL(C4, 65)
EQUAL(D4, 123).

Algorithm ConBug (Algorithm 3) illustrates the debugging process. This al-
gorithm consists of three main phases: The first phase comprises the conversion of
a spreadsheet Π ∈ L into the corresponding set of constraints (Line 6). Instead of
converting the whole spreadsheet, only those cells are converted that are part of
a cone of any cell indicated in the test case. The second phase is the conversion of
the failing test case into the corresponding set of constraints (Line 7).

The third phase comprises the computation of diagnosis candidates, i.e., cells
of the spreadsheet that might cause the revealed misbehavior (Lines 9 to 17).

Using Constraints to Diagnose Faulty Spreadsheets 11

Algorithm 3 Algorithm ConBug

Require: A spreadsheet Π and a failing test case T
Ensure: Diagnostic Report D
1: D ← ∅
2: cones← ∅
3: for all cell c ∈ T do
4: cones = cones ∪ Cone(c)
5: end for
6: CONΠ ← ConvertSpreadsheet(cones)
7: CONTC ← ConvertTest(T)
8: i← 1
9: while i ≤ |Π| do

10: CONAB = {COUNT(AB, i)}
11: D ← ConstraintSolver(CONΠ ∪ CONTC ∪ CONAB)
12: if D 6= ∅ then
13: return D
14: else
15: i← i+ 1
16: end if
17: end while
18: return D

Therefore, the algorithm calls a constraint solver using the constraints CONΠ ,
CONTC and CONAB . The set of constraint CONAB is responsible for allowing
only a certain number of abnormal variables ABc to be true. Therefore, we assume
that the constraint solver offers a constraint COUNT(AB, result) that ensures that
the number of variables of the type AB with true as value is equal to the value
of result. The constraint solver returns all possible combinations of values of the
abnormal variables ABc so that the constraints CONΠ , CONTC and CONAB are
not violated. The size (cardinality) of a solution corresponds to the size of the
bug, i.e., the number of cells that must be changed in order to correct the fault.
We assume that single cell bugs are more likely than bugs comprising more cells.
Hence, we ask the constraint solver for smaller solutions first. If no solution of
a particular size is found, the algorithm increases the size of the solutions to be
searched for. This is done until either a solution is found or the maximum size of
a bug, which is equivalent to the number of formula cells in Π, is reached.

Example 10 Applying Algorithm 3 to the spreadsheet Π from Figure 1

and the test case from Example 4 works as follows: First, we compute the

cones for the output variables (Cone(B4) = {B2, B3, B4}, Cone(C4) =
{C2, C3, C4}, Cone(D4) = {B2, B3, C3, D2, D3, D4}, Cone(F2) =
{B2, D2, E2, F2}, Cone(F3) = {B3, C3, D3, E3, F3}) and the set of all con-

tained cells (cones = {B2, B3, B4, C2, C3, C4, D2, D3, D4, E2, E3, E4, F2, F3}).

Afterwards, we create the set of constraints CONΠ , CONTC , and CONAB containing

the constraint SUM(ABB4, ABC4, ABD2, ABD3, ABD4, ABF2, ABF3, 1)7. The last

mentioned constraint ensures that the solver returns single fault explanations first.

Subsequently, the solver is called with these constraints. In case of our running

example, the solver returns a single fault explanation, i.e. D = {ABD2}. Therefore,

the algorithm has found a solution and terminates.

7 Boolean values are interpreted as 1 if set to true. Otherwise they are interpreted as 0.

12 Rui Abreu et al.

Algorithm 3 has a worst-case time complexity of O(|Π| ·2|Π|·|e|). The computa-
tion of the cones (Lines 3 to 5) requires O(Π2) time as a cone requires computation
of all referenced cells - which could be |Π| cones in the worst case. The spreadsheet
can be converted (Line 6) in O(|Π| ∗ |e|) time (as explained in Section 3). The test
case can be converted (Line 7) in O(|Π|) time since the number of cells in the test
case must be less than |Π|. The creation of one set of constraints CONAB (Line 10)
requires O(|Π|) since there exist at most |Π| abnormal variables. However, it is
well known that constraint solving is NP-complete. Therefore, this part of the
algorithm is the one that has the greatest impact on the worst-case complexity.
Calling a constraint solver with O(|Π| · |e|) variables (Line 11) requires O(2|Π|·|e|)
time in order to find a satisfiable value assignment. Since the constraint solver call
is in a loop, we finally obtain the worst-case time complexity of O(|Π| ·2|Π|·|e|) for
our algorithm. It is worth noting that in practice constraint solving is much faster
and depends heavily of the structure of the constraint satisfaction problem. For
example, if the constraint satisfaction problem is acyclic a solution can be pro-
vided in polynomial time. Moreover, in the debugging domain someone is mainly
interested in finding single, double or triple faults at most. Hence, the loop from
Line 9 to 17 can be neglected.

Algorithm 3 terminates if the spreadsheet does not contain any circular refer-
ences8. Otherwise the computation of the cones (Line 3) could result in an endless
loop. The loop from Line 3 to 5 termitates since the number of cells in a test case
must be finite. The loop from Line 9 to 17 terminates since i is increased in every
iteration and the number of cells in a spreadsheet must be finite. Another prereq-
uisite for the termination of the algorithm is that the constraint solver terminates.

5 Empirical Evaluation

In this section, we evaluate ConBug by means of a spreadsheet corpus. This evalu-
ation has three goals: (1) to empirically analyze the runtime behavior of ConBug,
(2) to show the reduction that can be achieved when using ConBug, and (3) to
compare ConBug with another spreadsheet fault localization approach. This sec-
tion consists of three major parts: First, the solver used in this evaluation is pre-
sented. Afterwards, the used spreadsheet corpus is introduced. Finally, we evaluate
ConBug with respect to runtime and reduction quality.

5.1 The used constraint solver

We developed a prototype for performing the empirical evaluation. This prototype
uses Minion [19] as constraint solver. Minion is an out of the box, open source
constraint solver and offers support for almost all arithmetic, relational, and logic
operators such as multiplication, division, less, and equality over integers. For
example, the multiplication x ∗ y = z is represented by product(x,y,z).

Unlike other constraint solvers, Minion does not have to perform an interme-
diate transformation of the input constraint system. This allows for performance
gains. As a trade off, the syntax of Minion requires a small overhead in modeling

8 Known as iterative calculations; see http://office.microsoft.com/en-us/excel-help/
remove-or-allow-a-circular-reference-HP010066243.aspx

Using Constraints to Diagnose Faulty Spreadsheets 13

the constraints compared to other constraint solvers: complex constraints have to
be split into two or more simpler constraints.

Minion does not directly offer constraints for representing additions
and subtractions. Therefore, we use the two relations sumleq([x,y],z) and
sumgeq([x,y],z) (stating x + y ≤ z and x + y ≥ z, respectively) for model-
ing the sum x + y = z and the relations weightedsumleq([x,y],[1,-1],z) and
weightedsumgeq([x,y],[1,-1],z) for modeling the subtraction x− y = z. The op-
erator weightedsumleq(cv,v,z) ensures that cv ·v ≤ z, where cv ·v is the scalar dot
product of cv and v, and weightedsumleq(cv,v,z) ensures that cv · v ≥ z, where
cv ·v is the scalar dot product of cv and v. We demonstrate this modeling overhead
by means of a small example.

Example 11 The expression A1 + B2 - C2 is converted to the following Minion code:

MINION 3

VARIABLES

DISCRETE A1{-2000..5000}

DISCRETE B2{-2000..5000}

DISCRETE C2{-2000..5000}

DISCRETE aux1{-2000..5000}

DISCRETE aux2{-2000..5000}

CONSTRAINTS

sumleq([A1,B2],aux1)

sumgeq([A1,B2],aux1)

weightedsumleq([1,-1],[aux1,C2], aux2)

weightedsumgeq([1,-1],[aux1,C2], aux2).

aux1 and aux2 represent auxiliary variables that were introduced during conversion.

The final result is stored in aux2.

Minion does not offer a constraint for modeling x<y and x>y. However, these
logic expressions can be modeled by using the constraint ineq(x, y, k) which
ensures that x ≤ y + k. The expression x<y can be modeled using the con-
straint ineq(x,y,-1) and x>y can be modeled using ineq(y,x,-1). The constraint
ineq(x,y,-1) ensures that x is smaller than y. However, if we want to know if x
is smaller than y, we have to use Minion’s reification mechanism: The constraint
reify(constraint, r) ensures that the Boolean variable r is set to 1 if and only
if the given constraint is satisfied. Therefore, the constraint reify(ineq(x,y,-1),

r) can be used to answer the questions if x is smaller than y.
The function IF is also realized by using Minion’s reification mechanism: The

constraint reifyimply(constraint, r) ensures that the constraint is satisfied when
r is set to 1. In contrast to the reify constraint, reifyimply allows that the con-
straint is satisfied while r is set to 0. Assuming that aux1, aux2, aux3 are the
auxiliary variables that are returned when evaluating e1, e2, e3 and that aux4 is a
Boolean auxiliary variable and aux5 is the variable that is returned, the function
if(e1;e2;e3) can be modeled using the following constraints:

diseq(aux1,aux4)

reifyimply(eq(aux5,aux2),aux1)

reifyimply(eq(aux5,aux3),aux4)

Lets consider a small example using the logic expression x > y and the IF

function:

14 Rui Abreu et al.

Example 12 The expression IF(A1>A2;A1;A2) is converted to the following Minion

code:

MINION 3

VARIABLES

BOOL aux1

BOOL aux4

BOOL aux5

DISCRETE A1{-2000..5000}

DISCRETE A2{-2000..5000}

CONSTRAINTS

diseq(aux1,aux4)

reify(ineq(A2,A1,-1),aux1)

reifyimply(eq(aux5,A1),aux1)

reifyimply(eq(aux5,A2),aux4)

aux1, aux4, and aux5 are auxiliary variables introduced during the conversion. Algo-

rithm ConvertExpression (Algorithm 1) would return aux5 as variable.

The modeling of the ‘health’ status of a cell c (AB(c)∨ conc) can be modeled
using Minion’s watched-or(C1,...,Cn) constraint: This constraint ensures that
at least one of the constraints C1, . . . , Cn is satisfied. Therefore, AB(c)∨ conc can
be modeled as watched-or(eq(abc, 1), conc). Having now discussed the basics of
Minion, we could now show the complete Minion code for our running example.

Example 13 Algorithm ConBug (Algorithm 3) produces the following Minion code
for our running example from Figure 1(c):

MINION 3
VARIABLES
DISCRETE B2 {-2000..5000}
...
DISCRETE D4 {-2000..5000}
BOOL ab[7]
SEARCH
VARORDER [ab]
PRINT ALL
CONSTRAINTS
watched-or({element(ab,0,1), sumleq(B2,D2)})
watched-or({element(ab,0,1), sumgeq(B2,D2)})
watched-or({element(ab,1,1), product(D2,E2,F2)})
watched-or({element(ab,2,1), sumleq([B3,C3],D3)})
watched-or({element(ab,2,1), sumgeq([B3,C3],D3)})
watched-or({element(ab,3,1), product(D3,E3,F3)})
watched-or({element(ab,4,1), sumleq([B2,B3],B4)})
watched-or({element(ab,4,1), sumgeq([B2,B3],B4)})
watched-or({element(ab,5,1), sumleq([C2,C3],C4)})
watched-or({element(ab,5,1), sumgeq([C2,C3],C4)})
watched-or({element(ab,6,1), sumleq([D2,D3],D4)})
watched-or({element(ab,6,1), sumgeq([D2,D3],D4)})
#TEST CASE
eq(B2,23)
eq(C2,31)
eq(B3,35)
eq(C3,34)
eq(E2,15)
eq(E3,17)
eq(F2,810)

Using Constraints to Diagnose Faulty Spreadsheets 15

eq(F3,1173)
eq(B4,58)
eq(C4,65)
eq(D4,123)
#Solution size
watchsumgeq(ab,1)
watchsumleq(ab,1)
EOF

The Minion code consists of three major parts: (1) the definition of the used vari-

ables and their domains (VΠ and D), (2) the constraints of the spreadsheet Π (CONΠ)

and (3) the constraints of the test case T (CONTC). The term VARORDER [ab] is used

(1) to influence the search order for performance reasons and (2) to avoid multiple

reports of the same variable assignment of ab. In this example code, we are interested

in diagnoses of size 1 (see watchsumgeq(ab,1),watchsumleq(ab,1)).

5.2 The spreadsheet corpus

For the empirical evaluation, we created a spreadsheet collection containing spread-
sheets with integer values only, since the Minion constraint solver only supports
Integer and Boolean variables. This Integer spreadsheet corpus is publicly avail-
able9. Our spreadsheet collection consists of both, artificially created spreadsheets,
and real-life spreadsheets. We automatically created faulty versions for the spread-
sheets by randomly modifying formulae. This process, also known as spreadsheet
mutation, is known to yield representative faults [4]. We mutated formula cells
randomly by

– replacing cell references with other references or constant values,
– replacing functions with constant values,
– changing the range of areas within functions, and
– changing arithmetic and relational operators.

In total, this corpus consists of 78 faulty spreadsheets. These spreadsheets are
very different concerning their nature: while some have an economic background
(e.g. a spreadsheet for computing the amortization time of an investment), oth-
ers are used for mathematical computations (e.g. the Euclidean algorithm or the
Calculation of the Fibonacci numbers), sport events (e.g. the computation of the
winner of a championship), grading in schools or private issues (e.g. a calculator
for the price of a new bedroom). On average, the spreadsheets contain 27.5 formu-
las. The smallest spreadsheet contains 7 formulas, while the largest spreadsheet
contains 81 formulas. For each spreadsheet, the number of formula cells is indi-
cated in the Tables 1 and 2. From these 78 spreadsheets, 28 spreadsheets contain
only single faults, while 39 spreadsheets contain double and 11 spreadsheets triple
faults (i.e. three cells have wrong formulas).

5.3 Results

The evaluation was performed on an Intel Core2 Duo processor (2.67 GHz) with
4 GB RAM and Windows 7 as operating system. We used the Minion version 0.15.

9 https://dl.dropbox.com/u/38372651/Spreadsheets/Integer_Spreadsheets.zip

16 Rui Abreu et al.

The computation time is the average time over 100 runs. We only computed the
diagnoses with lowest cardinality, i.e. we only computed double fault diagnoses
when Minion did not report any single fault diagnoses.

We measured the diagnosis quality by means of the achieved reduction and the
time required for computing the diagnoses. To reduce any potential noise of the
underlying algorithms and/or environment, the computation time is the average
of 100 runs. Tables 1 and 2 show the results. The column ‘Formula cells’ indicates
the number of cells containing a formula. The column ‘Cells in diagnoses’ indicates
the number of cells that are contained in any diagnosis. These numbers are used
to compute the ‘Reduction’ quality:

Reduction =
(
1− Cells in diagnoses

Formula cells

)
× 100 %. (6)

On average, ConBug reduces the number of formula cells that need to be man-
ually inspected by 57.5 %. This result indicates that ConBug has the potential
to aid users while debugging faulty spreadsheets. The reduction of the number of
cells in the diagnostic report returned to the user is an improvement over other ap-
proaches, such as spectrum-based fault localization, because it recudes the amount
of information (diagnosis candidates) shown to the user. The column ‘Constraints’
indicates the number of constraints contained in the CSP. An observation is that
there is not exist a correlation between the number of formula cells and the number
of constraints. Two reasons for this observation are:

(1) A complex formula is translated into several constraints.
(2) Not all formula cells are translated into constraints.

The column ‘Computation time’ indicates the time, in milliseconds, required to
solve the CSP. On average, the computation of all diagnoses with the lowest cardi-
nality requires 1.1 seconds. Further, we observe that the number of constraints is
not a good predictor for the required solving time. For example, Minion requires
more than 33 seconds to solve the CSP of the spreadsheet ‘cake 3 1’ consisting
of 53 constraints. In contrast, Minion requires less than one second to solve the
CSP of the spreadsheet ‘shopping bedroom1 2 3’. Hence, more than the number
of constraints, what impacts the time is the topological and formulae complexity
of the spreadsheets. The average computation time of 1.1 seconds makes ConBug

applicable as a real-time approach.
Figure 2 illustrates the reduction quality with respect to the spreadsheets eval-

uated in the Tables 1 and 2. This histogram shows that only for 10 spreadsheets
ConBug is not able to significantly reduce the number of cells that have to be
manually investigated (reduction between 0 % and 10 %). For 17 spreadsheets, the
percentage of formula cells that have to be manually investigated could be reduced
by more than 95 %. The good/poor performance is explained by the topology of
the spreadsheets: spreadsheets that split complex formulae into several cells yield
better results.

Table 3 and Figure 3 show a comparison of ConBug and spectrum-based fault
localization (SFL) [24,25] using the Ochiai coefficient. This comparison consists
of two parts: First, we compare the average maximal effort that must spend. We
define the maximal effort by the number of cells that have to be inspected at most
in order to identify the faulty cell(s). We consider the average maximal effort in
total and separately for single, double and triple faults. For all fault types, the

Using Constraints to Diagnose Faulty Spreadsheets 17

Table 1 Results of the empirical evaluation - Part 1

Spreadsheet
Formula Cells in Reduction

Constraints
Time

cells diagnoses (%) (ms)

amortization 1 1 16 15 6.3 16 62
amortization 2 1 16 13 18.8 16 52
amortization 2 2 16 13 18.8 16 51
amortization 2 3 16 10 37.5 16 66
area 2 1 81 30 63.0 17 1047
area 2 2 81 28 65.4 22 947
area 2 3 81 59 27.2 22 1033
arithmetics00 1 1 8 7 12.5 22 105
arithmetics00 1 3 8 5 37.5 23 87
arithmetics00 2 2 8 8 0.0 23 174
arithmetics00 2 3 8 4 50.0 28 110
arithmetics00 3 1 8 8 0.0 28 169
arithmetics01 1 1 11 1 90.9 28 9
arithmetics01 1 2 11 4 63.6 34 10
arithmetics01 1 3 11 11 0.0 34 586
arithmetics02 2 2 16 5 68.8 34 343
arithmetics02 2 3 16 14 12.5 34 4001
arithmetics02 3 1 16 13 18.8 34 1936
austrian league 1 1 32 1 96.9 34 196
austrian league 1 2 32 1 96.9 34 280
austrian league 2 1 32 7 78.1 34 734
austrian league 2 2 32 1 96.9 34 215
austrian league 2 3 32 1 96.9 34 162
austrian league 3 1 32 24 25.0 36 1929
birthdays 1 1 39 9 76.9 42 194
birthdays 1 3 39 1 97.4 43 81
birthdays 3 1 39 4 89.7 52 163
cake 1 1 69 44 36.2 52 7350
cake 2 1 69 43 37.7 52 7315
cake 2 2 69 20 71.0 52 7011
cake 2 3 69 17 75.4 53 6913
cake 3 1 69 35 49.3 53 33123
computer shopping 1 1 36 1 97.2 53 138
computer shopping 1 2 36 1 97.2 68 138
computer shopping 2 1 36 2 94.4 68 261
computer shopping 2 2 36 1 97.2 68 140
computer shopping 2 3 36 34 5.6 69 628
computer shopping 3 1 36 1 97.2 69 142
conditionals01 1 1 11 2 81.8 69 24
conditionals01 1 2 11 7 36.4 69 32
conditionals01 2 1 11 4 63.6 87 29
conditionals01 2 2 11 5 54.5 87 33
conditionals01 2 3 11 7 36.4 87 34
conditionals02 1 1 7 3 57.1 101 50
conditionals02 1 3 7 3 57.1 101 79
conditionals02 2 1 7 3 57.1 101 76
conditionals02 2 2 7 3 57.1 101 77
conditionals02 2 3 7 4 42.9 102 71
conditionals02 3 1 7 3 57.1 102 68
dice rolling 1 1 21 6 71.4 159 205
dice rolling 2 1 21 7 66.7 159 231
dice rolling 2 2 21 6 71.4 159 232
dice rolling 2 3 21 6 71.4 159 205
dice rolling 3 1 21 7 66.7 160 231

18 Rui Abreu et al.

Table 2 Results of the empirical evaluation - Part 2

Spreadsheet
Formula Cells in Reduction

Constraints
Time

cells diagnoses (%) (ms)

matrix 1 1 13 6 53.8 160 37
matrix 1 2 13 7 46.2 160 35
matrix 2 1 13 1 92.3 161 31
matrix 2 2 13 1 92.3 188 31
matrix 2 3 13 6 53.8 190 31
matrix 3 1 13 1 92.3 195 32
prom calculator 1 1 14 13 7.1 195 23
prom calculator 2 1 14 13 7.1 195 88
prom calculator 2 2 14 13 7.1 195 18
prom calculator 2 3 14 13 7.1 195 16
prom calculator 3 1 14 10 28.6 196 21
shares 1 1 39 1 97.4 207 455
shares 1 2 39 1 97.4 207 388
shares 1 3 39 1 97.4 207 402
shares 1 4 39 1 97.4 207 328
shares 1 5 39 1 97.4 209 387
shares 2 2 39 2 94.9 210 1190
shares 2 3 39 18 53.8 210 2456
shopping bedroom1 1 2 32 15 53.1 211 154
shopping bedroom1 2 1 32 15 53.1 267 163
shopping bedroom1 2 2 32 15 53.1 268 99
shopping bedroom1 2 3 32 16 50.0 302 93
shopping bedroom1 3 1 32 31 3.1 302 803
shopping bedroom2 1 2 64 1 98.4 302 246

Average 27.5 9.9 57.5 107.6 1,116.7
Median 21.0 6.0 57.1 69.0 158.0
Stdev 19.9 11.4 31.9 82.6 4,016.3

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

N
u

m
b

e
r

o
f

s
p

re
a

d
s
h

e
e

ts

Reduction in %

Fig. 2 Reduction histogram for the faults spreadsheets from Tables 1 and 2

Using Constraints to Diagnose Faulty Spreadsheets 19

effort is smaller when using ConBug. On average over all spreadsheets, the faulty
cell(s) can be found when investigating 9.9 cells at most when using ConBug and
13.5 cells when using SFL. Second, we investigate how often ConBug is better
than SFL and vice versa. ConBug yields better results for 30 spreadsheets, as
shown in the dots below the identity line in Figure 3, while SFL yields better
results for 12 spreadsheets. For 36 spreadsheets, ConBug and SFL yield results of
the same size, and are shown in Figure 3 on top of the identity line.

Table 3 Comparison of ConBug and SFL with respect to (1) the average maximal effort
until a fault is localized and (2) how often one approach is better than the other.

Fault type
Average effort Number of better rankings

SFL ConBug SFL ConBug equal

Single 7.6 6.0 2 8 18
Double 18.4 12.0 6 17 16
Triple 13.5 12.5 4 5 2

Average / Total 13.8 9.9 12 30 36

 1

 76

 1 76

C
o
n
b
u
g
's

 E
o
rt

SFL's E ort

Single Faults
Double Faults

Triple Faults

Fig. 3 ConBug vs. SFL’s Effort

There exist two other approaches that deal with debugging of spreadsheets:
GoalDebug [2] and the work of Jannach and Engler [26]. Unfortunately, it is not
possible to compare ConBug with these approaches for the following reasons:
(1) Neither the tool GoalDebug nor the spreadsheets used to evaluate GoalDebug
are available [5]. (2) The approach of Jannach and Engler requires more informa-
tion about the spreadsheets, as in contrast to our work, they rely on more test
cases. For comparing their work with ConBug, one would have to create more test

20 Rui Abreu et al.

cases. As the performance of their approach highly depends on the quality of the
test cases and there is no spreadsheet corpus available that contains more than one
test case, we refrain from comparing to them. Despite the fact that there are tech-
niques to automatically generate test cases for spreadsheets, e.g., [17], we argue
that end-users may not have more data than the one inserted into the spreadsheet.
This scenario hinders the practical applicability of the approach, when compared
to the one proposed in this paper.

5.4 Threats to Validity

A threat to external validity is that the underlying constraint solver poses a type-
related limitation: the prototype only accepts spreadsheets containing integers.
Real-world spreadsheets contain other data types such as real-valued or float data
types. Therefore, it is possible that the results for a different set of spreadsheets
with different characteristics may produce different results. However, this is a
technological limitation of the used solver (we considered it because the authors
were familiar with it), but it could be replaced by other solvers to handle other
data types.

The construct validity threat is that the performance of ConBug was evaluated
using a metric that measures diagnostic effort in terms of the number of cells
that one needs to inspect (i.e., that have been indicted by ConBug). This metric
assumes that only those cells are inspected. In practice, that may not be the case
as other cells might be inspected because they are related to indicted cells.

The internal validity threat is that eventual faults in the implementation of
ConBug or in the underlying constraint solver MINION may invalidate the results.
To mitigate this threat, we have not only thoroughly tested our scripts but also
manually checked a large set of results.

6 Related Work

The work presented in this paper is based on model-based diagnosis [34], namely
its application to (semi-)automatic debugging (e.g., [10]). In contrast to previous
work, the work presented in this paper does not use logic-based models of programs
but, instead, a constraint representation and a general constraint solver. A similar
approach to the one of this paper has been presented in [43] to aid debuggers in
pinpointing software failures.

Jannach and Engler [26] also presented a model-based approach for the de-
bugging of spreadsheets. Their approach which is part of the Exquiste framework
is based on an extended hitting-set algorithm and user-specified or historical test
cases and assertions, to calculate possible error causes in spreadsheets. While the
general idea of their approach is similar to ConBug, the technical realization is
slightly different: (1) While Jannanch and Engler use a Hitting-Set Algorithm [34],
we encode the reasoning about the correctness of individual formulas directly into
the constraint representation. Studies [29] have shown that the latter approach
yields performance gains. (2) We rely on a single test case while Jannach and
Engler require several test cases for their approach.

Using Constraints to Diagnose Faulty Spreadsheets 21

GoalDebug [2] is a spreadsheet debugger for end users. Whenever the computed
output of a cell is incorrect, the user can supply an expected value for a cell, which
is employed by the system to generate a list of change suggestions for formulae
that, when applied, would result in the user-specified output. In [2], a thorough
evaluation of the tool is stated. GoalDebug employs a distinct constraint-based
approach from the one presented in this paper. Unlike ConBug, GoalDebug relies
upon a set of possible, pre-defined change (repair) inference rules. The fault local-
ization approach is done by mutating the spreadsheet using the set of rules and
ascertain that the user expectations are met. Unless the set of changes is general
enough, GoalDebug does not generalize as much as ConBug. ConBug, is more
general in the sense that it delegates the constraint satisfaction problem to a gen-
eral purpose, off-the-shelf constraint solver. Moreover, relying on the pre-defined
set of repairs, it suggests a list of changes to fix the spreadsheet (which is not
currently supported by ConBug).

Another line of research in the spreadsheet domain focuses on trace-based
fault localization. Reichwein et al. [33,37] adapted the concept of program slicing
to spreadsheets. In their approach, they rely on user-specified information about
correct and incorrect cell values. Cells that contribute to erroneous cell values are
more likely to be faulty then cells contributing to correct cell values. A similar
technique was proposed by Ayalew and Mittermeir [12]. Their data-flow driven
approach prioritizes cells based on the number of incorrect successor cells and pre-
decessor cells. While the previously mentioned techniques rely on the principles of
spectrum-based fault localization, Hofer et al. [24,25] were the first who explicitly
adapted the concepts of spectrum-based fault localization from the software to the
spreadsheet domain.

Spreadsheet testing is closely related to debugging. In the WYSIWYT system
users can indicate incorrect output values by placing a faulty token in the cell.
Similarly, they can indicate that the value in a cell is correct by placing a correct
token [35]. When a user indicates one or more program failures during this testing
process, fault localization techniques [36] direct the user’s attention to the possible
faulty cells. Similar to our approach, WYSIWYT provides no help with regard
to how to change erroneous formulae. In contrast to ConBug, WYSIWYT also
collects user input about correct cell values and employs this information in the
fault localization analysis.

There are several spreadsheet analysis tools that try to reason about the units
of cells to find inconsistencies in formulae, e.g., [1,11]. The tools differ in the rules
they employ and in the degree to which they require users to provide additional
input. Most of these approaches require the user the annotate the spreadsheet cells
with additional information, except the UCheck system [3], which can perform unit
analysis automatically by exploiting techniques for automated header inference [1].
However, none of these approaches provide any further help to the user to correct
the errors once they are detected. Other approaches aimed at minimizing the
occurrence of errors in spreadsheets include code inspection [31] and adoption of
better spreadsheet design practices [16]. However, none of these approaches focus
on debugging of spreadsheets.

22 Rui Abreu et al.

7 Conclusions and Future Work

In this paper, we propose ConBug, a constraint-based approach for automatically
debugging spreadsheets. The approach takes as input a spreadsheet and the set of
user expectations (specifying the input and output cells and their expected values),
and produces as output a set of diagnosis candidates. Diagnosis candidates are
explanations for the misbehavior in user expectations. Our empirical investigation
shows that ConBug is light-weight and efficient.

This line of research raises a number of research questions that require further
investigation. First and foremost, our intention is to release the approach in a
plug-in for spreadsheet applications. As such, and keeping in mind that the target
audience are end-users, we plan the devise a natural, intuitive way to visually
display the diagnostic information. Second, we plan to combine this work with
mutation of spreadsheets [4] to be able to give advice to users on how to fix
the buggy spreadsheet. Third, we plan to study the applicability and efficiency
of other, more light-weight techniques to debug spreadsheets. In particular, we
will study the complexity-efficiency trade-off using spectrum-based reasoning for
fault localization [10], which is amongst the best approaches for software fault
localization. Fourth, currently our approach is limited to the integer domain, we
plan to extend our approach to be able to handle, e.g., strings and floats.

Acknowledgment

This work was supported by the Foundation for Science and Technology (FCT), of the Por-

tuguese Ministry of Science, Technology, and Higher Education (MCTES), under Project

PTDC/EIA-CCO/108613/2008, and the competence network Softnet Austria II (www.soft-

net.at, COMET K-Projekt) funded by the Austrian Federal Ministry of Economy, Family and

Youth (bmwfj), the province of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH.

(SFG), and the city of Vienna in terms of the center for innovation and technology (ZIT).

References

1. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial anal-
yses. In: Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric
Computing, VLHCC ’04, pp. 165–172. IEEE Computer Society, Washington, DC, USA
(2004). DOI 10.1109/VLHCC.2004.29. URL http://dx.doi.org/10.1109/VLHCC.2004.29

2. Abraham, R., Erwig, M.: Goaldebug: A spreadsheet debugger for end users. In: Proceed-
ings of the 29th international conference on Software Engineering, ICSE ’07, pp. 251–260.
IEEE Computer Society, Washington, DC, USA (2007). DOI 10.1109/ICSE.2007.39. URL
http://dx.doi.org/10.1109/ICSE.2007.39

3. Abraham, R., Erwig, M.: Ucheck: A spreadsheet type checker for end users. Journal of
Visual Languages and Computing 18, 71–95 (2007). DOI 10.1016/j.jvlc.2006.06.001

4. Abraham, R., Erwig, M.: Mutation operators for spreadsheets. IEEE Transactions on
Software Engineering 35(1), 94–108 (2009). DOI http://doi.ieeecomputersociety.org/10.
1109/TSE.2008.73

5. Abraham, R., Erwig, M.: Personal communication (2013)
6. Abreu, R., Mayer, W., Stumptner, M., van Gemund, A.J.C.: Refining spectrum-based fault

localization rankings. In: Proceedings of the 2009 ACM symposium on Applied Computing,
SAC ’09, pp. 409–414. ACM, New York, NY, USA (2009). DOI 10.1145/1529282.1529374.
URL http://doi.acm.org/10.1145/1529282.1529374

Using Constraints to Diagnose Faulty Spreadsheets 23

7. Abreu, R., Riboira, A., Wotawa, F.: Constraint-based debugging of spreadsheets. In:
Ibero-American Conference on Software Engineering (CibSE’12), pp. 1 – 14 (2012)

8. Abreu, R., Riboira, A., Wotawa, F.: Debugging of spreadsheets: A CSP-based approach.
In: Third IEEE International Workshop on Program Debugging (2012)

9. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based fault
localization. In: Proceedings of the Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION, TAICPART-MUTATION ’07, pp. 89–98. IEEE
Computer Society, Washington, DC, USA (2007). URL http://dl.acm.org/citation.
cfm?id=1308173.1308264

10. Abreu, R., Zoeteweij, P., Gemund, A.J.C.v.: Spectrum-based multiple fault localization.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, pp. 88–99. IEEE Computer Society, Washington, DC, USA (2009).
DOI 10.1109/ASE.2009.25. URL http://dx.doi.org/10.1109/ASE.2009.25

11. Ahmad, Y., Antoniu, T., Goldwater, S., Krishnamurthi, S.: A type system for statically
detecting spreadsheet errors. In: 18th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2003), 6-10 October 2003, Montreal, Canada, pp. 174–183. IEEE
Computer Society (2003). DOI http://csdl.computer.org/comp/proceedings/ase/2003/
2035/00/20350174abs.htm

12. Ayalew, Y., Mittermeir, R.: Spreadsheet debugging. Bilding Better Business Spreadsheets -
from the ad-hoc to the quality-engineered. Proceedings of EuSpRIG 2003, Dublin, Ireland,
July 24th-25th 2003 pp. 67–79 (2003)

13. Ceballos, R., Gasca, R.M., Borrego, D.: Constraint satisfaction techniques for diagnosing
errors in design by contract software. SIGSOFT Softw. Eng. Notes 31(2) (2005). DOI
10.1145/1108768.1123070. URL http://doi.acm.org/10.1145/1108768.1123070

14. Chadwick, D., Knight, B., Rajalingham, K.: Quality control in spreadsheets: A visual
approach using color codings to reduce errors in formulae. Software Quality Control 9(2),
133–143 (2001). DOI 10.1023/A:1016631003750. URL http://dx.doi.org/10.1023/A:
1016631003750

15. Collavizza, H., Rueher, M.: Exploring different constraint-based modelings for program
verification. In: Proceedings of the 13th international conference on Principles and practice
of constraint programming, CP’07, pp. 49–63. Springer-Verlag, Berlin, Heidelberg (2007).
URL http://dl.acm.org/citation.cfm?id=1771668.1771676

16. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from spread-
sheets. In: Proceedings of the 2010 IEEE Symposium on Visual Languages and Human-
Centric Computing, VLHCC ’10, pp. 93–100. IEEE Computer Society, Washington, DC,
USA (2010). DOI 10.1109/VLHCC.2010.22. URL http://dx.doi.org/10.1109/VLHCC.
2010.22

17. Fisher, M., Cao, M., Rothermel, G., Cook, C.R., Burnett, M.M.: Automated test case
generation for spreadsheets. In: Software Engineering, 2002. ICSE 2002. Proceedings of
the 24rd International Conference on, pp. 141–151. IEEE (2002)

18. Fisher, M., Rothermel, G.: The EUSES Spreadsheet Corpus: A shared resource for sup-
porting experimentation with spreadsheet dependability mechanisms. SIGSOFT Softw.
Eng. Notes 30(4), 1–5 (2005)

19. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast, scalable, constraint solver. In:
Proceedings of the 2006 conference on ECAI 2006: 17th European Conference on Ar-
tificial Intelligence August 29 – September 1, 2006, Riva del Garda, Italy, pp. 98–
102. IOS Press, Amsterdam, The Netherlands, The Netherlands (2006). URL http:
//dl.acm.org/citation.cfm?id=1567016.1567043

20. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using constraint
solving techniques. In: Proceedings of the 1998 ACM SIGSOFT international symposium
on Software testing and analysis, ISSTA ’98, pp. 53–62. ACM, New York, NY, USA (1998).
DOI 10.1145/271771.271790. URL http://doi.acm.org/10.1145/271771.271790

21. Gotlieb, A., Botella, B., Rueher, M.: A clp framework for computing structural test data.
In: Proceedings of the First International Conference on Computational Logic, CL ’00, pp.
399–413. Springer-Verlag, London, UK, UK (2000). URL http://dl.acm.org/citation.
cfm?id=647482.728291

22. Hermans, F., Pinzger, M., van Deursen, A.: Supporting professional spreadsheet users by
generating leveled dataflow diagrams. In: Proceeding of the 33rd international conference
on Software engineering, pp. 451–460. ACM (2011)

23. Hermans, F., Sedee, B., Pinzger, M., van Deursen, A., Cheng, B., Pohl, K.: Data clone de-
tection and visualization in spreadsheets. In: Proceedings of the International Conference
on Software Engineering (ICSE). ACM, IEEE Computer Society (2013)

24 Rui Abreu et al.

24. Hofer, B., Perez, A., Abreu, R., Wotawa, F.: On the empirical evaluation of similarity
coefficients for spreadsheets fault localization. Automated Software Engineering pp. 1–28
(2014)

25. Hofer, B., Riboira, A., Wotawa, F., Abreu, R., Getzner, E.: On the empirical evaluation of
fault localization techniques for spreadsheets. In: V. Cortellessa, D. Varró (eds.) Funda-
mental Approaches to Software Engineering - 16th International Conference, FASE 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013., Lecture Notes in Computer Science, vol. 7793, pp. 68–82. Springer (2013)

26. Jannach, D., Engler, U.: Toward model-based debugging of spreadsheet programs. In:
Proceedings of the 9th Joint Conference on Knowledge-Based Software Engineering,
JCKBSE’10, pp. 252–264. Kaunas, Lithuania (2010)

27. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi,
C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M.,
Wiedenbeck, S.: The state of the art in end-user software engineering. ACM Comput.
Surv. 43(3), 21:1–21:44 (2011). DOI 10.1145/1922649.1922658. URL http://doi.acm.
org/10.1145/1922649.1922658

28. Mayer, W.: Static and hybrid analysis in model-based debugging. Ph.D. thesis, School of
Computer and Information Science, University of South Australia (2007)

29. Nica, I., Pill, I., Quaritsch, T., Wotawa, F.: The route to success - a performance compar-
ison of diagnosis algorithms. In: F. Rossi (ed.) IJCAI. IJCAI/AAAI (2013)

30. Nica, M., Nica, S., Wotawa, F.: On the use of mutations and testing for debugging. Software
: Practice & Experience (2012)

31. Panko, R.R.: Applying code inspection to spreadsheet testing. Journal of Management
Information Systems 16, 159–176 (1999)

32. Peischl, B., Wotawa, F.: Automated source-level error localization in hardware designs.
IEEE Design Test of Computers 23, 8–19 (2006). DOI 10.1109/MDT.2006.5

33. Reichwein, J., Rothermel, G., Burnett, M.: Slicing Spreadsheets: An Integrated Method-
ology for Spreadsheet Testing and Debugging. In: Proceedings of the 2nd Conference on
Domain-Specific Languages (DSL 1999), pp. 25–38. Austin, Texas (1999)

34. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95
(1987)

35. Rothermel, K.J., Cook, C.R., Burnett, M.M., Schonfeld, J., Green, T.R.G., Rothermel, G.:
WYSIWYT testing in the spreadsheet paradigm: an empirical evaluation. In: Proceedings
of the 22nd international conference on Software engineering, ICSE ’00, pp. 230–239. ACM,
New York, NY, USA (2000). DOI 10.1145/337180.337206. URL http://doi.acm.org/10.
1145/337180.337206

36. Ruthruff, J., Creswick, E., Burnett, M., Cook, C., Prabhakararao, S., Fisher II, M., Main,
M.: End-user software visualizations for fault localization. In: Proceedings of the 2003
ACM symposium on Software visualization, SoftVis ’03, pp. 123–132. ACM, New York,
NY, USA (2003). DOI 10.1145/774833.774851. URL http://doi.acm.org/10.1145/
774833.774851

37. Ruthruff, J.R., Prabhakararao, S., Reichwein, J., Cook, C., Creswick, E., Burnett, M.:
Interactive, Visual Fault Localization Support for End-User Programmers. Journal of
Visual Languages & Computing 16(1-2), 3–40 (2005)

38. Tukiainen, M.: Uncovering effects of programming paradigms: Errors in two spreadsheet
systems. In: Proc. PPIG’00, pp. 247–266 (2000)

39. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using
genetic programming. In: Proceedings of the 31st International Conference on Software En-
gineering, ICSE ’09, pp. 364–374. IEEE Computer Society, Washington, DC, USA (2009).
DOI 10.1109/ICSE.2009.5070536. URL http://dx.doi.org/10.1109/ICSE.2009.5070536

40. Woods, S., Yang, Q.: Program understanding as constraint satisfaction: Representation
and reasoning techniques. Automated Software Engg. 5(2), 147–181 (1998). DOI 10.
1023/A:1008655230736. URL http://dx.doi.org/10.1023/A:1008655230736

41. Wotawa, F., Nica, M.: On the compilation of programs into their equivalent constraint
representation. Informatica Journal 32, 359–371 (2008)

42. Wotawa, F., Nica, M., Moraru, I.D.: Automated debugging based on a constraint model
of the program and a test case. The journal of logic and algebraic programming 81(4)
(2012)

43. Wotawa, F., Weber, J., Nica, M., Ceballos, R.: On the complexity of program debugging
using constraints for modeling the program’s syntax and semantics. In: Proceedings of
the Current topics in artificial intelligence, and 13th conference on Spanish association for

Using Constraints to Diagnose Faulty Spreadsheets 25

artificial intelligence, CAEPIA’09, pp. 22–31. Springer-Verlag, Berlin, Heidelberg (2010).
URL http://dl.acm.org/citation.cfm?id=1893496.1893500

