Partially Monotonic Learning for Neural
Networks

Joana Trindade!™” | Jodo Vinagre!»2® | Kelwin Fernandes? ™ | Nuno Paiva?,

and Alipio Jorge!+2

! Faculdade de Ciéncias, Universidade do Porto, Portugal
joana_trindade_55@hotmail.com, amjorge@fc.up.pt
2 LIAAD - INESC TEC, Porto, Portugal
jnsilva@inesctec.pt
3 NILG.AI, Porto, Portugal
kelwin@nilg.ai
4 NOS Comunicacoes, S.A, Portugal
nuno.paiva@nos.pt

Abstract. In the past decade, we have witnessed the widespread adop-
tion of Deep Neural Networks (DNNs) in several Machine Learning tasks.
However, in many critical domains, such as healthcare, finance, or law
enforcement, transparency is crucial. In particular, the lack of ability to
conform with prior knowledge greatly affects the trustworthiness of pre-
dictive models. This paper contributes to the trustworthiness of DNNs by
promoting monotonicity. We develop a multi-layer learning architecture
that handles a subset of features in a dataset that, according to prior
knowledge, have a monotonic relation with the response variable. We use
two alternative approaches: (i) imposing constraints on the model’s pa-
rameters, and (ii) applying an additional component to the loss function
that penalises non-monotonic gradients. Our method is evaluated on clas-
sification and regression tasks using two datasets. Our model is able to
conform to known monotonic relations, improving trustworthiness in de-
cision making, while simultaneously maintaining small and controllable
degradation in predictive ability.

Keywords: Interpretability - Deep neural networks - Monotonicity

1 Introduction

In the past few years, the Artificial Intelligence (AI) research community has
identified the problem of trustworthiness in Machine Learning (ML) models.
Black-box models, such as Deep Neural Networks (DNN) and ensemble models,
can achieve high predictive performance, but the complexity of their structure
and internal computations are hard to interpret and explain. As a response
to this problem, multiple lines of research on interpretability, mostly under the
explainable AT (XAI) has become central. One obvious way to boost trustworthi-
ness is to use intrinsically more interpretable models, such as rule- or tree-based

https://orcid.org/0000-0002-1957-5221
https://orcid.org/0000-0001-6219-3977
https://orcid.org/0000-0002-6838-9484
https://orcid.org/0000-0002-5475-1382

2 J. Trindade et al.

models. However, black-box models consistently outperform simpler methods in
several tasks (e.g., computer vision, language models, and many standard tabu-
lar datasets). Besides, simpler models are limited in some level of interpretation
and it is not guaranteed that these models always improve interpretability [7].
There are two paths to improve the interpretability of ML models [4]: incorpo-
rating prior knowledge in the learning process, also known as in-model methods;
or using post-hoc methods that aim to provide intuitive explanations based on
the output generated by the model. The post-hoc approach is the most common
for interpreting black-box models. However, according to Rudin [I1], the use of
post-hoc methods perpetuates a bad practice, which can cause damage to society
in high-risk scenarios and, therefore, the in-model approach is more adequate to
ensure trustworthy AI [I4]. The in-model approach imposes constraints based
on domain knowledge, using different types of reasoning: rules, cases, sparsity, or
monotonicity. The best technique, or combination of techniques, depends on the
application and all of them have some form of trade-off with predictive ability.
In this work, we address interpretability in DNNs by promoting monotonic-
ity, while minimising degradation of predictive ability. We know that monotonic
relations (i.e., only vary in one direction) between independent variables and a
learned objective function exist in many ML problems, particularly in business
contexts. For example, we know that increasing the price of some product or ser-
vice, without any other change, will very likely reduce sales. Doctors know that
higher bad cholesterol levels increase the risk of stroke. However, ML algorithms
tend to create non-linear, non-monotonic, and even non-continuous functions to
approximate the relations between variables. Even if ML models that do not con-
sider monotonic properties are accurate in most predictions, often provide others
that are quite obviously wrong. In critical applications, the consequences can be
disastrous. By imposing monotonicity, we can leverage knowledge to obtains
more accurate, robust, and trustworthy ML models of the data considered [3].
Our main contributions are the following:

— We propose a generally applicable learning framework to train semi-monotonic
neural networks with a loss function that induces monotonicity;

— We conduct an evaluation of existing approaches to monotonic neural net-
works on two distinct problems: classification and regression.

The remainder of the paper is structured as follows: Section [2| presents re-
lated work. Section [3] focuses on fundamental concepts and Section [4] describes
the proposed approach. Section [f] provides details about the datasets, our exper-
imental methodology, the obtained results, and discusses these results. Finally,
Section [6] concludes this work and addresses future research directions.

2 Related Work

According to [3], one of the taxonomies for monotonic algorithms is based on the
generation of predictive models satisfying the monotonic constraints partially or
totally. There are several families of predictors depending on the type of model

Partially Monotonic Learning for Neural Networks 3

they build, for instance, decision trees or rule-based models, ensembles, support
vector machines, and DNN. In the latter, we can find two approaches in the lit-
erature to impose monotonicity: (1) by imposing hard constraints on the model’s
structure and/or parameters, or (2) by applying soft constraints in the training
process, e.g. by penalising non-monotonic behaviour. Structural modification in
DNNs was first proposed by Archer and Wang [I], who used positive weight
constraints. Sill [I2] introduced these constraints into a three-layer neural net-
work, performing maximum and minimum operations on groups of hyperplanes.
The signals of the hyperplane weights are limited to simulate total monotonicity.
Daniels and Velikova [5] extended some results obtained on MIN-MAX networks
[12], using partially monotonic functions in low-dimension spaces. Zhu et al. [16]
proposed a generalisation of extreme learning machines for monotonic classifi-
cation. The proposal involves a quadratic programming problem. You et al. [15]
focused on the challenge of learning partially monotonic flexible functions. For
this, they developed Deep Lattice Networks, that alternate between three types
of layers: linear embeddings, calibrators, and lattice ensembles. Silva et al. [13]
developed an interpretable DNN able to generate explanations in different styles
and granularities, according to the preferences of the decision-maker. Recently,
Nguyen et al. [9] developed a DNN architecture called MonoNet. It learns high-
level arbitrary features that are monotonically related to the target variable. For
each feature, MonoNet learns a score of importance obtained by exploiting “local
explainability”. Marquez-Neila et al. [8] compare soft with hard constraints and
argue that soft constraints perform better. Pathak et al. [I0] formulate the loss
function to optimise convolutional networks with arbitrary linear constraints on
the structured output space of image pixel labels. Gupta et al. [6] introduce a
gradient-based point-wise loss function to impose partial monotonicity on any
DNN without changing the network architecture.

Our approach combines the model architecture similar to [I3] to promote
partial monotonicity, and a learning method to train semi-monotonic neural
networks, based on [6]. We further develop this approach for dealing with arbi-
trary scales when choosing the desired trade-off. We also compare hard and soft
constraints in real-world datasets with partially monotonic feature spaces.

3 Monotonicity

As in [9], we assume that f is a predictor that operates on vectors x € R™ of
x = {1, %2, ..., & } features in the dataset such that y = f(x). The monotonicity
analysis for a given independent feature x; is easily performed: we generate a new
vector x’ by introducing a disturbance 7, where =, = z; + A and A > 0, in the
independent feature’s domain, and fixing the remaining independent features.
We observe its behaviour with the target feature.

Definition 1. A function f : R™ — R is called monotonically increasing
w.r.t. x; if ©; < @ implies f(x) < (o). Equivalently, if x; < x}, it is required
to check, for alli={1,...,n}, the (univariate) constraint f|; : x; — y:

f(@1, oy e Ty ooy) < f(T1, T2y ooy Ty vy) (1)

4 J. Trindade et al.

by fixing all the components except the x;, in the usual sense of monotonicity
for univariate functions.

The definition is similar for monotonically decreasing functions. If the func-
tion does not respect the conditions, then it is called non-monotonic function.
According to [2], there are two main classes to distinguish monotonic problems.
The contrast is based on the set of independent features on which the function f
depends monotonically. Thus, monotonicity can be classified as total or partial.

Total Monotonicity. The function f depends monotonically on all independent
features of the dataset. We assume that y in the dataset is generated by:

Y= f(CC) + € (2)
where [is a monotonic function and € is a random error.

The total monotonicity constraint of f on x is defined according to Defini-
tion [1} for all independent features z;, for any 1.

Partial Monotonicity. The function f depends monotonically on a subset of
features of the dataset. In partially monotonic problems, the total set of features x
s separated into €™ and x" subsets to represent, respectively, the monotonic and
non-monotonic feature subsets. Therefore, the dataset D = (™, x",y), where
x= (2™, x"). We assume that the target y in the dataset is generated by:

Yy= f(mm7mn)+67 (3)
where [is a monotonic function in €™ and € is a random error.

The partial monotonicity constraint of f on x is defined according to Def-
inition [I} for independent features in x™. Note that although f is monotonic,
the data generated by Eq. and are not necessarily monotonic due to the
random effect of e.

4 Partially Monotonic Learning

In most real-world datasets, the target feature depends monotonically on a sub-
set of features, but not on all of them. However, fully monotonic models can-
not model non-monotonic features. To enable partial monotonicity, we build an
architecture based on the proposal by [I3]. This architecture consists of two
independent neuronal subnets that process separately the monotonic and non-
monotonic features. The monotonicity constraints are applied on the monotonic
stream in which, without loss of generality, we assume that the probability of ob-
serving the positive class increases with the the value of the monotonic features.
The sign of the input monotonic features that have a monotonically decreasing
behaviour is inverted to admit monotonically increasing relations. Then, both
subnets are concatenated and processed again by a sequence dense layers with
monotonicity constraints (Fig. [1)). The unconstrained subnet maps its feature
space into a latent monotonic space, requiring additional parameters to learn
complex patterns.

Partially Monotonic Learning for Neural Networks 5

‘l Monotonic input ‘ ‘lUnoonstlained inpu‘t“
. J U . J

‘ Monotonic DNN ’ Unconstrained DNN

ri\
)
N

Monotonic DNN

| Output |

Fig. 1. Proposed architecture. Schema based on [13].

4.1 Loss Function

Using the architecture in Fig. [l we can easily model monotonicity using hard
constraints. Our proposal is an approach that uses this architecture with soft-
constraints, using a modified loss function that penalises non-monotonic be-
haviour.

As in [6], we assume the general configuration of a supervised learning prob-
lem with a training set with k instances composed by D = (x,y), where x =
(x™,x™). The label could either be real-valued, y € R, or binary, y € {0,1}.
The objective is to determine an estimator function f which is differentiable
and monotonic w.r.t. x™ = x[M], where M is a subset of monotonic features
defined by M C D in x € RP. We only consider increasing monotonicity. Thus,
the objective function £ combines a monotonic loss component, L£,,,n0, and a
standard empirical loss component, £y . Computed on each monotonic feature
", for i = {1, ..., k}, Eq. describes a objective function through the sum of
these components in the following form:

k
Ep-s-(Zma:r(O,V~Mf(x;";0)>>+(lp)-ENN. (4)

i=1

Lmono

The hyperparameter p is a monotonicity weight, s is a scale adjustment factor,
V- is divergence w.r.t feature set x[M] i.e., >, %Vj € M, 6 are trainable
parameters and Ly y refers to the empirical risk minimisation (ERM) for neural
networks.

During each gradient descent step, the maximum of monotonic component
penalises only trends of monotonically decreasing gradients. In this case, the
minus sign of a negative partial derivative of f(zI";0) w.r.t. the monotonic fea-
tures of x[M] results in a positive value, indicating that the maximum between
zero and that value, results a gradient penalty. As for gradients that obey mono-
tonicity, the maximum in the first component is zero and, hence, there are no

penalties on gradients.

6 J. Trindade et al.

Hyperparameter p is a simple weight factor to control the relative contribu-
tion of each of the loss components. With p = 1, the model adjusts for mono-
tonicity only, whereas with p = 0, the model does not care about monotonic
relations at all.

The scale adjustment factor s aims to balance between the scales of the two
optimisation components. A dominant loss component induces its dominance
through gradients with large magnitudes, which prevent the harmonisation of
the training stage, making the definition of p harder. We propose multiplying
the magnitude order of the majority component by the minority component. To
do this, we calculate the quotient r between the averages of the loss components
Lyny and L, on0 in each epoch. The result r denotes the amount of necessary
adjustment to balance the components. To prevent both tasks from making
exactly equal contributions — that would artificially flatten differences through
successive epochs —, we assume the quotient magnitude order r as a re-scaling
factor s. We calculate s using 10 to the power of |logy(r)]. All the necessary
quantities above are calculated according to (5]).

NN 5 — qgllsn™ | (5)

mmono

myN = LNN Mmono = Lmono r=

5 Evaluation

To evaluate our proposal, we assess the effect of monotonic component on the
predictive ability of classification and regression problems. The first problem
arises from the recommendation of service upgrades to customers of a large
telecom service provider. The problem consists of predicting whether a specific
customer will accept or refuse a personalised upgrade offer. We refer to this
dataset as Dataset 1. The second problem consists of predicting the price sales
of used cars. We refer to this dataset as Dataset 2.

In both problems, monotonic features are previously known. In the classifi-
cation case, we know, for instance, that between two offers A and B with the
exact same conditions, but where the price of A is higher than the price of B,
it is very unlikely that the customer will prefer A over B. The same applies to
other not so obvious features, such as internet speed or call limits. In the car
price prediction task, features such as mileage and cylinders are also likely to
follow a monotonic relation with the target feature (i.e., sale price).

5.1 Datasets

Table [summarises the details of the two datasets.

For the first task, we use a proprietary dataset, collected between January
8" and November 30", 2018, which contains the history of offers made to cus-
tomers, as well as whether the customer accepted the offer. Each transaction
contains the features of the current subscription, as well as the features of the
offered upgrade, plus some previously engineered features. For the second task

Partially Monotonic Learning for Neural Networks 7

Table 1. Characteristics of each dataset.

Characteristics Dataset 1 Dataset 2
N© of instances > 574 000 401 204
N© of features 328 17

N? of monotonic features 28 6

Data accessibility Proprietary Public
Data Context Telecom operator Car sales
Task Classification Regression

— used car price prediction —, we use the available dataset from Kaggleﬂ It con-
tains information about the condition of use, manufacturer and model, year of
manufacture, odometer, and other categories.

5.2 Methodology

We randomly split both datasets into 80%—20% for training and testing, re-
spectively. The training set is further divided into 80%—-20% for training and
validation. Dataset 1 is ready to use, however, Dataset 2 requires some pre-
processing tasks. First, several categorical features, such as links to web pages,
manufacturer and model are ignored, and some other categorical features (e.g.
size, condition) are transformed into numerical features. For features with miss-
ing values, we apply the iterative imputation strategyﬁ Some noisy instances
are also manually removed, e.g., data whose year of manufacture is greater than
2020 or fictitious prices below 100 and over 300,000 dollars. The year feature —
the manufacturing year — requires special attention, given that the monotonic-
ity signal of the feature is inverted once a car becomes a ”classic”. We assume
that a vehicle becomes a classic when it turns 25 years from its manufacturing
year. We translate year into two new features to reflect this: classic_years and
modern_years, which means, respectively, the number of years after becoming
a classic and the vehicle’s age until it reaches 25 years. The reference year is
2020. Thus, the classic_years and modern_years features are monotonically
increasing and decreasing with the sale price, respectively.

For weight initialisation, we consider a uniform distribution, whose lower
limit takes non-negative values. The activation function for intermediate lay-
ers is LeakyReLU, to avoid the “Dying ReLU” problem. The loss function for
the regression problem is Mean Squared Logarithmic Error (MSLE), defined
as Lan(y,9) = &SN, (log(ys + 1) — log(§: + 1))°. Unlike MSE and MAE,
MSLE minimises the penalising effect of high differences in the predicted values.
To improve and stabilise the training of the models, we use regularisation with
dropout and batch normalisation (BN) layers. The BN layers are fundamental
for the hard constraints model because it allows to soften the constraints and
guarantee the power of representation of the objective function. The optimal

® https:/ /kaggle.com/austinreese/craigslist-carstrucks-data
5 https://scikit-learn.org/stable/modules/generated /sklearn.impute.IterativeImputer.html

8 J. Trindade et al.

set of hyperparameters for the network architecture were obtained using Grid
Search.

5.3 Monotonic Features Extraction

In Dataset 1, we define as monotonic features those referring to the recommended
service. As for Dataset 2, we select the subset of features that keep a monotonic
relation with the sales price. The features for monotonicity analysis are grouped
as followd’t

— Monotonically increasing features: condition, size, classic_years and
cylinders.

— Monotonically decreasing features: modern_years and odometer.

— Without monotonic constraints: remaining features in the dataset.

5.4 Models

We simulate the two approaches to enforce monotonicity presented in Section [I}
For the first approach, we rely on Silva et al. [13] to implement the model’s
parameter constraints. The second approach is based on Gupta et al. [6] to
change the learning process. Both models are compared against an baseline Un-
constrained Model (UM), whose model architecture is described by Fig. [1} The
monotonic models are, respectively:

— Monotonic Model (MM) with two input layers with constraints on the net-
work weights.

— Partial Monotonic Model (PMM) with two input layers with an adapted loss
function.

5.5 Monotonicity Analysis

This section presents the results of three experiments: monotonicity evaluation,
predictive performance evaluation and impact of hyperparameter p.

Monotonicity Evaluation. To evaluate features monotonicity, we present a
comparative analysis between Models UM and PMM in Figures Recall that
the only difference between these two models is the modified loss function. For
each dataset, we chose a feature from the monotonic subset to perform the
monotonicity analysis of the models: rsp_tens feature represents the difference
in ten units in the RSP (retail selling price) for Dataset 1; and classic_years
for Dataset 2.

Figures 2| and [4| show the average and standard deviation (SD) of the predic-
tions of each model, after adding a A value. It allows checking which direction the

" In most real-world problems, including the ones illustrated in this paper, domain
expertise is essential to distinguish between true and spurious monotonic relations.

Partially Monotonic Learning for Neural Networks 9

—— Average Model (PMM) - Average Model (UM)
Standard Deviation Model (PMM) Standard Deviation Model (UM)
s
S 05 60k
:2>m 0.4 50k
E% 03 40k
sE 0.2 § 30K
o o
oS 20k
% 01
5 10k | I
2 0 0. - eemmmaan 1 I
<

A Difference in predictions

Fig. 2. Relation of A in average and SD Fig. 3. Distribution of average predic-
predictions of feature rsp_tens (Dataset tions of feature rsp_tens (Dataset 1).

1).

25k 20k

20110.44

20k
160004 LTS 17258.8 15k
14940.35 s
15K 13054, 50075 16518.85
720.81 10k

10k 1199.27

Count

Avg predictions of UM and
PMM models
@
=
o
=

0 30K 40K 50k 0 ||||LI"‘|||||5|kII_I|II|II|||1|]JL]l[IIII|I|5|k||..

Difference in predictions

Fig. 4. Relation of A in average and SD
predictions of classic_years (Dataset
2).

Fig. 5. Distribution of average predic-
tions of classic_years (Dataset 2).

target feature takes as a gradual increase in the values of a given feature occurs.
Figures [3| and [5|indicate the predictions distribution of each model, after adding
a A value. In Model PMM, rsp_tens has an increasing monotonic function with
propensity (see Fig. . It means that propensity tends to increase when offer’s
RSP is discounted one or more tens. By contrast, we can see an inflexion point
(A = 2.5) in curve of Model UM. Thus, this model cannot recognise a monotonic
function with propensity. Model UM contains around 43.6% of non-monotonic
cases, while Model PMM includes only 0.02% (Fig. . In Dataset 2, both models
learn that classic_years and sales price relation is a monotonically increasing
function (Fig. . This means that the older a classic car is, the more the car is
valued. Model UM records 19% of non-monotonic examples, while Model PMM
does not cover any non-monotonic example (Fig. [5)).

Predictive Performance Evaluation. The evaluation metrics for the classi-
fication problem are AUC-ROC (Area Under the ROC Curve), AUC-PR (Area
Under the Precision-Recall Curve) and global lift (value obtained in the first

10 J. Trindade et al.

decile) — higher values are better. For regression problem, the evaluation metrics
are MSE (Mean Squared Error) and MAE (Mean Absolute Error) — lower values
are better. For Model PMM, we assumed a monotonicity weight equal to 10%.
Table [2|shows the results of the predictive performance obtained for each model,
regarding Datasets 1 and 2, described in section [5.1

Table 2. Summary of the values obtained from used evaluation metrics to each model.

Dataset 1 (classification) Dataset 2 (Regression)
AUC-ROC | Global lift | AUC-PR || MAE MSE
UM 0.849 3.70 0.689 4802 7.68 x 107
MM 0.834 3.468 0.651 4462 6.95 x 107
PMM (p = 10%) 0.837 3.430 0.653 4853 7.85 x 107

In Dataset 1, Model UM has the best performance but, in Dataset 2, it
is second worse. In contrast, Model MM has the best predictive performance
values achieved in Dataset 2. However, in Dataset 1, it is the worst performing
model in AUC-ROC and AUC-PR. Model PMM is the worst performing model
according to all metrics, but nevertheless with relatively small degradation. In
the classification task, Models MM and PMM have very similar results, while
with the regression task, Model PMM is closer to Model UM.

Impact of Hyperparameter p. Hyperparameter p controls the relative im-
portance of the empirical and monotonic loss components in Model PMM. We
observe that imposing monotonicity causes a performance degradation (see com-
parison between Models UM and PMM in Table. Thus, we study the influence
of p weight on model’s predictive ability, in Dataset 1. Figure [6] describes the
results of the global lift metric, assuming a set of monotonicity weights with
spaced values of 10%. Figure [7] shows, for a subset of features, the proportion of
instances that do not respect the monotonicity constraints with increasing p.
In general, the increase in the weight of the monotonicity component leads to
a degradation of global lift (see Fig. @ When p reaches 100%, the empirical loss
minimisation is cancelled, and we are basically training a random model with
rigid monotonic constraints. All features indicate that very few instances have
non-monotonic cases when p > 10% (see Fig. @ We also note that p = 10%
already allows to obtain, simultaneously, accurate and monotonic results.

Discussion. The trade-off between monotonicity and predictive performance
depends essentially on hyperparameter p. In Fig. [0 we see that p can influence
the learning curve Ly and hence, the learning curve £. The higher the weight-
ing of the monotonicity component, the more evident this relation becomes,
showing that there is an obvious trade-off between the loss components.
Results in section [5.5] confirm that isolating the monotonic features from
the others to enforce monotonicity are not enough to limit the model learning

Partially Monotonic Learning for Neural Networks 11

1.68

~ = —X1
3.5 ¥ 3'-3.{3__1& 328324 315 395 - ——X2
—t—p 3. A 0
3 '-—R\ a 0.6 — X3
o 2.69 @ \ —X4
2 95 X o 1 X5
_q N E u[| I'.- — X&
o o AN
= 2 5
3 502 \
1.5 1t E
10 L |
1 . Za 0 I S S . g
0 02 04 06 08 1 001020304050607080.9 1
P P

Fig. 6. Relation between monotonicity Fig.7. Relation between monotonicity
weight and global lift in Model PMM weight and proportion of non-monotonic
(Dataset 1). cases in Model PMM (Dataset 1).

(see Fig. [2| and . Although the usage of monotonicity constraints confirms
a substantial refinement in the integration of domain knowledge in black-box
models. Besides, we found that the imposition of these constraints does not
considerably deteriorate the predictive performance.

6 Conclusion and Future Work

In this work, we present a ML model architecture that integrates an additional
penalty for learning monotonic relations from a predefined subset of features.
The results show that monotonicity can promote or ensure, in the best case, the
monotonic function of relevant features to the predictions, without considerably
hurting predictive ability. Thus, the application of monotonicity constraints is
a solution to connect domain knowledge in the learning process. Steps for fu-
ture work include: testing for more use-cases, especially on smaller datasets; the
research of scale adjustment techniques for a more robust balance between loss
components; and the addition of non-compensatory decision-making strategy to
our method.

Acknowledgements. This work is partially developed within project AIDA
- Adaptive, Intelligent and Distributed Assurance Platform (reference POCI-
01-0247-FEDER-045907) co-financed by the ERDF - European Regional De-
velopment Fund through the Operational Programme for Competitiveness and
Internationalisation — COMPETE 2020 and by the Portuguese Foundation for
Science and Technology — FCT, under CMU Portugal.

12

J. Trindade et al.

References

10.

11.

12.

13.

14.

15.

16.

. Archer, N.P., Wang, S.: Application of the back propagation neural network algo-

rithm with monotonicity constraints for two-group classification problems. Decision
Sciences 24(1), 60-75 (1993)

Bartolj, T.: Testing Monotonicity of Variables. Master’s thesis, Faculty of Eco-
nomics and Business Administration, Tilburg University (2010)

Cano, J.R., Gutiérrez, P.A., Krawczyk, B., Wozniak, M., Garcia, S.: Monotonic
classification: An overview on algorithms, performance measures and data sets.
Neurocomputing 341, 168-182 (2019)

Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: A
survey on methods and metrics. Electronics 8(8), 832 (2019)

Daniels, H., Velikova, M.: Monotone and partially monotone neural networks. IEEE
Transactions on Neural Networks 21(6), 906-917 (2010)

Gupta, A., Shukla, N., Marla, L., Kolbeinsson, A., Yellepeddi, K.: How to incor-
porate monotonicity in deep networks while preserving flexibility? arXiv preprint
arXiv:1909.10662 (2019)

Lipton, Z.C.: The Mythos of Model Interpretability: In machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31-57 (2018)
Maérquez-Neila, P., Salzmann, M., Fua, P.: Imposing hard constraints on deep net-
works: Promises and limitations. arXiv preprint arXiv:1706.02025 (2017)
Nguyen, A.p., Martinez, M.R.: Mononet: Towards interpretable models by learning
monotonic features. arXiv preprint arXiv:1909.13611 (2019)

Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks
for weakly supervised segmentation. In: Proceedings of the IEEE international
conference on computer vision. pp. 1796-1804 (2015)

Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence 1(5),
206215 (2019)

Sill, J.: Monotonic networks. Advances in neural information processing systems
10, 661-667 (1997)

Silva, W., Fernandes, K., Cardoso, M.J., Cardoso, J.S.: Towards complementary
explanations using deep neural networks. In: Understanding and Interpreting Ma-
chine Learning in Medical Image Computing Applications, pp. 133-140. Springer
(2018)

Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya, C.G., van Moorsel,
A.: The relationship between trust in ai and trustworthy machine learning tech-
nologies. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. pp. 272-283 (2020)

You, S., Ding, D., Canini, K., Pfeifer, J., Gupta, M.: Deep lattice networks and par-
tial monotonic functions. In: Advances in neural information processing systems.
pp. 2981-2989 (2017)

Zhu, H., Tsang, E.C., Wang, X.Z., Ashfaq, R.A.R.: Monotonic classification ex-
treme learning machine. Neurocomputing 225, 205-213 (2017)

	Partially Monotonic Learning for Neural Networks

