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ABSTRACT This research delves into the role of the quantum Fisher Information Matrix (FIM) in
enhancing the performance of Parameterized Quantum Circuit (PQC)-based reinforcement learning agents.
While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the
quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov
Decision Processes, is less clear. Through a detailed analysis of Löwner inequalities between quantum and
classical FIMs, this study uncovers the nuanced distinctions and implications of using each type of FIM. Our
results indicate that a PQC-based agent using the quantum FIM without additional insights typically incurs
a larger approximation error and does not guarantee improved performance compared to the classical FIM.
Empirical evaluations in classic control benchmarks suggest even though quantum FIM preconditioning
outperforms standard gradient ascent, in general it is not superior to classical FIM preconditioning.

INDEX TERMS Quantum Policy Gradients, Fisher Information, Quantum Reinforcement Learning,
Natural Policy Gradients

I. INTRODUCTION
Reinforcement Learning (RL) emerged as a pivotal tech-
nology in modern artificial intelligence, driving progress in
diverse fields Subramanian et al. [2022], Sutton and Barto
[1998]. Deep RL, in particular, exceeded human performance
in complex tasks, demonstrating its efficacy in games like
Atari, Go, and No-limit poker, among others. The integration
of RL and Deep Neural Networks (DNNs) placed positioning
RL at the forefront of AI for complex sequential tasks in
uncertain environments Russell and Norvig [2020]. RL’s
strength lies in its ability to allow software agents to adapt
and optimize decision-making in unknown environments.
This versatility has led to significant applications in health-
care, autonomous driving, and robotics Arulkumaran et al.
[2017].

In the landscape of RL, the inception of the Natural Policy
Gradient (NPG) algorithm Kakade [2001] marks a seminal
advancement. This algorithm addresses stability and sample
complexity issues – identified as intrinsic shortcomings of
traditional policy gradient methods Sutton et al. [1999],
Williams [1992]. Specifically, NPG enhances the stability of
policy gradient methods by preconditioning the gradient with
the inverse of the Fisher Information Matrix (FIM), facilitat-
ing updates directly in the policy space and thereby emerging
as a highly sample-efficient RL algorithm Agarwal et al.

[2021]. However, the efficacy of NPG is still tethered to the
curse of dimensionality, exacerbated by the estimation and
inversion of the FIM. This limitation catalyzed the evolution
of various NPG derivatives, including Trust Region Policy
Optimization (TRPO) Schulman et al. [2017a] and Proximal
Policy Optimization (PPO) Schulman et al. [2017b], which
have been crucial in advancing Deep RL.

Quantum RL models, employing Parameterized Quantum
Circuits (PQCs) demonstrated empirically superior sample
complexity in addressing fully visible environments com-
pared to a subset of conventional DNNs, as evidenced in
standard classical control benchmarking scenarios Chen et al.
[2020], Jerbi et al. [2021], Meyer et al. [2023b], Sequeira
et al. [2023], Skolik et al. [2022]. In Cherrat et al. [2023],
the authors elucidated that certain PQC-based policies, com-
posed of compound layers, are devoid of barren plateaus,
rendering them conducive for financial tasks such as hedging,
where deep RL proves instrumental in real market frame-
works. Moreover, a quadratic separation in gradient estima-
tion between classical and quantum RL models, provided
oracle access to environmental dynamics, was established
in Jerbi et al. [2022]. In Meyer et al. [2023a], the authors
demonstrate empirically that a PQC-based agent doing gradi-
ent updates preconditioned by quantum FIM, has better per-
formance compared to standard euclidean updates. Despite
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these strides, a number of questions remain: Can the sample
complexity of PQC-based policies be surely improved by
employing quantum natural gradients Stokes et al. [2020]?
What is the actual role of the quantum FIM? This paper aims
at contributing to address these questions through exploiting
well-known Löwner inequalities Meyer [2021] between the
classical and quantum FIM and its impact in the regret of
a PQC-based agent. These questions pivots on the potential
of quantum NPG as a possible alternative to the classical
NPG algorithm, with the prospect of significantly impacting
practical applications. This is particular relevant in quan-
tum control Niu et al. [2019], in which the transition from
classical to quantum natural gradients opens a perspective
of exploration, potentially harboring enhanced algorithmic
stability and sample complexity, thus elevating the robustness
and efficiency of RL frameworks.

RELATED WORK
In Meyer et al. [2023a] it was empirically demonstrated
within the contextual bandits framework that PQC-based
policies, performing gradient updates preconditioned by
the quantum FIM, exhibit enhanced sample complexity
and training stability in comparison to standard Euclidean
updates. However, the efficacy of quantum natural policy
gradients in broader RL domains beyond contextual bandits,
particularly in conventional Markov Decision Processes,
remains unexplored. Furthermore, a comprehensive under-
standing of the quantum FIM’s role, as juxtaposed with
the classical FIM employed in the original NPG algorithm
Kakade [2001], is yet to be attained. Given the distinct
nature of these two information matrices, a pivotal question
emerges, which becomes crucial to our investigation:

Does a PQC-based agent accrue tangible benefits from
employing updates in state-space with the quantum FIM as
opposed to updates in policy-space with the classical FIM?

CONTRIBUTIONS
This paper seeks to elucidate the aforementioned query by
harnessing well-established Löwner inequalities between the
two information matrices Meyer [2021]. Subsequently, we
delineate inequalities concerning the regret of PQC-based
agents employing natural gradients preconditioned by both
the classical and quantum FIMs. In summary, our main
contributions are:
∗ In the absence of additional insights regarding the na-

ture of the information matrices, a PQC-based agent
using the quantum FIM will have a large approximation
error compared to the classical FIM and in general not
assuring an enhanced regret and thus poorer sample
complexity.

∗ If the square root of the information matrices is con-
sidered rather than the conventional inverse, the larger
approximation error mentioned above could be com-
pensated. However, this does not inherently imply the
attainment of the optimal policy.

∗ The performance of PQC-based policies resorting to
natural gradients was empirically examined in standard
classic control benchmarking environments Sutton and
Barto [1998], with gradient preconditioning using 1) the
inverse and 2) the square root inverse of the information
matrices. It was not observed a substantial improvement
when considering the quantum FIM inverse. However,
if the square root inverse is employed, the quantum FIM
provides an improved sample complexity compared to
the square root of classical FIM preconditioning. This
indicates that in this setting the matrix compensates for
the approximation error.

∗ Sample complexity analysis for the estimation of both
quantum and classical FIM, indicates that the quantum
FIM is independent of the total number of actions of
a given environment, as opposed to the classical FIM.
This may be interesting in large action spaces, where
samples are expensive to obtain.

Section II provides a comprehensive introduction to policy
gradient methods and elaborates on the PQC-based policies
under consideration. Section III forms the crux of this paper,
introducing the QNPG algorithm and discussing key lemmas
pertaining to the significance of the quantum FIM in NPG
optimization. Section IV details the experimental framework
and shares the findings from these experiments. The paper
concludes with Section VI, where we summarize our findings
and explore potential avenues for future research.

II. QUANTUM POLICY GRADIENTS
Policy Gradients aim to learn a parameterized probability
distribution over actions given states, a policy denoted as
π(a|s, θ), where θ ∈ Rk represents the parameter vector of
size k, s ∈ S denotes the state and a ∈ A the action. The
main goal is to perform gradient ascent on a performance
metric J(θ):

θi+1 = θi + η∇θiJ(θi) (1)

The REINFORCE algorithm Williams [1992] is the sim-
plest policy gradient algorithm, that estimates the gradient
of samples obtained from N trajectories of length T—also
known as the horizon - under the parameterized policy, as in
Equation (2).

∇θJ(θ) =
1

N

N−1∑
i=0

T−1∑
t=0

(Gt(τi)− b(sti))∇θ log π(ati |sti , θ)

(2)
where b(sti) is an action-independent control variate also

known as baseline that is subtracted from the return, resulting
in a variance reduction. In this work, the average return was
considered as the baseline, computed by Equation (3).

b(st) =
1

N

N−1∑
i=0

Gt(τi) (3)
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In the sequel, the policy π(a|s, θ) shall be regarded as a
PQC-based policy, i.e. the policy is being generated from the
output of measurements of PQC’s. Specifically, two formu-
lations of such a policy be: the Born policy (Definition II.1)
and the softmax-policy (Definition II.2).

Definition II.1. Let s ∈ S be a state embedded in an n-qubit
parameterized quantum state, ψ(s, θ), where θ ∈ Rk. The
probability associated to a given action a ∈ A in the Born
framework is given by:

π(a|s, θ) = ⟨Pa⟩s,θ = ⟨ψ(s, θ)|Pa|ψ(s, θ)⟩ (4)

where the Hilbert space is partitioned into |A| disjoint sub-
spaces spanned by the computational basis states and Pa is a
projection into the subspace associated with action a.

Definition II.1 presents the most general definition Born
policy. However, there could be partitions that do not take
into account every eigenstate. In these scenarios, the proba-
bility associated to a given action would not be normalized as
before since

∑
a∈A Pa ̸= I . In this setting the policy would

need to further normalized as follows:

π(a|s, θ) = ⟨Pa⟩s,θ∑
a′∈A⟨Pa′⟩s,θ

(5)

such that
∑

a∈A π(a|s, θ) = 1.

Definition II.2. Let s ∈ S be a state embedded in an n-
qubit parameterized quantum state, ψ(s, θ), where θ ∈ Rk.
Let Oa be an arbitrary observable representing the numerical
preference of action a ∈ A and β the inverse temperature
hyperparameter. The probability associated to a given action
a in a softmax policy is given by:

π(a|s, θ) = eβ⟨Oa⟩s,θ∑
a′ eβ⟨O

′
a⟩s,θ

(6)

O(|A|) different observables may be used to attribute the
action’s numerical preference.

The policy gradient (Equation (2)) is, in its essence, classi-
cal with the exception of the log policy gradient in which the
gradient w.r.t the PQC must be computed. In that regard, the
log policy gradient must be expressed as the gradient of the
expectation value of an observable and the parameter-shift
rule Schuld et al. [2019] can then be applied to compute the
gradient using quantum hardware. Let ⟨O⟩θ be the parame-
terized expectation value of the observableO. The parameter-
shift rule is a hardware-friendly technique to compute the
partial derivative of ⟨O⟩θ w.r.t θ. Explicitly, for gates with
two eigenvalues, it corresponds to:

∂⟨O⟩θ
∂θl

=
1

2

[
⟨O⟩θ+π

2 el − ⟨O⟩θ−π
2 el

]
(7)

where el indicates that the parameter θl is being shifted. The
equality indicates that the partial derivative can be obtained
using two quantum circuit evaluations. Thus, for θ ∈ Rk,
the gradient can be estimated ideally using 2k total quantum

circuit evaluations. However, it is known that the expectation
value itself can be estimated up to additive error O(ϵ−2)
Schuld and Petruccione [2021]. Thus, O(2kϵ−2) quantum
circuit calls are needed. For arbitrary functions of expectation
values like the log policy gradient, the gradient can be ob-
tained via standard chain rule. For the softmax policy, the log
policy gradient takes a peculiar form expressed as a centered
version of the gradient of the expectation values encoding the
numerical preference of each action Jerbi et al. [2021]:

∇θ log π(a|s, θ) = β

[
∇θ⟨Oa⟩s,θ−

∑
a′∈A

π(a′|s, θ)∇θ⟨Oa′⟩s,θ
]

(8)

III. NATURAL GRADIENTS IN POLICY OPTIMIZATION
This section introduces the QNPG algorithm and delineates
its theoretical advantages over the conventional classical
NPG. Initially, we discuss the classical NPG algorithm and
analyze the regret associated with smooth policies Agarwal
et al. [2021]. Subsequently, we propose a reformulation that
incorporates the quantum FIM. The derivation of the regret
bound for the QNPG algorithm is then grounded in estab-
lished Löwner inequalities, which compare the classical and
quantum FIMs, as detailed in Meyer [2021].

NATURAL POLICY GRADIENTS
The Natural Policy Gradient algorithm (NPG) Kakade [2001]
is a rescaled version of the policy gradient that performs
gradient updates in the geometry induced by the information
matrix associated to the policy, the Fisher Information matrix
(FIM) as follows:

θt+1 ← θt + ηF−1∇θV
πθ (ρ) (9)

where F is the average FIM on the sampled states and actions
under policy πθ as follows:

F = Es∼dπθ ,a∼π(·|s,θ)
[
∇θ log π(a|s, θ)∇θ log π(a|s, θ)T

]
(10)

where dπθ is the distribution of states generated under policy
πθ. Notice that F is positive-definite i.e., F > 0, however in
practice due to instabilities in approximating the information
matrix, the inverse F−1 is replaced by the Moore-Penrose
pseudoinverse F † and regularization is often considered. The
notion of regret is often considered in RL algorithms as a
measure of the difference between the policy being followed
and an hypothetical optimal policy. Specifically, regret is
computed as the difference between the expected reward of
an optimal policy and the reward garnered by the agent’s
policy over a specified number of episodes or time steps as
follows,

T∑
t=1

(V ∗(st)− V π(st)) (11)

where V ∗(st) denotes the value function under the optimal
policy for state st at time t, and V π(st) denotes the value
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function under the policy π employed by the agent. In Agar-
wal et al. [2021] the authors established a regret bound for
the NPG algorithm considering a general class of smooth
parameterized policies. The regret lemma is restated below
for completeness.

where d̃ is the distribution of states generated under
the comparison policy π̃.

∥∥w(t)
∥∥
2

is the norm of the
vector resulting of the multiplication of the inverse of
the classical FIM, F , by the gradient vector, w(t) =
F−1∇θ log π

(t)(a|s, θ). ϵt is the approximation error at time
step t derived from compatible function approximation Sut-
ton et al. [1999]. Lemma III.1 can thus be utilized in the
context of PQC-based policies should these policies respect
smoothness conditions. Recall that a function f : Rk 7→ R is
β-smooth if for all (x, x′) ∈ Rk Agarwal et al. [2021]:

∥∇f(x)−∇f(x′)∥2 ≤ β ∥x− x
′∥2 (14)

The smoothness of both Born and Softmax policies is estab-
lished in Jerbi et al. [2022] through the Gevrey condition.
Since π(a|s, θ) ∈ [0, 1] and in the context of RL, where
the action is being sampled from the policies probability
distribution, it implies that π ∈ (0, 1].

QUANTUM NATURAL POLICY GRADIENTS
The Quantum Natural Policy Gradient algorithm (QNPG)
is obtained by replacing the classical FIM with the QFIM,
here represented as F . Restricting ourselves to pure quantum
states, the QFIM takes the common form Meyer [2021]:

Fij = 4Re
[
⟨∂θiψ|∂θjψ⟩ − ⟨∂θiψ|ψ⟩⟨ψ|∂θjψ⟩

]
(15)

In the context of machine learning, a data-dependent QFIM is
needed. Therefore, considering again dπθ as the distribution
of states generated under parameterized policy, the data-
dependent QFIM becomes:

Fij = Es∼dπθ 4Re
[
⟨∂θiψ(s, θ)|∂θjψ(s, θ)⟩−

⟨∂θiψ(s, θ)|ψ(s, θ)⟩⟨ψ(s, θ)|∂θjψ(s, θ)⟩
]

(16)

where dπθ is the distribution of states generated under
policy πθ. Notice that in practice, the empirical QFIM is thus
obtained from a finite set of states in a trajectory T , obtained
under policy πθ. It is crucial to understand the differences
between the FIM and QFIM. Since they are information
matrices, they capture what happens in the neighbourhood
of a parameter θ of a given parameterized model by a dis-
tance measure. Their difference resorts to what distances are
considered within the two different spaces. FIM considers the
distance between probability distributions i.e., policies in the
context of RL. Thus, the FIM gives information about how
the policy changes when infinitesimal changes are performed
on a parameter. QFIM, on the other hand, considers distances
in the space of quantum states. Thus, it gives information on
how the parameterized quantum state changes, given a slight
variation of a parameter.

QFIM AS A METRIC FOR POLICY OPTIMIZATION
At first glance, one should say that the FIM is more relevant
for policy optimization since it captures changes directly in
the policy space. However, even though the QFIM is not
actually capturing information in the policy space it could
be of independent interest since the policy in our case is
derived from the quantum state itself. The use of QFIM in
policy gradients can be understood as having different impact
depending on the type of PQC-based policy employed. For
that matter, consider the Softmax policy as presented in
Definition II.2. In its most general form it is comprised of
O(|A|) different expectation values encoding numerical pref-
erences. This makes building the connection between QFIM
and expectation value of observables a non-trivial and non-
intuitive task. On the other hand, the Born policy (Definition
II.1) is derived from projective measurements. Recall that
QFIM is derived from the fidelity distance between quantum
states Meyer [2021]. Thus, there is an intricate connection
between QFIM and the Born policy. For that reason let us
start with the Born policy.

Consider a normalized Born policy π(a|s, θ) = ⟨Pa⟩s,θ as
defined in Definition II.1. Let w.l.g Va be the set of eigen-
states associated with action a. The policy can be expressed
as:

π(a|s, θ) =
∑
v∈Va

⟨ψ(s, θ)|v⟩⟨v|ψ(s, θ)⟩

=
∑
v∈Va

|⟨v|ψ(s, θ)⟩|2 (17)

Recall that QFIM is a metric that describes changes in
state space under variation of θ Haug and Kim [2021] which
means that:

|⟨ψ(s, θ)|ψ(s, θ + δ)⟩|2 = 1− 1

4
Fijδiδj (18)

This has a clear impact on policy optimization since the
policy is captured in the same way as projectors onto a
partition of basis states. More importantly recall that classical
FIM corresponds to the information matrix associated to the
probability distribution generated from the measurement of
the quantum state where we could say that the measurement
M = {Pa} where Pa is the ath outcome of the experiment,
corresponds to the partition of action a. In this setting, the
following matrix inequality Meyer [2021] applies:

F ≤ F (19)

Inequality (19) expresses the Löwner inequality of posi-
tive semi-definite matrices Bhatia [1997] i.e., F − F ≥ 0
has only non-negative eigenvalues. The inequality indicates
that QFIM is always an upper bound for any information
matrix obtained from the outcome of measurements in a
parameterized quantum state. The equality happens once the
parameterized quantum state prepares a classical probability
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Lemma III.1 (NPG Regret Lemma Agarwal et al. [2021]). Fix a comparison policy π̃ and a state distribution ρ. Assume for
all s ∈ S and a ∈ A that log π(a|s, θ) is a β-smooth function of θ. Consider π(0) the uniform distribution for every state and
the sequence of weights w(0), . . . , w(T ) satisfying

∥∥w(t)
∥∥
2
≤W . Let ϵt be the approximation error at time t:

ϵt = Es∼d̃Ea∼π̃(·|s,θ)

[
A(t)(s, a)− w(t) · ∇θ log π

(t)(a|s, θ)
]

(12)

Then the regret at time step t is upper bounded by:

min
t<T

{
V π̃(ρ)− V (t)(ρ)

}
≤ 1

1− γ

(
log |A|
ηT

+
ηβW 2

2
+

1

T

T−1∑
t=0

ϵt

)
(13)

distribution. The matrix inequality forms the basis for the
separation in terms of agent’s regret presented in this work.

The NPG objective is optimizing the policy under the
log policy gradient, which is slightly different compared to
standard quantum natural gradient objective. Nevertheless,
recall that natural gradients indeed perform gradient updates
using adaptive step sizes, and for that matter if we expand the
log policy gradient as ∇log(π) = ∇π

π , we could embed the
resulting denominator into an adaptive learning rate η′ = η

π ,
resulting in approximately the same objective as in standard
quantum natural gradient. Thus, for the Born policy QFIM
has a direct impact from the state space to the policy space.

For the Softmax policy though the situation is not so
intuitive. Recall that to build the policy requires estimating
the expectation values of O(|A|) observables. Therefore,
Inequality (19) lost meaning in this scenario since the clas-
sical FIM would not be generated from the output of a
fixed quantum measurement but from a distribution obtained
from O(|A|) possibly different expectation values. However,
recall that the softmax policy was originally considered to
overcome the lack of greediness control in the Born pol-
icy Jerbi et al. [2021]. That is, at time step T for some
environment we could already know everything about the
reward function but nonetheless, the type of parametrization
could for instance not allow for deterministic policies. For
that reason, the Softmax policy is usually considered where
an hyperparameter β control its greediness. In this setting,
instead of considering the most general softmax formulation
and have O(|A|) expectation values of operators in multiple
bases, the observable could then simply be the projectors
considered in the Born policy, i.e. ⟨Oa⟩ = ⟨Pa⟩. In this
scenario, expanding the log policy gradient leads to the NPG
gradient update for the Softmax policy in Equation (20),
where Pa is the projector into a partition of basis states Va.

QFIM would then have the same impact in policy opti-
mization, however taking into consideration every action as
opposed to the Born policy, and modifying the update to
take a centered version of the natural gradient into account.
Even though Inequality (19) would not in principle apply in
this scenario, we would expect such gradient update to be
beneficial nonetheless in policy optimization. It remains to
be seen in practice the actual role of the QFIM in policy
optimization under the Softmax policy.

QFIM FOR IMPROVED REGRET
The NPG regret Lemma III.1 establishes that the regret of
agent that uses an arbitrary and smooth parameterized policy
is dependent on the vector norm ||w||2 and the compatible
function approximation error ϵt. Thus, to establish bounds on
the regret dependently on the information matrix employed,
it would suffice to establish bounds on the norms and the
approximation errors presented in the regret lemma, induced
by those information matrices. Let us start with the norms.
Let ||wF ||2 and ||wF ||2 be the 2-norm induced by QFIM
and classical FIM, respectively. The goal of this section is
to clarify in which conditions we have the norm inequality

||wF ||2 ≤ ||wF ||2 (21)

Thus indicating that the regret associated to PQC-based
agent employing NPG optimization benefits from consider-
ing the QFIM as the metric instead of the classical FIM.

Let F and F be two positive semi-definite matrices such
that F ≤ F i.e., F − F ≥ 0 has only non-negative eigen-
values. Let v = ∇θ log πθ(a|s, θ). Let ||wF ||2 = ||F−1v||2
and ||wF ||2 = ||F−1v||2 be 2-norm induced by the FIM and
QFIM, respectively. Thus:

F ≤ F ̸⇒ ||wF ||2 ≤ ||wF ||2 (22)

for all v ∈ Rk. That is, the matrix inequality does not
readily imply the vector norm inequality for every gradient
vector. Moreover, notice that we are considering positive
semi-definite matrices, but the inequality actually considers
the inverses and not the pseudoinverses. However, in practice,
both QFIM and FIM are ill-conditioned and thus they need
to be regularized before inversion i.e., F = F + ϵI where I
is the identity and ϵ > 0 is the regularization term. For that
reason, let us consider the inverses from now on. The Löwner
partial order inequality guarantees the reverse inequality for
the inverses of positive (semi-)definite matrices.

F ≤ F iff F−1 ≥ F−1 (23)

Thus, the inequalities (23) can be used to establish the
conditions for which the desired vector norm inequality in
Equation (21) is reached.

From the definition of positive semi-definite matrices we
have that for any vector v ∈ Rk the following applies:

vTFv ≥ 0 and vTFv ≥ 0 (24)
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ηF−1∇θ log π(a|s, θ) = ηβ

[
F−1∇θ⟨Pa⟩s,θ −

∑
a′∈A

π(a′|s, θ)F−1∇θ⟨Pa′⟩s,θ
]

(20)

which implies that

F ≤ F =⇒
{
vTFv ≤ vTFv
vTF−1v ≥ vTF−1v

(25)

Recall that 2-norm ||Fv||22 =

(
Fv

)T(
Fv

)
and since in

this case both information matrices are Hermitian (F = FT )
then,

||Fv||22 =

(
Fv

)T(
Fv

)
= vTFTFv = vTF 2v (26)

since F = FT . Thus, the vector norm inequality that we have
been seeking implies the matrix norm inequality

||Fv||22 =⇒ F 2 ≤ F2 (27)

which is not guaranteed in general if the Löwner inequality
F ≤ F is all we have. That is, in general

F ≤ F ̸⇒ F 2 ≤ F2 (28)

The implication would be guaranteed if either F or F is
idempotent i.e., {0, 1} would be their only eigenvalues and
the only non-singular matrix (full-rank) would be the identity.
This restricts the set of information matrices and thus the
set of PQCs needed for the vector norm inequality to be
guaranteed. For instance, the PQC

|ψ(θ)⟩ =
n⊗

i=1

cos(θi)|0⟩+ sin(θi)|1⟩ (29)

has F = I which would apply. However, it is also true that
in this case F = F thus entailing equality. Therefore, the de-
sired norm inequality would not be in general guaranteed just
from the matrix inequality of information matrices. However,
notice that the expansion in Equation (26) can also be taken
into account considering F

1
2 instead of F . Thus,

||F 1
2 v||22 = v

(
F

1
2 v

)T(
F

1
2 v

)
= vTF

1
2
T
F

1
2 v = vTFv

(30)
and since vTFv ≤ vTFv and vTF−1v ≥ vTF−1v the
vector norm inequality is guaranteed:

||F− 1
2 v||22 ≥ ||F− 1

2 v||22 ⇐⇒ F ≤ F (31)

Therefore, a norm inequality depends on the type of informa-
tion matrix inverse considered. In summary:
∗ (F−1,F−1) - If the standard inverses are considered

then the norm inequality is not in general guaranteed,
since F ≤ F ̸⇒ ||wF ||2 ≤ ||wF ||2, and further
information about these matrices is needed.

∗ (F− 1
2 ,F− 1

2 ) - Norm inequality is guaranteed since
||F− 1

2 v||22 ≥ ||F− 1
2 v||22 ⇐⇒ F ≤ F . However

its actual utility in solving a RL problem is unknown.

This result motivates the use of a Generalized Quantum
Natural Policy Gradient (GQNPG) algorithm, which for φ ∈
[0, 1], the GNQPG algorithm performs the following update:

θt+1 ← θt + ηF−φ∇θV
πθ (ρ) (32)

In Haug and Kim [2021], the authors suggest a similar
update for the standard gradient ascent considering QFIM
as metric. The authors suggest that φ = 1

2 constitutes a
intricate optimization strategy. As previously described, the
standard QFIM is usually ill-conditioned and requires to
be regularized F = F + ϵI where ϵ > 0 could have a
dramatic impact on sensitivity to parameter updates and lead
to an increase in gradient steps to achieve the convergence
of the algorithm. The authors show that, for φ = 1

2 , QFIM
is intrinsically regularized and thus it is full-rank and does
not need ϵ, once the fidelity cost-function is considered. The
authors observed that for several PQCs the infidelity had a
sharp increase for φ ≥ 0.6 due to ill-conditioned QFIM.
They suggest however that for small infidelities standard
QFIM with ϵ = 0.1 may perform better. However, in the
context of policy gradients, it may be very well the case that
appears in the beginning of training large infidelities i.e.,
the policy being far from the optimal policy are expected.
Thus, the role of φ and the tradeoff between regularization
and performance in the context of RL agents should also be
addressed besides the standard preconditioning considered in
the NPG algorithm.

The approximation error in the regret lemma of Section
III depends on the type of information matrix employed.
Same as before, the inequality between the classical and
quantum information matrices imply an inequality between
the approximation errors induced by these matrices. Recall
that the approximation error at time step t, ϵt is defined as:

ϵt = Es∼d̃Ea∼π̃(·|s)

[
A(t)(s, a)− w(t) · ∇θ log π

(t)(a|s, θ)
]

(33)
For simplicity, let v = ∇θ log π

(t)(a | s) and w(t) be
expanded as a function of the type of information matrix as
before. Let ϵF and ϵF be the approximation errors induced
by the classical and quantum FIMs, respectively. Consider
the difference between the approximation errors induced by
the classical and quantum FIM,

ϵF − ϵF = −wF · v + wF · v
= −F−1v · v + F−1v · v
= −vTF−1v + vTF−1v

= vT (F−1 −F−1)v ≥ 0 (34)
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which implies that the approximation error under quantum
FIM will always be greater than or equal to the approximation
error under classical FIM:

ϵF ≥ ϵF (35)

Therefore, for an agent employing the classical FIM for
precondition the gradient will have a regret less than or equal
to the regret of an agent employing the quantum FIM since
the norm inequality is not guaranteed and the quantum FIM
actually provides a greater approximation error. However,
recall that the Löwner-Heinz inequality Zhan [2002] implies
that:

I ≤ F =⇒ I−
1
2 ≥ F− 1

2 (36)

since for any 0 ≤ r ≤ 1, Ir ≤ Fr. The approximation error
of the square root of classical FIM is then also less than or
equal to the square root of quantum FIM,

ϵ
F

1
2
≥ ϵ

F
1
2

(37)

Therefore, even though the approximation error persists, the
regret can be compensated by the norm inequality using the
square root of the information matrices. It remains to see
in practice now, if the approximation error increases due
to quantum FIM can actually be compensated by the norm
inequality, since this depends heavily on the problem at hand.
The results are summarized in Table 1.

F/F ||wF ||2 ≤ ||wF ||2 ϵF ≤ ϵF Improved regret
F−1/F−1 No No No

F− 1
2 /F− 1

2 Yes No ?

TABLE 1. Summary of results. The first column indicates the type of
information matrix considered. The second and third columns indicate wether
the norm and approximation error inequalities are guaranteed, respectively.
The fourth column indicates if the regret is improved.

IV. PERFORMANCE EVALUATION IN BENCHMARKING
ENVIRONMENTS
In this section, we assess the efficacy of the GQNPG algo-
rithm, as introduced in Section III, using two classical control
benchmarking environments Sutton and Barto [1998]. We
selected the Cartpole and Acrobot environments due to their
compact state-action spaces, which have previously been
efficiently addressed using PQC-based policies Jerbi et al.
[2021].

The Cartpole environment features a four-dimensional
state space with two potential actions, while the Acrobot
environment has a six-dimensional state with three available
actions. Notably, in the Acrobot environment, four of the
features represent the sine and cosine values of the two
joint angles. To optimize training time and reduce the PQC
size, we limited the state representation to the angles, thus
reducing it to four features. Consequently, both environments
utilize the PQC depicted in Figure 1, as proposed by Jerbi
et al. [2021], albeit with different layer configurations and
measurement strategies. A comprehensive characterization of

the environment and the PQC configurations can be found in
Table 4 and Table 5, respectively. We investigated both Born

FIGURE 1. The parameterized quantum circuit used in the numerical
experiments. Data reuploading is consistent with Jerbi et al. [2021], but input
scaling was excluded to improve the estimation of the Quantum FIM matrices.

and Softmax PQC-based policies as discussed in Section II.
Simple computational basis measurements were employed to
link quantum measurements to their respective policies. For
the Cartpole, a single-qubit projector was used. We perform
a global measurement decomposition using an ancilla Meyer
et al. [2023b] and associate each basis state to an action. For
a ∈ {0, 1}, the Born policy is defined as:

π(a|s, θ)cartpole = ⟨ψ(s, θ)|a⟩⟨a|ψ(s, θ)⟩ (38)

In contrast, for the Acrobot, a mod − 3 Born policy was
adopted. In this case, each qubit is measured in the compu-
tational basis. Let b ∈ {0, 1}n be a n-qubit computational
basis state and int(b) its decimal representation. The basis
state is associated with action a if int(b) mod 3 = a. For
a ∈ {0, 1, 2}, the Born policy is defined as:

π(a|s, θ)acrobot =

int(b) mod 3=a∑
b∈{0,1}n

⟨ψ(s, θ)|b⟩⟨b|ψ(s, θ)⟩ (39)

For the Softmax policy, while the same projectors as in
the Born policy were employed, the probability serves as a
numerical preference for a specific action. This preference
is subsequently processed by the softmax function to yield a
probability distribution over actions. It is important to note
that the Softmax policy introduces an inverse temperature
hyperparameter, β, which influences the policy’s greediness,
a feature absent in the Born policy. The optimal β value is
environment-specific and typically identified through hyper-
parameter tuning. In our study, we adopted a linear annealing
schedule for β, starting at 1 and culminating in the final β
value as suggested in Jerbi et al. [2021].

Performance outcomes for five different optimizers in the
Cartpole and Acrobot environments are depicted in Figures
2 and 3 respectively. The following optimizers were consid-
ered:
∗ Adam: Utilizes the standard Adam optimizer with a

learning rate of 10−2.
∗ NPG: Employs the standard NPG algorithm with clas-

sical FIM.
∗ NPG φ = 0.5: Uses the NPG algorithm with the square

root of the classical FIM.
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FIGURE 2. Performance of the NPG algorithm (and its generalized quantum counterpart) in the Cartpole environment. Subfigures (a) and (b) represent the
performance of Born and Softmax policies using the cumulative reward as the evaluation metric.

FIGURE 3. Performance of the NPG algorithm (and its generalized quantum counterpart) in the Acrobot environment. Subfigures (a) and (b) showcase the
performance of Born and Softmax policies using cumulative reward as a performance measure.

∗ GQNPG: Integrates the NPG algorithm with quantum
FIM.

∗ GQNPG φ = 0.5: Adopts the NPG algorithm with the
square root of the quantum FIM.

The optimizers’ performances were benchmarked using
the cumulative reward metric, plotted on the y-axis, against
the total episode count on the x-axis. Each optimizer’s per-
formance was averaged across 50 trials, with each figure
displaying a 10-episode running mean and a shaded region
representing the standard deviation of the experiments.

Given the deterministic nature of the environments, actions
consistently lead to the same observed states and rewards.
Furthermore, in accordance with the NPG regret lemma,
we employed a zero-initialization approach concerning the
parameters of the PQC to effectively have an uniform policy
at the beginning of training. This means every parameter in
the PQC illustrated in Figure 1 was initialized at zero, and
since the employed PQC is composed by an initial chain
of Hadamard gates, it ensures that policy is in fact uniform
and moreover, the variance of the algorithm could solely be
attributed to the agent’s sampled trajectories.

Our experiments utilized Pennylane’s quantum simulator
Bergholm et al. [2022] with PyTorch-based automatic differ-
entiation. For replication purposes, our work can be accessed
through the following GitHub repository QNPG.

A direct comparison between the Born and Softmax poli-

cies for the Cartpole environment is available in Figures
2(a) and 2(b). Notably, the Softmax agents exhibit superior
and more consistent performance compared to their Born
counterparts. This advantage is attributed to β and the ability
to regulate the policy’s greediness, an ability the Born policy
lacks Jerbi et al. [2021]. Both policies demonstrate negligible
performance variation across different optimizers. However,
slight advantages for the GQNPG algorithm in the Born
policy could be observed, although these may be a result
of statistical variances. A key observation is that gradient
preconditioning, regardless of using quantum or classical
FIMs, yields similar results. Such result indicate that in
this context, updates in state space could be as effective as
updates in policy space. That is, the quantum FIM obtained
from infinitesimal distances between quantum states is as
efficient as the classical FIM which is obtained from infinites-
imal distances between policies directly.

Figures 3(a) and 3(b) depict the performance registered in
the Acrobot environment for the Born and Softmax policies,
respectively. The Acrobot environment with three actions and
a slightly more complex reward function becomes a more
complex environment to be solved compared to Cartpole.
Such complexity difference implies a more clear separation
in optimizer performance compared to the Cartpole. It can
be immediately observed that in this case, for both policies,
not every variant of natural optimizers performed better than
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the standard Adam. However, there is a clearer separation
between the performance associated to the classical NPG
and GQNPG optimizers. In this setting, the classical NPG
has more evidently better convergence even though for this
environment there is not a clear condition in which the envi-
ronment is considered solved. Thus, the asymptotic behavior
is used here to attribute that the classical NPG algorithm ne-
cessitates slightly fewer episodes to reach an asymptote in the
cumulative reward. Moreover, both optimizers seem to agree
in the same policy after 500 episodes. Furthermore, it is more
clear as well that in the Born policy, the GQNPG algorithm
with φ = 0.5 performs better than the NPG algorithm with
φ = 0.5. In this setting, however, the same conclusion can
be reached for the Softmax policy even though the matrix
inequalities can not be guaranteed, observed as before. It is
curious to observe that in this scenario, the unregularized
NPG with φ = 0.5 after a great learning period of around
200 episodes seems to saturate and perform worse than the
Adam optimizer.

The results obtained experimentally shined a light at the
need to test PQC-based policies with different natural opti-
mizers in even more complex environments characterized by
multiple state-action spaces and reward functions to be able
to further conclude about the efficacy of quantum FIM based
natural policy gradient algorithms.

V. COMPARATIVE ANALYSIS FOR THE ESTIMATION OF
INFORMATION MATRICES
In this section, we draw a comparison in terms of the re-
sources needed to compute quantum and classical FIM’s. The
chosen metric to characterize the resources is the number
of quantum measurements or quantum circuit executions
required to estimate the information matrices. This way, a
sample complexity analysis can be made and a possible sep-
aration between the two natural gradients assessed. Sample
complexity in this context has a specific meaning. It cor-
responds to the total number of quantum circuit executions
and not to the total number of episodes needed to solve an
environment, as in standard RL notation.

A. SAMPLE COMPLEXITY OF ESTIMATING CLASSICAL
FIM
Recall that the classical FIM is represented as the outer
product of the gradient of the log policy averaged through
the sampled trajectories,

F = Es∼dπθ ,a∼π(·|s,θ)
[
∇θ log π(a|s, θ)∇θ log π(a|s, θ)T

]
(40)

where dπθ is the state distribution under the policy πθ.
Since the gradient of log policy is needed, the sample com-
plexity is actually dependent on the type of policy employed.
Let us start discussion with the Born policy.

FIM - BORN POLICY
The Born policy is represented as a probability distribution
over a partition Va of computational basis states, as presented

in Section III. Notice, however, that complexity depends on
this partition. In its most general form we could π(a|s, θ) =
⟨Pa⟩s,θ =

∑
v∈Va
⟨Pv⟩s,θ with Va = 2n

|A| . This is similar
to the representation of the Born policy employed in the
Acrobot environment in Section IV, with the exception that
the number of actions is not even and the partition does not
perfectly correspond to 2n

|A| . Nevertheless, note that in the
Cartpole environment the policy is even more simple than
before since a single-qubit is considered. The log policy
gradient can be expanded in this case using parameter-shift
rules, as follows,

∂θ log π(a|s, θ) =
∑
v∈Va

∂θ⟨Pv⟩s,θ
⟨Pv⟩s,θ

=
∑
v∈Va

⟨Pv⟩s,θ+π
2
− ⟨Pv⟩s,θ−π

2

⟨Pv⟩s,θ
(41)

It is known that for an ϵ-approximation to the probability
O(ϵ−2) circuit executions are needed Schuld and Petruccione
[2021]. Ignoring the approximation error, the total number of
independent quantum circuits needed to estimate the gradient
is three. Since the probability itself was already estimated for
the estimation of the policy, the partial derivative can indeed
can be reduce to two quantum circuit calls. Each projector
is a linear expectation value depending on 2n

|A| partitions.
However, since the policy is estimated from finite shots, the
number of actions does not influence the number of quantum
circuit calls and can be neglected. Therefore, since the FIM is
a k × k matrix for θ ∈ Rk, we need O(2k2) quantum circuit
executions. Recall that in practice we can use the symmetry
of the matrix to further reduce the the number of calls.

FIM - SOFTMAX POLICY
Assume, for simplicity, that the same projectors as in the
Born policy are considered as action’s numerical preferences,
but are otherwise irrelevant. Recall the log policy gradient
expansion:

∇θ log π(a|s, θ) = ∇θ⟨Pa⟩s,θ −
∑
a′∈A

π(a′|s, θ)∇θ⟨Pa′⟩s,θ

(42)
Thus, the Softmax policy depends on the total number of
actions |A| to estimate the derivative w.r.t a single parameter.
Thus, using parameter-shift rules for estimating the partial
derivatives of projectors as above, for θ ∈ Rk, we need
O(2|A|k2) quantum circuit executions, in the worst case.

B. SAMPLE COMPLEXITY OF ESTIMATING QUANTUM
FIM
Recall that the quantum FIM obtained from the infinitesimal
distances between quantum states as represented in Equation
(16) depends on the quantum state only. Thus, it can be
immediately concluded that the sample complexity of esti-
mating quantum FIM will not be dependent on the policy and
thus on the total number of possible actions associated with
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an environment. Importantly, an entry of the quantum FIM,
Fij can be obtained from the estimation of four independent
overlaps, as proposed in Meyer [2021] shifting the respective
parameters i, j:

Fij = − 1
2

(∣∣〈ψ(θ) | ψ (θ + (ei + ej)
π
2

)〉∣∣2
−
∣∣〈ψ(θ) | ψ (θ + (ei − ej)

π
2

)〉∣∣2
−
∣∣〈ψ(θ) | ψ (θ − (ei − ej)

π
2

)〉∣∣2
+
∣∣〈ψ(θ) | ψ (θ − (ei + ej)

π
2

)〉∣∣2)
(43)

where ej is the unit vector along the θj axis. Thus, for θ ∈
Rk, we need O(4k2) quantum circuit executions to estimate
the quantum FIM. It seems that the estimation of the quantum
FIM may be significantly cheaper compared to that of the
classical FIM in the context of using a Softmax policy since
every possible action must be taken into account to estimate
the classical FIM. However, since the quantum FIM produces
updates directly in state-space instead of policy-space, such
a difference in sample complexity can be neglected in terms
of the actual ability in solving the environment as discussed
in Section IV.

Environment Policy FIM QFIM

Cartpole Born 65 504
Softmax 65 504

Acrobot Born 65 504
Softmax 65 504

TABLE 2. Comparison of FIM and QFIM values for different environments and
policies

Table 2 summarizes the number of quantum circuit calls
(ignoring the number of shots, for simplicity) required to
estimate both the FIM and QFIM for the environments
and policies considered in the numerical experiments. The
number of quantum circuit calls was estimated using Pen-
nylane’s tracker functionality. To ensure a fair comparison,
only a single time step interaction with the environment was
considered instead of full episodes. This was done because
episodes can have different lengths, which would imply a
varying number of quantum circuit calls, complicating the
analysis.

Table 2 clearly demonstrates that the QFIM is more expen-
sive to estimate in the environments considered previously.
However, notice that both the Born and Softmax policies
have the same number of quantum circuit calls to estimate the
FIM, which does not show dependence on the action space.
This is true in this case because for the Softmax policy, we are
considering the same projectors as in the Born formulation
but with a Softmax post-processing activation, introducing
the greediness control parameter. Thus, we can conclude that
the estimation of the empirical FIM does not depend on the
action space if we either consider a Born policy or a Born
policy with a Softmax post-processing activation. However,
in general, the Softmax policy will be composed of |A| ex-
pectation values of arbitrary Hermitian observables encoding

the numerical preference of each action. In this setting, the
number of quantum circuit calls is expected to depend on
the number of actions. Let us consider the most general case
in which we have |A| non-commuting observables. Table
3 shows the number of quantum circuit calls required to
estimate the FIM and QFIM as a function of the number of
actions. The number of qubits in this setting is fixed at n = 4
to keep the same circuit with the same number of parameters
as previously.

|A| Policy FIM QFIM

2 Born 65 504
Softmax 130 504

3 Born 65 504
Softmax 195 504

4 Born 65 504
Softmax 260 504

5 Born 65 504
Softmax 325 504

6 Born 65 504
Softmax 390 504

7 Born 65 504
Softmax 455 504

8 Born 65 504
Softmax 520 504

TABLE 3. Comparison of FIM and QFIM resources for different action spaces.
The number of qubits in this setting is fixed at n = 4 to keep a fair comparison
with previous experiments.

Table 3 clearly demonstrates that the number of quantum
circuit calls to estimate the FIM increases with the number of
actions for the Softmax policy, as expected. Moreover, note
that for n = 4, the circuit is composed of k = 32 parameters,
and for |A| = 8, the sample complexity of estimating the
FIM is already superior relative to the QFIM. This is a clear
indication that the QFIM can indeed be more efficient to
estimate depending on the number of parameters and actions.
Therefore, there can be real-world scenarios where the user
has access only to a limited number of resources, enabling
the QFIM to be more efficient to estimate than the FIM.
Nonetheless, the actual utility of the QFIM in solving the
environment still needs to be further investigated.

VI. CONCLUSION
In this paper, we reported a series of experiments aiming
at comparing the effectiveness of natural policy gradients
preconditioned by the quantum Fisher Information Matrix
(FIM) with those preconditioned by the traditional classi-
cal FIM. Our findings indicate that considering a quantum
FIM preconditioning leads to a larger approximation error.
However, when utilizing the square roots of the information
matrices, the square root of the quantum FIM could compen-
sate the approximation error with the gradient vector norm
which leads to a reduction in regret relative to its classical
counterpart. Note however, that this advantage may not al-
ways translate into near-optimal policy. This hypothesis was
tested in standard control benchmark settings, confirming
that the preconditioning of the quantum FIM with its square
root inverse leads to better sample efficiency over the square

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2024.3418094

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://docs.pennylane.ai/en/stable/code/api/pennylane.Tracker.html


Author et al.: Preparation of Papers for IEEE Transactions on Quantum Engineering

root of the classical FIM preconditioning. Conversely, using
the full inverse for quantum FIM preconditioning did not
significantly outperform the classical approach. It is impor-
tant to note that our sample complexity analysis revealed
that unlike the classical FIM, the quantum FIM’s estimation
is not affected by the size of the action space in a given
environment, which presents a notable distinction between
the two. Further investigation is necessary, particularly in
environments with large action spaces since these are not
easily solved with current quantum technologies, to fully
determine the practical efficacy of quantum natural policy
gradients. This will be a focus of future research, along with
the investigation of approximations of quantum FIM Beckey
et al. [2022], Stokes et al. [2020]. The role of the quantum
and classical FIM in the trainability of PQC-based policies is
also a promising avenue for future research.
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Environment State Action Reward function Horizon Termination criteria
Cartpole 4 features 2 actions A = {0, 1} +1 per time step 200 time steps Reach horizon or out

of bounds
Acrobot 4 features 3 actions

A = {0, 1, 2}
-1 + height 500 time steps Reach goal or horizon

TABLE 4. Characterization of the environments considered in the numerical experiments.

Environment Policy Layers Observables Batch Size

CartPole Born 4 {P0, P1} 10
Softmax 4 {P0, P1} 10

Acrobot Born 5 Pa =∑int(b) mod 3=a
b∈{0,1}n |b⟩⟨b|

10

Softmax 5 Pa =∑int(b) mod 3=a
b∈{0,1}n |b⟩⟨b|

10

TABLE 5. Characterization of the PQC’s considered in the numerical experiments. Pi indicates the projector in the computational basis in decimal. For the
Cartpole environment a single-qubit was measured and the probability of each basis state associated to an action. In the Acrobot environment, the action
assignmment was made using int(b) mod 3 = a for a particular basis state b.
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