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Abstract—This paper describes a multiyear dynamic
Transmission Expansion Planning, TEP, model to sete and

schedule along the planning horizon transmission @ansion
projects taken from a list supplied by the planner.The selection
of the most adequate set of projects from this liss driven by the
minimization of the investment plus operation costswhile

enforcing a number of constraints related with techical,

financial and reliability issues. The developed appach also
admits that nodal loads are modeled by triangular dizzy
numbers as a way to ensure obtaining more robust @hs that is
plans not only adequate for a deterministic set ofuture loads
but plans that can accommodate load uncertainty. Rially, given
the discrete nature of the problem, it was adoptedh discrete
version of the Evolutionary Particle Swarm Optimizaion

algorithm, DEPSO, that proved very effective and sbws good
performance on several tests ran with the IEEE RTSystem.

Index Terms—Transmission Expansion Planning, multiyear
problem, load uncertainties, fuzzy sets, Particle \8arm
Optimization, Discrete Evolutionary PSO, DEPSO.

l. INTRODUCTION

Before the restructuring of power systems, transiois
expansion planning was typically addressed in twpe of
vertically integrated companies together with gatien
expansion planning. More recently, the unbundlirfgtte
industry lead to the identification of several witiés, namely
generation, transmission, distribution and retgjlias well as
coordination activities at the operational, markahd
regulatory levels. These four activities are ugudiveloped
by different agents and network transmission amstridution
activities are typically provided under a regulateanework.

This unbundled model brought new challenges to teng
expansion planning activities both for generationd a
transmission. Regarding generation, there are neveral

competing agents and each generation company shouldchosen

develop its own plan taking into account the pdssibaction
of the competitors, the available financial resesrcand
technologies, the possible evolution of the demand the
increased presence of generation connected toibdisbn
networks leading to the reduction of the demanch deg
traditional large power stations. Regarding traigsion, the

Planning — A Multiyear PSO
Idering Load Uncertainties

Jodo Tomé Saraiva

INESC/TEC, Dept. Eng. Eletrotécnica e Computaddp&tC
Faculdade de Engenharia da Univ. do Porto, FEURy&al

jsaraiva@fe.up.pt

expansion plans must now be developed so thatdheork
can accommodate connection requests from generation
distribution and consumer agents, while coping wihd
uncertainty and possible changes of generatiorsplae, for
instance, to changes in operation costs of trawitio
technologies or to the reduction of the liquid dathaeen by
transmission networks as the capacity directly ected to
distribution grids increases. The increased conitylegf
transmission expansion planning can be observesidemnng
for instance that the European Parliament and tredean
Council Directive 2009/72/EC, establishing commoles for
the internal electricity market [1] states thatngmission
operators should ensure the long-term ability ef glistem to
meet reasonable demands for the use of the netwdhis
ultimately means that they should adequately devdle
networks so that reasonable new generation and rdeéma
requirements can be accommodated.

The publications on TEP models are numerous [28] a
can be classified according to some general aspedtdlows:

- some publications address generation and trangmissi
expansion in an integrated way either because #ney
prior to the unbundling of the industry, or becailssome
geographical areas power systems are still orgdnizex
vertically integrated way [4-6];

some models have a static nature [7,8] while sothers
address the problem in a multiperiod vigy0]. In the first
case, each period in the planning horizon is addes a
separate and sequential way so that the projetdsteg

for the initial period are then considered as alyea
available when solving the problem for subsequent
periods. Static approaches have a major drawbaangi
that they do not capture the holistic view over #mgire
planning horizon. In some cases, some projectsrotie
selected in the scope of a static problem, but wely be

in dynamic multiperiod approaches because,
together with other projects, they lead to the naolstquate
plan to address bottlenecks in different periodsef the
complexity of multiperiod problems, several authors
proposed simplifications based for instance ineseiof
static sub problems leading to formulations oftemied as
pseudo-dynamic procedures, [4,11];



- finally, most of the approaches assume that theadenn
future periods is known. This means that the seteptan
is adequate for this future demand level but it lbamisky
if the demand does not behave exactly as thas tlheén
clear that modeling demand uncertainties is a atigsue
to better characterize the goodness of expanseams@nd
to identify robust ones that is plans regardingclvhihe
planner does not feel any regret if some changehen
future demand occurs. Uncertainties in TEP areesdad
in [12-14] using probabilistic and fuzzy set models

Regarding the solution techniques, TEP models us@la
range of approaches namely classical optimizatiethous,

identified along the iterative process in this fiosi of the
swarm that is by the best of the ancestors of garp. The
third is the cooperation term and it uses infororatbout the
best of all particles so far identified in the emtswarm.

This scheme proved to be able to make the swardvesvo
to regions around the optimum but then it had iasirgy
difficulty in fine-tuning towards the optimum. In0@2,
[19,20] introduced an evolutionary flavour in PS€ading to
the EPSO algorithm. The position of particle pteration i+1
is given by (1) and it is the result of the additiof the
particle in iteration i plus the velocity vectorvgn by (2).
This vector also integrates three terms, but edctnem is

dynamic, quadratic and  mix-integer Dfogfammlngnultlplled by a weight that undergoes mutation gldhe

decomposition techniques and metaheuristics. Regard
metaheuristics, [7,9] use Genetic and Evolutiodgprithms,
Simulated Annealing is used in [10,15], Tabu Seaish
adopted in [7,16], Expert Systems are used in [&hd [11]
details the use of Greedy Randomized Search.

This paper describes a multiyear TEP model to selec

number of investment projects (transmission linesd a
transformers) from a list to be specified by thanpler. The
selection of the most adequate set of projects filois list
should be done in a coordinated way to preservehdiistic
view over the entire horizon, so that the final utioh
minimizes investment plus operation costs whileomsifig
technical operation, financial and reliability ctmamts. In
order to deal with the risk of having to supplytire future
loads different from the ones used in the planpiragess, the
demand is modeled by triangular fuzzy numbers. IFinthis
is a discrete optimization problem given the liftpossible
projects provided by the planner. This discreteureatwas
addressed using an adaptation of the Evolutionamidie
Swarm Optimization Algorithm. PSO was originallyoposed
in [18] and [19,20] describe a number of adaptatimngive it
an evolutionary flavour, EPSO, namely in terms bé t
evolution of the weights used in the PSO recommnatule.
In this paper, we are using a set of enhancemerasldress
discrete problems leading to the Discrete EPSO, ¥ Rhat
was originally applied in [21] admitting determitiésfuture
load scenarios. The results reported in [21] wesryv
promising and we are now describing the enhancesmtent
consider loads defined by triangular fuzzy numbers.

Having these ideas in mind, Section |l details Ehiscrete
EPSO approach, and Section Ill provides the mathieaha
formulation of the TEP problem and the developelitmm
algorithm. Section IV addresses the integratiortriaihgular
fuzzy loads and Section V illustrates the applaatof this
approach to a case study based on the IEEE 24ystens
Finally, Section VI draws the most relevant conidos.

II.  DISCRETEEVOLUTIONARY PSODEPSOAPPROACH

Particle Swarm Optimization, PSO, is a populatiasdu
approach in which the population is composed dfiralmer of
particles or agents forming a swarm. These pastieMolve
from one iteration to the next one according to @avement
rule [18] stating that the position of particlerpiferation i+1
is determined by the addition of three terms. Titst bne is
the inertia reflecting the position in iterationTihe second
one is the memory term and it is related with thstlparticle

iterative process, for instance using (3). In thesgressions
Cf is a communication factor allowing some dimensi®f
the best ever found particle to be communicateghtticle p,
o is alearning parameter set externally, is the best of the

ancestors of particle p ariol; is the best ever found particle.
Particle b; also undergoes mutation using (3) leading to
bG This evolutionary scheme is illustrated in Fig. 1

Xph=xp+vp™ (1)

i 1 _ * 1 * * * i
Vo' = Wp.Vp + W, .(bp -X p)+ Wg .(bG - x'p)Cf )
Wj, =W, +0.N(03) (3)

Figure 1. lllustration of the EPSO movement rule.

This scheme was adapted to address discrete prsliters
leading to DEPSO. In DEPSO, all the dimensionsafigle
p are integers and so the velocity vector is rodntethe
nearest integer before computing the particle pténation
i+1. Several researchers as in [22,23] showed dhardages
of using chaotic sequences to determine the weigh®) for
instance provided by sigmoid functions as a wajntprove
the convergence characteristics of the algorithsr.a&esult,
in the DEPSO we adopted (4) to determine the vadfidbe
mutated weights to be multiplied by the inertiag themory
and the cooperation terms as well as to be usetltate the
best global particle. As a result, the recombimatige of the
DEPSO algorithm uses the velocity vector compute®hin
which the mutated weights are now given by (4).

ip+1* = 0.5+rand)—% (4)
1+ exr{— vv'p )

W



Finally, when dealing with discrete problems ifrisquent be commissioned in that period. The total investnoest of
that the rounded velocity vector yields zero vajuesaning g ion X}, results from the addition of the investment costs
that the particle would remain unchanged from tterai to . ) )
i+1. If that occurs, we incorporate a Lamarkianletion step Per period using the ratelr mentioned above. In (5)
as it was originally suggested in [24]. This Lamarkstep Kde- represents a binary variable that in case of bding
promotes a change of some dimensions of the paricing . "’ ) . . . L .
at the fenotype or macroscopic level, rather tharthe Indicates that project pj in the project list isclided in
components used to obtain the velocity vector ihatstead Particle p and scheduled to start operation inqaiepd.
of changing the particle at the genotype levelsThtimately  The operating costs in period pd for particleQEpg can
means that one is promoting a local search arouparticle ’

that eventually already displays promising charisties. include a variety of aspects as generation and terznce

costs, losses, and costs associated with ancBlamnyices. In
order to speed up the solution algorithm, the ggtiwr costs
are estimated using a DC OPF model as (9 — 13k iBha
A. Statement of the Problem typical formulation adequate for expansion planngtgdies

As defined above, the TEP problem aims at idemigya hat. in any case, was enhanced to include an @timf
set of expansion projects taken from a list prodidey the transmission losses. In this formulatiop, Pg and Pl are
planner and to place them along the planning horemthat the variable generation cost, the generation aedldhd at
the investment plus operation costs are minimizedi @ set node k, G is a penalty assigned to Power Not Se@pPNS,
of technical, financial and reliability constrairstee enforced. apy is the sensitivity coefficient of the active flaw branch

Ill.  GENERAL TEPMODEL FORDETERMINISTIC LOADS

Let us assume that the list of investment projbets npj b regarding the injected power in nodeHgE“” and pgi'®

DIOSSiUe ?IEV\_/ “nei or tragsformgrs thgttﬁa? tﬁﬁv%the are the minimum and maximum outputs of the generato
planning horizon has npd periods and that the is , in max
formed by np particles. A population is coded bynatrix connected to node k, and flnaIBg" and R, represent the

having np lines and npj columns. Each line in thigtrix is minimum and maximum active power flows in branch b.
denoted byxip and it corresponds to a particle that has nphinf =3 ¢ Pg + G PN&

- : —_ ©)
positions, each of them related with a particulanjert. For  gypject to:
each of these projects, the corresponding positidhis line Y Pg +YPNG = Y Pk
is filled with an integer going from 0 to npd+1dinating that i (10)
the project was not adopted in this particle (vélu® npd+1) Poi'" < Pok < PG (11)
or that it will be commissioned to start operatiorperiod 1 PNS < P}
to npd. This design of a particle with integersnir® to Sk (12)
npd+1, and in particular with one state below 1 and anothe PN < 3 gy (ng + PN —Plk)s pnax (13)

above npdis important because it makes it possible to es/olv
with the same difficulty from any state to 0, naiesting the ~ While solving this problem, network and generaiaritl
project, or to npd+1, postponing the project. I& th and constraints are enforced but if transmission capa@
npd+1 states were not allowed, the roundings wdudd unsufficient then PNS will be non zero thus insirg the
limited to 1, in the lower level, and to npd at thigher level Vvalue of the objective function (9). This meang thing this
and so the 1 and the npd states would be favored. sgateg); Qnet inherer;tl;l; Penaﬁzetj ptartic(IjeS tht«':ﬂ; Zg
. adequate in terms of being unable to adequate n
B. TEP Formulation ] gengration and demand. Ong the other hand,q[hiswﬁinn
The TEP problem can be formulated by (5-8). Acawydi assumes that the network is lossless. In ordendease the
to thls_formulatlon, we aim at minimizing th_e inve@nt a}nd realism of the model, this DC-OPF can be enhanced t
operation costs incurred along the planning hotiashile jnclude an estimate of transmission losses accgrtbnthe

enforcing physical, financial and reliability coreints. iterative procedure detailed below and already irs¢i0].
. d i -
min Cost¥, = npe) ol |ij_KPd +0Cppd f(1+dr)Pd (5) Procedure DC-OPF with Losses
pd1| pFL PPl k i) Runan initial dispatch using (9-13);

Subjected to: ||) Eotmputte voI:ageI phase§ uzing tf;]e DC quel; o .
Physical constraints; 6) i)y Es |m§e active losses in branch m-n using (14} g expression,
Financial constraints: @) Omn is the conductance of branch m-n aflghn is the phase

- L difference across this branch;
Reliability constraints; (8)
p=1,2,..,np; i =12, .. imax LoSSnn = 2gmn- (1~ co$mn) (14)
. . . . . . iv) Add half of the losses in branch m-n to the originads in nodes m
Assuming a multiyear horizon, the objective funitio and n. Run a new dispatch using (9-13) and updgtage phases;

measures the goodness of each solutz'rrim and it includes v) End if the difference of voltage phases in all moéesmaller than a
) ; ) specified threshold. If not, return to iii).
operation and investment costs along the horizéerned to
the initial year using a discount rate . In each period, the The convergence of this iterative process is uguall

investment costs|C;, are related with the projects that willleached in less than 5 iterations yielding the gstion
profile, the losses and eventually a non zero vafueNS for

pj *



the entire system, PNS(N). If the level of lossgseeds a v.

reference value, then this particle is penalizeith aiterma;
in the fitness function and if the PNS(N) is notgehen the
penalty terma, is also introduced in the fitness function.

Regarding the financial constraints, the developé&P
model considers two types of limitations. The fishe
corresponds to the maximum number of projects ¢hat be
implemented per period. This limit can arise dudinancial
or operational reasons and if it is violated itinsluded a
penalty terma, in the fitness function. The second one

corresponds to the maximum investment value oweetttire
horizon and it models a global financial constraifitit is
violated, a penalty termm, is included in the fitness function.

Regarding reliability aspects, the developed apgroavii.

penalizes plans in which the PNS is non-zero fdxwaek
configurations associated to N-1 contingenciesisltalso
possible to include penalties for a selected nundfeN-2
contingencies following the indications in the G@ddes of
several countries. This evaluation can be modiféedending
the number of configurations to analyze or, inltindt, to run
a Monte Carlo simulation for every particle, obwsbu
leading to a large increase of the computation .tifflee
penalty associated to PNS (N-1) is made usingeiimd ;.

Given this information, each solution is charaatedi by a
fitness value given by (15), that results from gh)s additive
penalty terms in case of violating the maximum atbdi
level of losses, of displaying non zero values RS both
for the entire system and for N-1 contingenciesxafeeding
the maximum number of projects for each period tamally

in case of exceeding the maximum investment value. iX.

npd| npj 5
> | % 1CpKPY +0Cpq | 1+ drPd+ S pen

(15)
pet prt PP =1

minCostXi) =

C. TEP Solution Algorithm for Deterministic Loads

Let us consider the TEP problem assuming that |@ads
modeled by deterministic values. In this case, THeP
solution algorithm evolves as follows:

i. Initialization - the DEPSO s initialized by randbm
sampling an initial population that is by sampling
integers from 0 to npd+1 for each position of thatnix
mentioned in Section IIl.A;

ii. Replication - the current population obtained & &md
of each iteration is cloned twice, so that the athm is
actually working with two populations;

viii.

Recombination - having mutated the Inertia, the
Memory and the Cooperation weights and some
positions of the best global so far identified et we
use the same recombination rule of the EPSO (19 2)
compute the movement from iteration i to i+1;

Lamarkian evolution step — if a zero velocity veci®
obtained indicating that particle p wouldn’'t movéaen
going from iteration i to iteration i+1, we introck a
Lamarkian step to induce some extra diversityh#t tis

the case, some of its positions are mutated, nathely
ones regarding which randomly generated numbers
N(01) take values less than a paramekggy 0[01].

The mutated element in position j of such a pagtisl
computed using an expression similar to (16);

Evaluation of the particles — once all particleg ar
mutated, it is computed the value of the evaluation
function (15) for each of them. This means consider
the projects in this particle in the correspondyegr of
the planning horizon, running the DC-OPF model (9 —
13) for each year and checking the physical, fir@nc
and reliability constraints specified for the pretol;

Selection — in this step, we go along the two
populations, we take particle p from populationrd a
particle p from population 2 and it survives theeon
having better fithess that is the one having theeki
value for (15). This tournament scheme yields tee n
population, which corresponds to the output ofaitien
i+1. At the end of this step, the best particlehia new
population is compared with the current best global
particle to update the best global so far iderdifie

Convergence checking — in this step we check if the
maximum number of iterations, imax, was completed o
if a convergence criterium is valid. In the firgtse, the
algorithm stops without converging suggesting that
larger number of iterations should be done. In the
second case, the algorithm converges if, for ingathe
best global particle was not updated for a preifipdc
number of iterations or if the value of the fithess
function of the best global particle did not chamgere
than a threshold for a pre-specified number ofitens.

If the algorithm did not stop yet, then it retutosstep ii.

IV.  HANDLING FUzzY TRIANGULAR LOADS

Uncertainties can be addressed by probabilistic etsoid
the events have a random nature and can be repaaded
the same conditions. In some cases uncertaintyectsfl
incomplete data or is implicit in expressions awder than”

iii. Mutation of weights - the Inertia, the Memory amé t o “approximately” that are common in human langualg
Cooperation weights mentioned in Section Il argese cases, fuzzy sets are adequate to modelsitiops as

mutated using (4);

iv. Mutation of the best global - the best global méetis a
vector with as many positions as the elements ef th
project list. Its npj positions also undergo mutatas a
way to introduce changes in the current best global
particle to make a local search around it. To ds, tine
corresponding weight is mutated using (4) and teh
position j undergoes mutation using (16);

(16)

* _ 1 1*
bgj = bg;j +rounc(2.W|'DJE;j - j

“the demand is around 100 MW”. This knowledge can b
represented by a triangular fuzzy number as thdarokéy. 2.

H(A) A
1.0

90.0 100.0 110.0 load (MW)

Figure 2. lllustration of a triangular fuzzy number



The value 100 MW is the most credible one, thusrtaa [

95

1.0 membership degree, but the planner doesn’'t want 0

85

completely discard values from 90 to 100 MW andrfrb00 20

75

to 110 MW. Given the particular shape of these rens\the 7

65

number in Fig. 2 is denoted by (90.0; 100.0; 11MuY. : m

55
50

——10Part
——20Part

a5 30 Part

Triangular fuzzy loads can be considered in the TEP =
algorithm detailed in Section I[II.C by introducingn s
enhancement in the Evaluation Step. In the previous 2
algorithm the loads were assumed as determinibit is 15
each of them was represented by a real non negativiber.

When looking at a triangular fuzzy number as the onFig.
2, we can see that the deterministic analysis spoeds toa _. o .

particular case of the fuzzy load situation. In tfathe Figure 3 — Results for a multiperiod analysis foe Garver network.
combination of load values each of them associaitiithe ~ Then, the DEPSO algorithm was tested using the IEEE
membership degree of 1.0 corresponds to a detesiigini bus RTS system [26]. Regarding this system, theameimvas
situation. Regarding the number in Fig. 2, this ldomean set at 8,550 MW and the installed generation c&pasi
using the value of 100.0 MW for this load. Theng th10,215 MW, 3 times more than the original value42].
algorithm in Section Ill.C evolves evaluating eaudtticle in - This increase is in line with the values used bynyna
the population just using this deterministic loadnbination. researchers and is explained given that the ofigiahies

If now we are using triangular fuzzy loads, we caart l€ad to a very lightly loaded system. The list afsgble
discretizing each triangular fuzzy number in a nemif o -  €xpansion projects is partially displayed in Tablecluding
cuts that is intervals of load values with membigrstegree for each branch the extremes nodes, the resistesmeiance,
not inferior thana . In the developed solution algorithm welransmission capacity and investment cost. In taise we
adopted the 0.0 and 0.5 cuts. For the number inFithese admitted that already existing corridors were usgéte
cuts correspond tp9001000] and| 9501050]. Then, for each resistance and reactance of the new branches poneso
particle in the population, the DC OPF model (9-k3yun the ones of the already existing branches in theesaorridor.
considering the load combinations formed by theresme
values of each of these cuts to check if the aatatiplan

frequency, Ru

——50Part

——80Part

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

TABLE | —PARTIAL LIST OF POSSIBLE NEW BRANCHES

can still accommodate these load combinations o E{J FtES'S“ JJ’S R(%i')St' R(Sﬁ;’t' (,\CA"\"/S)' (fg%t)
PNS values. If non zero values for PNS are obtafoedny
of these combinations, then a new positive pentaitgn in L 3 24 | 00000] 0,4195| 400 500
introduced in (15) meaning that this particle iscasated 2 9 | 11 | 00000] 04193 400 500
with an expansion plan that is exposed to load tiaicgies, 3 10 11 | 0,0000] 0,419% 400 500
namely if load combination different from the detémistic 4 10 12 | 0,0000[ 0,419% 400 500
case are considered. This new penalty term chahgeglue
of the evaluation function thus affecting the sttetstep of 24 | 20 | 23| 00140 0108) 500 304
the algorithm in Section IIl.C. 25 " 13 | 00305 012384) 500 664
V. RESULTS 26 12 13 | 00305 02380 500 660
The approach described in Sections Il and IV vesded 2! 11 14 | 00305 0238 500 280
using several networks, namely networks that amenconly 28 14 16 | 0,0250 0'194$ 500 544

used as reference ones in TEP studies. In the fieste, it The planning exercise was done considering a 4 year
was tested using the 6 bus Garver network, originahorizon and a 5% yearly load increase. The DEPS® rwa
described in [25]. For this network we conductedgki considering deterministic loads in the first plaead
period and multiperiod analysis and the resultsrgperted in populations of 30, 100 and 150 particles. The lpahs
[21]. Just for illustration of the quality of thesults that were identified in these three runs are as follows:

obtained for the Garver network, the graphs in Fg. - 30 particles — period 1 - line 10-12, line 1-5.li6-10,
characterize the convergence of the DEPSO algoriffime line 7-8, line 11-13; period 2 - line 2-6, line 7&eriod 3 -
algorithm was run 100 times for populations havirgy 20, line 11-13; investment cost 2599.16 M$;

30, 50 and 80 particles and each curve indicates th- 100 particles - period 1 - line 10-12, line 1-5\eli6-10,
percentage of runs that lead to the optimal fimafiguration line 7-8, line 11-13; period 2 - line 7-8; period Bne 11-
as the number of iterations increases. As an exarfipl a 10 13; period 4 - line 2-6; investment cost 2527.44 M$
particle population the convergence was more diffjbout in - 150 particles - period 1 - line 10-12, line 1-H€i6-10,
94% of cases reached the optimum in 100 iteratidine line 7-8, line 11-13; period 2 - line 7-8; period #ne 3-
performances for 20 and 30 particles were verylamand 14, line 16-17; investment cost 2427.72 M$;

the performances for 50 and 80 particles were @kdively
close. For populations with 30 particles the optimplan
was obtained in 95% of the runs after 42 iteratiomkile
with 80 particles we get similar results in justi@dations.

Apart from the 5% vyearly demand rate, the DEPSO
algorithm was then run considering uncertainties.do this,
the crisp previous loads were assigned the 1.0 rasship
level and the extreme values of the 0.0 cut of @aahgular



number were set at 0.95 and 1.05 of the crisp vadlbe main
conclusions that were obtained in this analysisaaréollows:

- running the DEPSO for a 100 particle populatiore th

particles in the final population proved to be veopust
in accommodating the demand uncertainties;
this means that among the 100 final particles, a986 of

them displayed non zero PNS and the correspondin

evaluation function was therefore penalized,;
among these ones, it was concluded that solutluatsdid
not include neither a new line 1-5 nor a new liie2B in

the expansion plan were very prone to the demand

uncertainties and were in general less robust;

using a 100 particle population, the best expangian
coincides with the one identified in the determntigis
demand analysis indicated above. This ultimatelyamse
that for the specified level of uncertainty 5% , the best
expansion plan identified in the deterministic eis is
still very robust when admitting demand uncertaisiti

as a final test, the best plan was subjected tgetar
demand uncertainties 0£10% . As a result, non zero

PNS values occurred, indicating a degradation & th
If the planner wanted to
accommodate+10% demand uncertainties, then a plaft]

robustness of the plan.

having larger investment cost would have to be tatbps
a way to regain robustness.

VI. CONCLUSIONS

This paper details a multiyear mixed integer optation
problem for TEP that is solved using a discretesioer of the
Evolutionary PSO algorithm. The tests that weredeated
showed that it is important to model this problem a
multiperiod way in order to maintain an holistiewi on the
entire planning horizon. On the other hand, uncdits
should be addressed in this type of problems tongete
insight on the merits of each candidate plan tllosvang the
decision maker to take more robust and less riggjsibns.
As a whole, the developed approach can contributgive
more insight on the merits of possible expansianglthus
allowing taking more sounded investment decisions.
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