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Abstract—This paper describes a multiyear dynamic 
Transmission Expansion Planning, TEP, model to select and 
schedule along the planning horizon transmission expansion 
projects taken from a list supplied by the planner. The selection 
of the most adequate set of projects from this list is driven by the 
minimization of the investment plus operation costs while 
enforcing a number of constraints related with technical, 
financial and reliability issues. The developed approach also 
admits that nodal loads are modeled by triangular fuzzy 
numbers as a way to ensure obtaining more robust plans that is 
plans not only adequate for a deterministic set of future loads 
but plans that can accommodate load uncertainty. Finally, given 
the discrete nature of the problem, it was adopted a discrete 
version of the Evolutionary Particle Swarm Optimization 
algorithm, DEPSO, that proved very effective and shows good 
performance on several tests ran with the IEEE RTS system. 

Index Terms—Transmission Expansion Planning, multiyear 
problem, load uncertainties, fuzzy sets, Particle Swarm 
Optimization, Discrete Evolutionary PSO, DEPSO. 

I. INTRODUCTION 

Before the restructuring of power systems, transmission 
expansion planning was typically addressed in the scope of 
vertically integrated companies together with generation 
expansion planning. More recently, the unbundling of the 
industry lead to the identification of several activities, namely 
generation, transmission, distribution and retailing, as well as 
coordination activities at the operational, market and 
regulatory levels. These four activities are usually developed 
by different agents and network transmission and distribution 
activities are typically provided under a regulated framework. 

This unbundled model brought new challenges to long term 
expansion planning activities both for generation and 
transmission. Regarding generation, there are now several 
competing agents and each generation company should 
develop its own plan taking into account the possible reaction 
of the competitors, the available financial resources and 
technologies, the possible evolution of the demand and the 
increased presence of generation connected to distribution 
networks leading to the reduction of the demand seen by 
traditional large power stations. Regarding transmission, the 

expansion plans must now be developed so that the network 
can accommodate connection requests from generation, 
distribution and consumer agents, while coping with load 
uncertainty and possible changes of generation plans due, for 
instance, to changes in operation costs of traditional 
technologies or to the reduction of the liquid demand seen by 
transmission networks as the capacity directly connected to 
distribution grids increases. The increased complexity of 
transmission expansion planning can be observed considering 
for instance that the European Parliament and the European 
Council Directive 2009/72/EC, establishing common rules for 
the internal electricity market [1] states that transmission 
operators should ensure the long-term ability of the system to 
meet reasonable demands for the use of the networks. This 
ultimately means that they should adequately develop the 
networks so that reasonable new generation and demand 
requirements can be accommodated. 

The publications on TEP models are numerous [2,3] and 
can be classified according to some general aspects as follows: 

- some publications address generation and transmission 
expansion in an integrated way either because they are 
prior to the unbundling of the industry, or because in some 
geographical areas power systems are still organized in a 
vertically integrated way [4-6]; 

- some models have a static nature [7,8] while some others 
address the problem in a multiperiod way [9,10]. In the first 
case, each period in the planning horizon is addressed in a 
separate and sequential way so that the projects selected 
for the initial period are then considered as already 
available when solving the problem for subsequent 
periods. Static approaches have a major drawback given 
that they do not capture the holistic view over the entire 
planning horizon. In some cases, some projects may not be 
selected in the scope of a static problem, but may well be 
chosen in dynamic multiperiod approaches because, 
together with other projects, they lead to the most adequate 
plan to address bottlenecks in different periods. Given the 
complexity of multiperiod problems, several authors 
proposed simplifications based for instance in series of 
static sub problems leading to formulations often termed as 
pseudo-dynamic procedures, [4,11]; 



- finally, most of the approaches assume that the demand in 
future periods is known. This means that the selected plan 
is adequate for this future demand level but it can be risky 
if the demand does not behave exactly as that. It is then 
clear that modeling demand uncertainties is a crucial issue 
to better characterize the goodness of expansion plans and 
to identify robust ones that is plans regarding which the 
planner does not feel any regret if some change on the 
future demand occurs. Uncertainties in TEP are addressed 
in [12-14] using probabilistic and fuzzy set models. 

Regarding the solution techniques, TEP models use a wide 
range of approaches namely classical optimization methods, 
dynamic, quadratic and mix-integer programming, 
decomposition techniques and metaheuristics. Regarding 
metaheuristics, [7,9] use Genetic and Evolutionary algorithms, 
Simulated Annealing is used in [10,15], Tabu Search is 
adopted in [7,16], Expert Systems are used in [8,17] and [11] 
details the use of Greedy Randomized Search. 

This paper describes a multiyear TEP model to select a 
number of investment projects (transmission lines and 
transformers) from a list to be specified by the planner. The 
selection of the most adequate set of projects from this list 
should be done in a coordinated way to preserve the holistic 
view over the entire horizon, so that the final solution 
minimizes investment plus operation costs while enforcing 
technical operation, financial and reliability constraints. In 
order to deal with the risk of having to supply in the future 
loads different from the ones used in the planning process, the 
demand is modeled by triangular fuzzy numbers. Finally, this 
is a discrete optimization problem given the list of possible 
projects provided by the planner. This discrete nature was 
addressed using an adaptation of the Evolutionary Particle 
Swarm Optimization Algorithm. PSO was originally proposed 
in [18] and [19,20] describe a number of adaptations to give it 
an evolutionary flavour, EPSO, namely in terms of the 
evolution of the weights used in the PSO recombination rule. 
In this paper, we are using a set of enhancements to address 
discrete problems leading to the Discrete EPSO, DEPSO, that 
was originally applied in [21] admitting deterministic future 
load scenarios. The results reported in [21] were very 
promising and we are now describing the enhancements to 
consider loads defined by triangular fuzzy numbers. 

Having these ideas in mind, Section II details the Discrete 
EPSO approach, and Section III provides the mathematical 
formulation of the TEP problem and the developed solution 
algorithm. Section IV addresses the integration of triangular 
fuzzy loads and Section V illustrates the application of this 
approach to a case study based on the IEEE 24 bus system. 
Finally, Section VI draws the most relevant conclusions. 

II. DISCRETE EVOLUTIONARY PSO, DEPSO, APPROACH 

Particle Swarm Optimization, PSO, is a population based 
approach in which the population is composed of a number of 
particles or agents forming a swarm. These particles evolve 
from one iteration to the next one according to a movement 
rule [18] stating that the position of particle p in iteration i+1 
is determined by the addition of three terms. The first one is 
the inertia reflecting the position in iteration i. The second 
one is the memory term and it is related with the best particle 

identified along the iterative process in this position of the 
swarm that is by the best of the ancestors of particle p. The 
third is the cooperation term and it uses information about the 
best of all particles so far identified in the entire swarm. 

This scheme proved to be able to make the swarm evolve 
to regions around the optimum but then it had increasing 
difficulty in fine-tuning towards the optimum. In 2002, 
[19,20] introduced an evolutionary flavour in PSO, leading to 
the EPSO algorithm. The position of particle p in iteration i+1 
is given by (1) and it is the result of the addition of the 
particle in iteration i plus the velocity vector given by (2). 
This vector also integrates three terms, but each of them is 
multiplied by a weight that undergoes mutation along the 
iterative process, for instance using (3). In these expressions 
Cf is a communication factor allowing some dimensions of 
the best ever found particle to be communicated to particle p, 
σ  is a learning parameter set externally, pb  is the best of the 

ancestors of particle p and Gb  is the best ever found particle. 

Particle Gb  also undergoes mutation using (3) leading to 
*
Gb . This evolutionary scheme is illustrated in Fig. 1. 
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Figure 1. Illustration of the EPSO movement rule. 

This scheme was adapted to address discrete problems thus 
leading to DEPSO. In DEPSO, all the dimensions of particle 
p are integers and so the velocity vector is rounded to the 
nearest integer before computing the particle p in iteration 
i+1. Several researchers as in [22,23] showed the advantages 
of using chaotic sequences to determine the weights in (2) for 
instance provided by sigmoid functions as a way to improve 
the convergence characteristics of the algorithm. As a result, 
in the DEPSO we adopted (4) to determine the values of the 
mutated weights to be multiplied by the inertia, the memory 
and the cooperation terms as well as to be used to mutate the 
best global particle. As a result, the recombination rule of the 
DEPSO algorithm uses the velocity vector computed by (2) in 
which the mutated weights are now given by (4). 
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Finally, when dealing with discrete problems it is frequent 
that the rounded velocity vector yields zero values, meaning 
that the particle would remain unchanged from iteration i to 
i+1. If that occurs, we incorporate a Lamarkian evolution step 
as it was originally suggested in [24]. This Lamarkian step 
promotes a change of some dimensions of the particle acting 
at the fenotype or macroscopic level, rather than at the 
components used to obtain the velocity vector that is instead 
of changing the particle at the genotype level. This ultimately 
means that one is promoting a local search around a particle 
that eventually already displays promising characteristics. 

III.  GENERAL TEP MODEL FOR DETERMINISTIC LOADS 

A.  Statement of the Problem 

As defined above, the TEP problem aims at identifying a 
set of expansion projects taken from a list provided by the 
planner and to place them along the planning horizon so that 
the investment plus operation costs are minimized and a set 
of technical, financial and reliability constraints are enforced. 

Let us assume that the list of investment projects has npj 
possible new lines or transformers that can be built, that the 
planning horizon has npd periods and that the population is 
formed by np particles. A population is coded by a matrix 
having np lines and npj columns. Each line in this matrix is 

denoted by i
pX  and it corresponds to a particle that has npj 

positions, each of them related with a particular project. For 
each of these projects, the corresponding position in this line 
is filled with an integer going from 0 to npd+1, indicating that 
the project was not adopted in this particle (value 0 or npd+1) 
or that it will be commissioned to start operation in period 1 
to npd. This design of a particle with integers from 0 to 
npd+1, and in particular with one state below 1 and another 
above npd, is important because it makes it possible to evolve 
with the same difficulty from any state to 0, non selecting the 
project, or to npd+1, postponing the project. If the 0 and 
npd+1 states were not allowed, the roundings would be 
limited to 1, in the lower level, and to npd at the higher level 
and so the 1 and the npd states would be favored. 

B. TEP Formulation 

The TEP problem can be formulated by (5-8). According 
to this formulation, we aim at minimizing the investment and 
operation costs incurred along the planning horizon, while 
enforcing physical, financial and reliability constraints. 
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Subjected to: 

Physical constraints; (6) 
Financial constraints; (7) 
Reliability constraints; (8) 
p = 1, 2, ..., np;  i  = 1, 2, …, imax 

Assuming a multiyear horizon, the objective function 

measures the goodness of each solution i
pX  and it includes 

operation and investment costs along the horizon referred to 
the initial year using a discount rate dr . In each period, the 
investment costs, pjIC , are related with the projects that will 

be commissioned in that period. The total investment cost of 

solution i
pX  results from the addition of the investment costs 

per period using the rate dr  mentioned above. In (5) 
pd

pj,pK represents a binary variable that in case of being 1 

indicates that project pj in the project list is included in 
particle p and scheduled to start operation in period pd. 

The operating costs in period pd for particle p, pd,pOC  can 

include a variety of aspects as generation and maintenance 
costs, losses, and costs associated with ancillary services. In 
order to speed up the solution algorithm, the generation costs 
are estimated using a DC OPF model as (9 – 13). This is a 
typical formulation adequate for expansion planning studies 
that, in any case, was enhanced to include an estimate of 
transmission losses. In this formulation kc , kPg  and kPl  are 
the variable generation cost, the generation and the load at 
node k, G is a penalty assigned to Power Not Supplied, PNS, 

bka  is the sensitivity coefficient of the active flow in branch 

b regarding the injected power in node k, min
kPg  and max

kPg  

are the minimum and maximum outputs of the generator 

connected to node k, and finally min
bP and max

bP  represent the 

minimum and maximum active power flows in branch b. 
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While solving this problem, network and generator limit 
constraints are enforced but if transmission capacity is 
unsufficient then  PNS will be non zero thus increasing the 
value of the objective function (9). This means that using this 
strategy one inherently penalizes particles that are not 
adequate in terms of being unable to adequately connect 
generation and demand. On the other hand, this formulation 
assumes that the network is lossless. In order to increase the 
realism of the model, this DC-OPF can be enhanced to 
include an estimate of transmission losses according to the 
iterative procedure detailed below and already used in [10]. 

Procedure DC-OPF with Losses 
i) Run an initial dispatch using (9-13); 
ii)  Compute voltage phases using the DC model; 
iii)  Estimate active losses in branch m-n using (14). In this expression, 

mng  is the conductance of branch m-n and mnθ  is the phase 
difference across this branch; 

 )cos1.(g.2Loss mnmnmn θ−≈  (14) 

iv) Add half of the losses in branch m-n to the original loads in nodes m 
and n. Run a new dispatch using (9-13) and update voltage phases; 

v) End if the difference of voltage phases in all nodes is smaller than a 
specified threshold. If not, return to iii). 

-------------------------------------------------------------------------------------------------------------------------------------------------------------- 

The convergence of this iterative process is usually 
reached in less than 5 iterations yielding the generation 
profile, the losses and eventually a non zero value of PNS for 



the entire system, PNS(N). If the level of losses exceeds a 
reference value, then this particle is penalized with a term 1α  
in the fitness function and if the PNS(N) is not zero, then the 
penalty term 2α  is also introduced in the fitness function. 

Regarding the financial constraints, the developed TEP 
model considers two types of limitations. The first one 
corresponds to the maximum number of projects that can be 
implemented per period. This limit can arise due to financial 
or operational reasons and if it is violated it is included a 
penalty term 3α  in the fitness function. The second one 
corresponds to the maximum investment value over the entire 
horizon and it models a global financial constraint. If it is 
violated, a penalty term4α is included in the fitness function.  

Regarding reliability aspects, the developed approach 
penalizes plans in which the PNS is non-zero for network 
configurations associated to N-1 contingencies. It is also 
possible to include penalties for a selected number of N-2 
contingencies following the indications in the Grid Codes of 
several countries. This evaluation can be modified, extending 
the number of configurations to analyze or, in the limit, to run 
a Monte Carlo simulation for every particle, obviously 
leading to a large increase of the computation time. The 
penalty associated to PNS (N-1) is made using the term 5α . 

Given this information, each solution is characterized by a 
fitness value given by (15), that results from (5) plus additive 
penalty terms in case of violating the maximum admitted 
level of losses, of displaying non zero values for PNS both 
for the entire system and for N-1 contingencies, of exceeding 
the maximum number of projects for each period and finally 
in case of exceeding the maximum investment value. 

( )∑ ∑∑
= ==

++











+=

npd

1pd

5

1t
t

pdnpj

1pj
pd,p

pd
pj,ppj

i
p pendr1/OCK.ICCostX min

 

(15) 

C. TEP Solution Algorithm for Deterministic Loads 

Let us consider the TEP problem assuming that loads are 
modeled by deterministic values. In this case, the TEP 
solution algorithm evolves as follows: 

i. Initialization - the DEPSO is initialized by randomly 
sampling an initial population that is by sampling 
integers from 0 to npd+1 for each position of the matrix 
mentioned in Section III.A; 

ii. Replication - the current population obtained at the end 
of each iteration is cloned twice, so that the algorithm is 
actually working with two populations; 

iii.  Mutation of weights - the Inertia, the Memory and the 
Cooperation weights mentioned in Section II are 
mutated using (4); 

iv. Mutation of the best global - the best global particle is a 
vector with as many positions as the elements of the 
project list. Its npj positions also undergo mutation as a 
way to introduce changes in the current best global 
particle to make a local search around it. To do this, the 
corresponding weight is mutated using (4) and then each 
position j undergoes mutation using (16); 
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v. Recombination - having mutated the Inertia, the 
Memory and the Cooperation weights and some 
positions of the best global so far identified particle, we 
use the same recombination rule of the EPSO (1, 2) to 
compute the movement from iteration i to i+1; 

vi. Lamarkian evolution step – if a zero velocity vector is 
obtained indicating that particle p wouldn’t move when 
going from iteration i to iteration i+1, we introduce a 
Lamarkian step to induce some extra diversity. If that is 
the case, some of its positions are mutated, namely the 
ones regarding which randomly generated numbers 

( )1,0N  take values less than a parameter [ ]1,0kLam ∈ . 
The mutated element in position j of such a particle is 
computed using an expression similar to (16); 

vii. Evaluation of the particles – once all particles are 
mutated, it is computed the value of the evaluation 
function (15) for each of them. This means considering 
the projects in this particle in the corresponding year of 
the planning horizon, running the DC-OPF model (9 – 
13) for each year and checking the physical, financial 
and reliability constraints specified for the problem; 

viii.  Selection – in this step, we go along the two 
populations, we take particle p from population 1 and 
particle p from population 2 and it survives the one 
having better fitness that is the one having the lowest 
value for (15). This tournament scheme yields the new 
population, which corresponds to the output of iteration 
i+1. At the end of this step, the best particle in the new 
population is compared with the current best global 
particle to update the best global so far identified; 

ix. Convergence checking – in this step we check if the 
maximum number of iterations, imax, was completed or 
if a convergence criterium is valid. In the first case, the 
algorithm stops without converging suggesting that a 
larger number of iterations should be done. In the 
second case, the algorithm converges if, for instance, the 
best global particle was not updated for a pre-specified 
number of iterations or if the value of the fitness 
function of the best global particle did not change more 
than a threshold for a pre-specified number of iterations. 
If the algorithm did not stop yet, then it returns to step ii. 

IV.  HANDLING FUZZY TRIANGULAR LOADS 

Uncertainties can be addressed by probabilistic models if 
the events have a random nature and can be repeated under 
the same conditions. In some cases uncertainty reflects 
incomplete data or is implicit in expressions as “larger than”  
or “approximately” that are common in human language. In 
these cases, fuzzy sets are adequate to model propositions as 
“the demand is around 100 MW”. This knowledge can be 
represented by a triangular fuzzy number as the one in Fig. 2.  

 
 
 
 
 
 
 

Figure 2. Illustration of a triangular fuzzy number. 
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The value 100 MW is the most credible one, thus having a 
1.0 membership degree, but the planner doesn’t want to 
completely discard values from 90 to 100 MW and from 100 
to 110 MW. Given the particular shape of these numbers, the 
number in Fig. 2 is denoted by (90.0; 100.0; 110.0) MW. 

Triangular fuzzy loads can be considered in the TEP 
algorithm detailed in Section III.C by introducing an 
enhancement in the Evaluation Step. In the previous 
algorithm the loads were assumed as deterministic that is 
each of them was represented by a real non negative number. 
When looking at a triangular fuzzy number as the one in Fig. 
2, we can see that the deterministic analysis corresponds to a 
particular case of the fuzzy load situation. In fact, the 
combination of load values each of them associated with the 
membership degree of 1.0 corresponds to a deterministic 
situation. Regarding the number in Fig. 2, this would mean 
using the value of 100.0 MW for this load. Then, the 
algorithm in Section III.C evolves evaluating each particle in 
the population just using this deterministic load combination. 

If now we are using triangular fuzzy loads, we can start 
discretizing each triangular fuzzy number in a number of α -
cuts that is intervals of load values with membership degree 
not inferior than α . In the developed solution algorithm we 
adopted the 0.0 and 0.5 cuts. For the number in Fig. 2, these 
cuts correspond to [ ]0.100;0.90  and[ ]0.105;0.95 . Then, for each 
particle in the population, the DC OPF model (9-13) is run 
considering the load combinations formed by the extreme 
values of each of these cuts to check if the associated plan 
can still accommodate these load combinations with zero 
PNS values. If non zero values for PNS are obtained for any 
of these combinations, then a new positive penalty term in 
introduced in (15) meaning that this particle is associated 
with an expansion plan that is exposed to load uncertainties, 
namely if load combination different from the deterministic 
case are considered. This new penalty term changes the value 
of the evaluation function thus affecting the selection step of 
the algorithm in Section III.C. 

V. RESULTS 

The approach described in Sections III and IV was tested 
using several networks, namely networks that are commonly 
used as reference ones in TEP studies. In the first place, it 
was tested using the 6 bus Garver network, originally 
described in [25]. For this network we conducted single 
period and multiperiod analysis and the results are reported in 
[21]. Just for illustration of the quality of the results that were 
obtained for the Garver network, the graphs in Fig. 3 
characterize the convergence of the DEPSO algorithm. The 
algorithm was run 100 times for populations having 10, 20, 
30, 50 and 80 particles and each curve indicates the 
percentage of runs that lead to the optimal final configuration 
as the number of iterations increases. As an example, for a 10 
particle population the convergence was more difficult, but in 
94% of cases reached the optimum in 100 iterations. The 
performances for 20 and 30 particles were very similar, and 
the performances for 50 and 80 particles were also relatively 
close. For populations with 30 particles the optimum plan 
was obtained in 95% of the runs after 42 iterations, while 
with 80 particles we get similar results in just 20 iterations. 

 

 

 

 

 

 

 

 

Figure 3 – Results for a multiperiod analysis for the Garver network. 

Then, the DEPSO algorithm was tested using the IEEE 24 
bus RTS system [26]. Regarding this system, the demand was 
set at 8,550 MW and the installed generation capacity is 
10,215 MW, 3 times more than the original values in [26]. 
This increase is in line with the values used by many 
researchers and is explained given that the original values 
lead to a very lightly loaded system. The list of possible 
expansion projects is partially displayed in Table I including 
for each branch the extremes nodes, the resistance, reactance, 
transmission capacity and investment cost. In this case we 
admitted that already existing corridors were used. The 
resistance and reactance of the new branches correspond to 
the ones of the already existing branches in the same corridor. 

TABLE I – PARTIAL LIST OF POSSIBLE NEW BRANCHES. 

Br 
no 

From 
bus 

To 
bus 

Resist. 
(pu) 

React. 
(pu) 

Cap. 
(MW) 

Cost 
(106$) 

1 3 24 0,0000 0,4195 400 500 
2 9 11 0,0000 0,4195 400 500 

3 10 11 0,0000 0,4195 400 500 

4 10 12 0,0000 0,4195 400 500 

… … … … … … … 

24 20 23 0,0140 0,1080 500 300 

25 11 13 0,0305 0,2380 500 660 

26 12 13 0,0305 0,2380 500 660 

27 11 14 0,0305 0,2380 500 580 

28 14 16 0,0250 0,1945 500 540 

The planning exercise was done considering a 4 year 
horizon and a 5% yearly load increase. The DEPSO was run 
considering deterministic loads in the first place and 
populations of 30, 100 and 150 particles. The best plans 
identified in these three runs are as follows: 

- 30 particles – period 1 - line 10-12, line 1-5, line 6-10, 
line 7-8, line 11-13; period 2 - line 2-6, line 7-8; period 3 - 
line 11-13; investment cost 2599.16 M$; 

- 100 particles - period 1 - line 10-12, line 1-5, line 6-10, 
line 7-8, line 11-13; period 2 - line 7-8; period 3 - line 11-
13; period 4 - line 2-6; investment cost 2527.44 M$; 

- 150 particles - period 1 - line 10-12, line 1-5, line 6-10, 
line 7-8, line 11-13; period 2 - line 7-8; period 4 - line 3-
14, line 16-17; investment cost 2427.72 M$; 

Apart from the 5% yearly demand rate, the DEPSO 
algorithm was then run considering uncertainties. To do this, 
the crisp previous loads were assigned the 1.0 membership 
level and the extreme values of the 0.0 cut of each triangular 



number were set at 0.95 and 1.05 of the crisp value. The main 
conclusions that were obtained in this analysis are as follows: 

- running the DEPSO for a 100 particle population, the 
particles in the final population proved to be very robust 
in accommodating the demand uncertainties; 

- this means that among the 100 final particles, only 19% of 
them displayed non zero PNS and the corresponding 
evaluation function was therefore penalized; 

- among these ones, it was concluded that solutions that did 
not include neither a new line 1-5 nor a new line 11-23 in 
the expansion plan were very prone to the demand 
uncertainties and were in general less robust; 

- using a 100 particle population, the best expansion plan 
coincides with the one identified in the deterministic 
demand analysis indicated above. This ultimately means 
that for the specified level of uncertainty of %5± , the best 
expansion plan identified in the deterministic exercise is 
still very robust when admitting demand uncertainties;  

- as a final test, the best plan was subjected to larger 
demand uncertainties of %10± . As a result, non zero 
PNS values occurred, indicating a degradation of the 
robustness of the plan. If the planner wanted to 
accommodate %10± demand uncertainties, then a plan 
having larger investment cost would have to be adopted as 
a way to regain robustness. 

VI.  CONCLUSIONS 

This paper details a multiyear mixed integer optimization 
problem for TEP that is solved using a discrete version of the 
Evolutionary PSO algorithm. The tests that were conducted 
showed that it is important to model this problem in a 
multiperiod way in order to maintain an holistic view on the 
entire planning horizon. On the other hand, uncertainties 
should be addressed in this type of problems to get more 
insight on the merits of each candidate plan thus allowing the 
decision maker to take more robust and less risky decisions. 
As a whole, the developed approach can contribute to give 
more insight on the merits of possible expansion plans thus 
allowing taking more sounded investment decisions. 
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