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Abstract—By using Dynamic Binary Translation, instruction
traces from pre-compiled applications can be offloaded, at
runtime, to FPGA-based accelerators, such as Coarse-Grained
Loop Accelerators, in a transparent way. However, scheduling
onto coarse-grain accelerators is challenging, with two of current
known issues being the density of computations that can be
mapped, and the effects of memory accesses on performance.
Using an in-house framework for analysis of instruction traces,
we explore the effect of different window sizes when applying
list scheduling, to map the window operations to a coarse-grain
loop accelerator model that has been previously experimentally
validated. For all window sizes, we vary the number of ALUs
and memory ports available in the model, and comment how
these parameters affect the resulting latency. For a set of
benchmarks taken from the PolyBench suite, compiled for the
32-bit MicroBlaze softcore, we have achieved an average iteration
speedup of 5.10x for a basic block repeated 5 times and scheduled
with 8 ALUs and memory ports, and an average speedup of
5.46x when not considering resource constraints. We also identify
which benchmarks contribute to the difference between these two
speedups, and breakdown their limiting factors. Finally, we reflect
on the impact memory dependencies have on scheduling.

I. INTRODUCTION

Ever since CPUs stopped achieving significant single-thread
performance gains, alternative ways to achieve higher perfor-
mance in terms of execution time, such as adopting multi-
core CPUs, have been sought [1]. At the same time, edge and
embedded computing devices started to become widespread,
which lead to increasing demands for energy efficiency. Find-
ing hardware solutions that accommodate these performance
targets is, therefore, of paramount importance. One of these
solutions pertains to the usage of heterogeneous systems
to accelerate applications, with System-on-a-Chip platforms
(SoCs) comprised of a multi-core CPU and a a reconfigurable
fabric (such as an FPGA) being of particular relevance. These
SoCs allow for applications to achieve better performance in
both metrics by utilizing the FPGA to accelerate performance-
critical segments, achieving a lower execution latency at a
fraction of the energy cost.

This adoption of generalized parallelism and heterogeneous
computing, however, is difficult, as most applications are not

developed with these characteristics in mind, and often cannot
even be recompiled. Binary translation of applications arises
as a solution to this problem by allowing a binary compiled for
one specific Instruction Set Architecture (ISA) to be executed
on another platform, be it a CPU with a different ISA or an
FPGA accelerator. Binary translation can be either static [2]
or dynamic (DBT) [3]. The former analyzes the program’s
executable, while the latter analyzes its execution trace.

This work focuses on DBT. We consider an heterogeneous
system with a CPU and an FPGA, in which a program executes
on the CPU and is dynamically accelerated by offloading trace
segments to an accelerator on the FPGA. More specifically, we
evaluate the translation of instruction trace windows, which
capture multiple repetitions of a loop’s basic block onto a
Coarse-grained Loop Accelerator, which is a single row CGRA
with a single fully connected row of ALUs and memory ports
connected via crossbar, and with full access to the system
memory [11]. We use a software model for this analysis, as
this accelerator was already validated by an on-chip implemen-
tation [4], and focus only on the effects of scheduling different
volumes of workload (by capturing larger instruction windows)
onto the model, for different counts of available resources.
We list schedule the repeated blocks onto our model, and
vary both the number of repetitions and the model parameters
(i.e., number of ALUs and memory ports). We evaluate the
effect of an increasing number of repetitions on the total
execution latency, as more repetitions of a loop’s body may
contain more operations independent from each other, which
can execute in parallel. Our main focus is, then, to provide
a study focused on how scheduling these multiple repetitions
can increase the computational density on the accelerator, and
how its functional units can scale for larger repetition values.

II. RELATED WORK

Ansaloni et al. [7] explore how to optimize the mapping of
computations onto a CGRA by mapping expressions rather
than single operations. These so-called Expression-Grained
Reconfigurable Arrays (EGRAs) have cells that can be recon-
figured in order to implement a set of operations and their
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interconnects, and their study centers around exploring the
granularity of these cells.

Lee et al. [8] focus on reducing the energy cost of modulo-
scheduled CGRAs, which are also used to accelerate loops, by
using compression in order to reduce the size of the CGRA’s
configuration. In particular, we note the simplifications per-
formed over a data flow graph in order to prune data that is
produced by some operations but never used by others.

Finally, Liu et al. [9] focus on accelerating loop nests
with CGRAs, while using an automatic optimizer to find
an appropriate resource configuration for a given application.
That configuration is chosen through design space exploration
using different properties retrieved from data flow graphs and
the scheduling results.

III. EXTRACTION AND SCHEDULING OF REPEATED BASIC
BLOCKS

We retrieve instruction trace windows via our binary trans-
lation tools [5]. Decoded execution traces are fed dynamically
into the framework’s window extraction and analysis modules,
wherein we implemented the instruction scheduling. For our
analysis, the extraction of instruction windows is based on de-
tection of loop iterations. The smallest valid window contains
one loop iteration, i.e., basic block. Larger windows permit the
capture of multiple repetitions, implicitly providing a given
level of loop unrolling.

From a repeated basic block, we generate a data flow graph.
This graph is comprised of vertices that represent arithmetic
operations, memory accesses, registers and constants, and its
edges represent the flow of data between the vertices. Figure 1
shows the data flow graph of a basic block with no repetitions.
Our analysis steps compute the critical path length of the
graphs (highlighted in red in Fig. 1), which is useful to
establish an upper bound for an ideal scheduling scenario. By
analyzing the basic block’s inputs and arithmetic expressions,
we are also able to establish guards to ensure that the iterations
we repeat execute, or to safely abort if there is a violation.
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Fig. 1. Data flow graph of the first basic block detected in the 2mm
benchmark, with the critical path highlighted in red

We apply several passes over the graph to remove in-
formation not relevant for scheduling, such as intermediary
registers and constants, converting the data flow graph onto a
dependency graph. The removal of these vertices can lead to
disjointed subgraphs, as two separate chains of computations
may occur completely in parallel, despite using the same
input. We also remove the branching operations, as the checks
previously determined help guarantee correctness. The final
dependency graph contains only the vertices that incur on a

latency cost and that can be scheduled onto the accelerator’s
resources (arithmetic operations and memory accesses), as
well as the dependencies between these vertices.

Using the dependency graph, we can then schedule it onto a
set of accelerator resources: Arithmetic Logic Units (ALUs),
which can implement both integer and floating-point arith-
metic operations, and memory ports, capable of implementing
memory reads and writes. This accelerator has been described
in our previous work [4]. Scheduling is done using a list
scheduling algorithm, based on the definition provided by [6].
We order our vertices by their distance, in terms of total
latency, to the roots of the graph, and with the number of
successors as a tie-breaking heuristic. We have adapted the
algorithm to use the two kinds of resources we considered
(ALUs and memory ports), and accepts as parameters the
different amounts of each resource, in order to generate
different schedules.

IV. EXPLORATION OF DIFFERENT WINDOW SIZES

In order to perform our analysis, we select 18 bench-
marks from the PolyBench benchmark suite, compiled for
the MicroBlaze 32-bit softcore microprocessor, using GCC’s
optimization level -O2 and floating-point datatypes. Execution
streams are produced for each benchmark, and we find all
basic blocks that repeat at least 5 times and with a maximum
size of 200 instructions per repetition.

We evaluate the achievable speedups by list-scheduling
up to 5 repetitions of each block for an optimistic case,
where all memory accesses are considered to no alias, and
for a conservative case, where all memory dependencies are
enforced. We determine memory dependencies by analysis of
the order that each memory operation should execute in order
to preserve correctness in terms of Read-After-Write, Write-
After-Read and Write-After-Write accesses.

Table I shows the result of this detection, using only a single
repetition (i.e., the basic block itself). A total of 51 distinct
basic blocks are detected, with an arithmetic mean of 11.9
instructions per block and a standard deviation of 4.5. Table I
also shows that many benchmarks, such as 2mm, 3mm and adi,
have multiple basic blocks representing loop iterations, while
others, such as trmm and doitgen, only have a single basic
block. On average, arithmetic operations outnumber memory
accesses in a 3:1 proportion.

We build instruction sequences by repeating each basic
block found up to 5 times (i.e., from 1 to 5 instances of
the instruction sequence in each block). We then schedule the
respective dataflow graphs.

For each dataflow graph (51 × 5 = 255 in total), we
perform scheduling under different resource constraints. All
configurations are represented as (ALUs,MemoryPorts)
pairs. We use a configuration without resource limits as a
theoretical upper bound, which is equivalent to the latency
of the data flow graph’s critical path. Finally, we choose five
different configurations within these bounds, as shown in Fig.
2.
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TABLE I
SUMMARY OF THE BASIC BLOCKS DETECTED IN EACH POLYBENCH

BENCHMARK

Benchmark #Basic Blocks Avg. Inst Avg. Arith Avg. Mem

2mm 5 12.20 9.80 1.40
3mm 5 12.20 9.80 1.40
adi 5 16.20 10.80 4.40
atax 3 8.33 5.67 1.67
bicg 3 11.33 7.00 3.33
covariance 3 8.33 5.33 2.00
doitgen 1 12.00 10.00 1.00
fdtd2d 1 19.00 15.00 3.00
gemm 2 10.50 6.50 3.00
gemver 4 11.25 6.50 3.75
gesummv 1 16.00 7.00 8.00
mvt 4 10.75 7.75 2.00
nussinov 3 6.67 4.33 1.00
symm 1 18.00 11.00 6.00
syr2k 3 15.67 10.00 4.67
syrk 3 11.67 7.33 3.33
trisolv 3 10.33 7.67 1.67
trmm 1 12.00 8.00 3.00

All 51 11.88 8.14 2.73

Avg. Inst Average Instructions per block, Avg. Arith Average arithmetic
operations per block, Avg. Mem Average memory accesses per block

After scheduling the data flow graphs using all of these
configurations, we then calculate the latency of an iteration,
in cycles, by dividing the number of schedule stages by the
number of repetitions. Then, we calculate the speedup on an
iteration in relation to the results achieved by the original
binary segment running on a MicroBlaze CPU with the same
clock.
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Fig. 2. Average speedup of a iteration across all benchmarks when using
different repetitions and resource configurations

Figure 2 shows the average speedup achieved by all bench-
marks, using each window size and each configuration, when
measured against the latency of an iteration on a MicroBlaze
CPU.

For a single iteration, additional resources do not lead to
significant speedups. The largest speedup increase occurs be-
tween (2,4) and (4,2), for all repetitions. This can be explained
by the 3:1 ratio between arithmetic operations and memory
accesses we previously identified, as the (2, 4) configuration

TABLE II
DECREASE IN AVERAGE SPEEDUP WHEN CONSIDERING ALL MEMORY

DEPENDENCIES

Repetitions (2,4) (4,2) (4,4) (8,4) (8,8) Un.

1 4.0% 4.0% 4.3% 4.3% 4.4% 4.4%
2 19.2% 23.6% 23.9% 24.3% 24.4% 24.4%
3 22.1% 30.0% 30.8% 32.2% 32.4% 32.8%
4 23.5% 34.2% 35.2% 36.9% 37.0% 37.5%
5 23.5% 34.4% 35.1% 39.3% 39.5% 40.4%

Un. Unrestricted, (ALUS, MemPorts)

does not have enough ALUs to readily scale with so many
arithmetic operations. By adding more ALUs using the (4, 2)
configuration, arithmetic operations can be scheduled sooner,
which reflects on the increased speedups. Increasing memory
ports is not as critical, as our accelerator implements memory
accesses with a latency of 2 cycles per access, while the
latency of the ALUs may vary depending on the operation
scheduled onto them.

When it comes to the repetitions, we can observe that
the speedup increases with a higher number of repetitions
for these three configurations, but with a notable exception:
using 4 repetitions leads to a slightly better speedup than 5
repetitions. While these configurations can schedule a DFG
with 4 repetitions with good results, the number of resources
on those configurations may not be enough to handle the extra
operations and memory accesses of the additional repetition,
which causes them to be scheduled later than ideal, and leading
to a lower overall speedup.

As for configurations (8, 2), (8, 4) and (8, 8), there are
still steady speedup gains for repetitions 3, 4 and 5. The extra
resources present in these configurations successfully alleviate
the restriction previously found when using 5 repetitions,
as the number of available resources can now handle the
added demand of having 5 repetitions. These configurations,
however, may not be ideal, as an accelerator with these many
resources starts to strain the FPGA’s area and energy efficiency,
while also adding additional complexity to the interconnects
between different resources.

Focusing now on Tab. II, we can see the impact that
considering all memory dependencies has on the achievable
speedup gains. We compare our main approach, which as-
sumes memory accesses do not alias, against a pessimistic
approach where every Read-after-Write, Write-after-Read and
Write-after-Write dependencies are assumed to alias. When
considering these restrictions, we can see that speedups are,
on average, between 20% and 40% lower than their optimistic
counterparts.

At last, we notice that, for all repetition values except the
first, the configuration with the highest amount of resources
still cannot achieve an average speedup matching that of
the unrestricted version, with the gap widening with higher
repetition values. But since these speedups are an average
between all benchmarks, we need to look at each benchmark
individually: for 5 repetitions, we report that 36 basic blocks
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TABLE III
BREAKDOWN OF THE RESOURCES NECESSARY FOR ALL BASIC BLOCKS TO

REACH OPTIMAL SPEEDUP, WHEN CONSIDERING 5 REPETITIONS

Benchmark BBID (24, 20) (30, 26) Unrestricted

adi BB3 6.04 6.04 6.04
adi BB4 8.33 10.55 10.55
adi BB5 10.37 10.37 10.37
bicg BB3 10.23 10.23 10.23
covariance BB3 5.31 5.31 5.31
fdtd2d BB1 13.90 13.90 13.90
gemm BB2 7.27 7.27 7.27
gemver BB1 5.33 5.33 5.33
gemver BB4 7.59 7.59 7.59
gesummv BB1 10.00 10.48 10.48
symm BB1 7.29 7.29 7.29
syr2k BB2 8.29 8.29 8.29
syr2k BB3 8.29 8.29 8.29
syrk BB2 7.29 7.29 7.29
syrk BB3 7.71 7.71 7.71

BBID Basic Block ID, (ALUS, MemPorts)

already achieve the optimal speedup with a (8, 8) configura-
tion, with the remaining 15 basic blocks falling behind. We
identify these basic blocks in Tab. III, and proceed to analyze
how many more resources are needed to close the gap for all
benchmarks. Using a configuration of (24, 20), we manage to
stabilize the speedup of 13 basic blocks, with only the second
basic block of adi and the only basic block of gesummv failing
to do so by a small margin, and requiring a configuration of
(30, 26) to finally converge.

V. CONCLUSION

This paper provides an analysis of how expanding our trace
window to capture multiple repetitions of a loop’s basic block
can improve the efficiency of the hardware acceleration of
those loops. We schedule these repeated basic blocks onto
a Coarse-grained Loop Accelerator with different numbers of
single-cycle ALUs and memory ports, in line with our previous
hardware implementations. While previous work performed
modulo scheduling over a single iteration of loop traces, in
this work we briefly evaluate the list scheduling of a number
of loop basic block repetitions, in practice unrolling the loop,
and report on how the speedup evolves when increasing both
the number of repetitions and resource configurations.

We identify three main takeaways. Firstly, high repetition
values are not desirable if the number of available resources
is not enough to meet the demand, which causes operations to
wait in a ready state before being scheduled. For an accelerator
with up to 4 resources of each type, which is feasible to
implement, it is more advantageous to use 4 repetitions instead
of 5.

Secondly, we note that accelerators should focus on pro-
viding as many ALUs as possible, as arithmetic operations
usually far exceed the number of memory accesses, and being
able to schedule these as soon as possible leads to the biggest
speedup gains.

Finally, we have also looked into how close our schedules
were to the optimal scenario in an accelerator without resource

constraints: only 29% of our benchmarks failed to achieve that
speedup using the highest resource configuration we allowed,
(8, 8), which shows that our approach in terms of resource
constraints provides a good compromise when it comes to
obtaining a high speedup while keeping an efficient hardware
design. We have also considered the impact that memory
dependencies have on scheduling, as our approach assumed
that no memory access alias. While the most pessimistic
approach can still produce significant speedups, we consider
ongoing work to develop ways to disambiguate some memory
accesses during scheduling.

It is also worth noticing that this study is part of a larger
project that aims to accelerate, in real time, different kinds
of binary segments, such as Basic Blocks, Superblocks and
Megablocks, detected on traces with different instruction sets,
such as MicroBlaze, RISC-V and ARM. We see this study
as a way to explore, at an early stage, the impact of one of
the possible transformations we may perform over instruction
traces, in order to achieve better speedups. Other types of
analysis, such as real-time dependence tracking and detecting
memory access patterns, are considered ongoing work.

ACKNOWLEDGMENT

This work was supported by the PEPCC project,
“PTDC/EEI-HAC/30848/2017,” financed by Fundação para a
Ciência e Tecnologia (FCT).

REFERENCES

[1] Paulino, N., Ferreira, J. & Cardoso, J. Improving Performance and Energy
Consumption in Embedded Systems via Binary Acceleration: A Survey.
ACM Comput. Surv.. 53 (2020,2), https://doi.org/10.1145/3369764

[2] Paek, J., Choi, K. & Lee, J. Binary Acceleration Using Coarse-Grained
Reconfigurable Architecture. SIGARCH Comput. Archit. News. 38, 33-39
(2011,1), https://doi.org/10.1145/1926367.1926374

[3] Rokicki, S., Rohou, E. & Derrien, S. Hardware-accelerated dynamic
binary translation. Design, Automation & Test In Europe Conference
Exhibition (DATE), 2017. pp. 1062-1067 (2017)

[4] Paulino, N., Ferreira, J. & Cardoso, J. Generation of Customized Acceler-
ators for Loop Pipelining of Binary Instruction Traces. IEEE Transactions
On Very Large Scale Integration (VLSI) Systems. 25, 21-34 (2017)

[5] Paulino, N., Bispo, J., Ferreira, J. & Cardoso, J. A Binary Translation
Framework for Automated Hardware Generation. IEEE Micro. 41, 15-23
(2021)

[6] Cooper, K. & Torczon, L. Chapter 12 - Instruction Scheduling.
Engineering A Compiler (Second Edition). pp. 639-677 (2012),
https://www.sciencedirect.com/science/article/pii/B9780120884780000128

[7] Ansaloni, G., Bonzini, P. & Pozzi, L. Design and Architectural Explo-
ration of Expression-Grained Reconfigurable Arrays. 2008 Symposium
On Application Specific Processors. pp. 26-33 (2008)

[8] Lee, H., Moghaddam, M., Suh, D. & Egger, B. Improving Energy
Efficiency of Coarse-Grain Reconfigurable Arrays Through Modulo
Schedule Compression/Decompression. ACM Trans. Archit. Code Optim..
15 (2018,3), https://doi.org/10.1145/3162018

[9] Liu, C. & So, H. Automatic Soft CGRA Overlay Customization for
High-Productivity Nested Loop Acceleration on FPGAs. 2015 IEEE
23rd Annual International Symposium On Field-Programmable Custom
Computing Machines. pp. 101-101 (2015)

[10] Guha, A., Vedula, N. & Shriraman, A. Deepframe: A Profile-Driven
Compiler for Spatial Hardware Accelerators. 2019 28th International
Conference On Parallel Architectures And Compilation Techniques
(PACT). pp. 68-81 (2019)

[11] Paulino, N., Ferreira, J. & Cardoso, J. Trace-Based Reconfigurable
Acceleration with Data Cache and External Memory Support. Pro-
ceedings Of The 2014 IEEE International Symposium On Parallel
And Distributed Processing With Applications. pp. 158-165 (2014),
https://doi.org/10.1109/ISPA.2014.29

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:24:12 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-24T12:51:10-0400
	Preflight Ticket Signature




