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Abstract—In a growing number of domains, the provisioning
of end-to-end services to the users depends on the proper
interoperation of multiple products, forming a new distributed
system. To ensure interoperability and the integrity of this new
distributed system, it is important to conduct integration tests
that verify not only the interactions with the environment but
also the interactions between the system components. Integration
test scenarios for that purpose may be conveniently specified by
means of UML sequence diagrams, possibly allowing multiple
execution paths. The automation of such integration tests requires
that test components are also distributed, with a local tester
deployed close to each system component, and a central tester
coordinating the local testers. In such a test architecture, it is im-
portant to minimize the communication overhead during test exe-
cution. Hence, in this paper we investigate conditions upon which
conformance errors can be detected locally (local observability)
and test inputs can be decided locally (local controllability) by
the local testers, without the need for exchanging coordination
messages between the test components during test execution. The
conditions are specified in a formal specification language that
allows executing and validating the specification. Examples of
test scenarios are also presented, illustrating local observability
and controllability problems associated with optional messages
without corresponding acknowledgment messages, races and non-
local choices.

Index Terms—Model-Based Testing; Conformance Checking;
Integration Testing; Distributed Systems; UML.

I. INTRODUCTION

In a growing number of domains, the provisioning of end-to-
end services to the users depends on the proper interoperation
of multiple products (devices, applications, etc.), possibly from
different vendors, forming a new distributed system. Examples
of such systems can range from simple sports monitoring
applications [1] to fall detection systems for seniors [2] that in
the event of an emergency notify formal or informal caregivers.

To ensure interoperability and the integrity of such dis-
tributed systems or systems of systems, it is important to
conduct integration tests that verify not only the end-to-end
communications but also the interactions between the system
components. The verification of interactions between compo-
nents is especially important for improving fault detection and
localization.

Integration test scenarios for that purpose may be conve-
niently specified by means of UML Sequence Diagrams [3]

(SDs), because they are an industry standard well suited for
describing and visualizing the interactions that occur between
the components and actors of a distributed system.

In previous work [2] we proposed an approach and toolset
architecture for automating the testing of end-to-end services
in distributed and heterogeneous systems, comprising a visual
modeling environment and a distributed test generation and
execution engine. In that approach, the only manual activity
required is the description of the participants and behavior of
the services under test with UML SDs, which are automat-
ically translated to a formal notation for efficient test input
generation and conformance checking at runtime.

In our approach, in order to be able to check not only
the interactions with the environment but also the interactions
between the system components, a local tester is deployed
close to each system component, and a central tester co-
ordinates the local testers. In such a test architecture, it is
important to minimize the communication overhead during
test execution, namely in the presence of time constraints. It
is equally important to detect errors as early as possible and
closely as possible to the offending component, to provide
more helpful test reports and facilitate fault localization.

Hence, in this paper we investigate conditions upon which
observed events can be checked locally (local observability)
and the decision of when and what inputs to inject can be
decided locally (local controllability) by the local testers, with-
out the need for exchanging coordination messages between
the test components during test execution. The conditions
are specified in the VDM formal specification language [4]
[5], which allows executing and validating the specification.
Illustrative examples of test scenarios that exhibit different
combinations of the above properties are also presented.

The rest of the paper is organized as follows: section II
presents an introduction to the integration testing of distributed
systems based on UML SDs; Section III presents the problem
of decentralized conformance checking and the conditions for
local observability and controllability; examples of integration
test scenarios that exhibit different combinations of those prop-
erties are presented in section IV; related work is presented
in section V; conclusions and future work are presented in
section VI.



II. MODEL-BASED INTEGRATION TESTING OF
DISTRIBUTED SYSTEMS

In our previous work [2] we proposed a scenario-based
approach for automating the integration testing of end-to-
end services in distributed and heterogeneous systems. Our
approach is based on four main ideas:

• different front-end and back-end modeling notations;
• online (adaptive) model-based testing (MBT) strategy;
• distributed test architecture and algorithms;
• automatic mapping of test results.
Test scenarios are specified using an accessible front-end

notation such as UML SDs, which are automatically translated
to a back-end formal notation suitable for efficient test input
generation and conformance checking at runtime. At the end
of test execution, test results (conformance errors and coverage
information) are mapped back to the front-end notation (see
Figure 1).
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Fig. 1. Architecture for model-based integration testing of distributed systems

We follow an online MBT strategy (also called adaptive
or on-the-fly), to cope with non-determinism common in
distributed systems. In an online strategy, test generation and
execution are performed together, allowing test inputs to be
decided based on the outputs observed so far [6].

In order to be able to check not only the interactions with the
environment but also the interactions between the components
of the system under test (SUT), we follow a hybrid test

architecture, in which a local tester is deployed close to each
system component, and a central tester coordinates the local
testers (see Figure 1). This is more effective than a purely
centralized approach or a purely distributed approach, meaning
that more conformance errors can be detected [7].

As illustrated in Figure 2, in the case of a component under
test (CUT) that interacts with actors in the environment (users
or external applications), the local tester is responsible for
simulating the actors, injecting the inputs from the actors to
the CUT (acting as a test driver) and monitoring and checking
the outputs from the CUT to the actors (acting as a test
monitor). Besides that, it is also responsible for monitoring
all the messages exchanged between that CUT and the rest of
the SUT.

In the case of a CUT that does not interact with the
environment, the local tester is responsible for monitoring and
checking all the messages exchanged between that CUT and
the rest of the SUT, acting as a test monitor. However, a local
tester may also simulate the behavior of a CUT, acting as a
test stub; in that case, it injects the outgoing messages from
that CUT to the rest of the SUT, and monitors and checks the
incoming messages from the rest of the SUT to that CUT.
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Fig. 2. Roles of local testers in the integration testing of distributed systems
based on UML SDs

In such a test architecture, it is important to minimize
the communication overhead during test execution, namely
in the presence of time constraints. It is equally important
to detect errors as early as possible and closely as possible
to the offending component, to provide more helpful test
reports and facilitate fault localization. To that end, besides
the test monitoring and control activities, model execution
and conformance checking activities need also be distributed.
Nevertheless, some coordination messages may still need to
be exchanged between the local testers during test execution.
That will be addressed in the next section.



III. CONDITIONS FOR DECENTRALIZED CONFORMANCE
CHECKING

As previously explained, it is important to minimize the
communication overhead during distributed test execution.
Ideally, after the central tester sets up and initiates the local
testers for a given test scenario (described by a UML SD),
no communication between the test components should occur
during test execution, and the central tester would only need
to receive a verdict from each local tester at the end of
successful test execution or as soon as an error is detected.
However, depending on the test scenario under consideration,
some errors may not be detected locally.

Hence, in this section, we investigate, from a theoretical
point of view, conditions upon which conformance checking
of observed execution traces against the expectations set by an
SD under consideration can be performed by the local testers
alone based on the events observed locally, without the need
to communicate those events to the central tester to ensure
that the final test verdict is correct (local observability). We
also investigate, from a theoretical point of view, conditions
upon which test inputs can be decided locally, without commu-
nication among test components during test execution (local
controllability).

For determining local observability, we do not care how test
inputs are injected, just assume that they are injected by some
mechanism (by the local testers, users or other means) and
that the test input events are observed by the local testers.

Given an SD (describing a test scenario), we determine local
observability in three steps:

• Calculate the valid global traces defined by the SD;
• Determine the valid local traces in each lifeline;
• Determine if there are and which are the invalid SUT

traces that are not locally detectable.
We formalize the conditions for local observability and

controllability with the VDM formal specification language [4]
[5]. This allows executing and validating the specification with
a support tool, such as Overture (http://overturetool.org/). We
use the mathematical notation of VDM, instead of the ASCII
notation. As a preliminary step, we formalize the structure and
semantics of UML SDs. VDM specifications have been used
as an oracle before [8], but not in distributed cases.

A. Valid global traces defined by a UML Sequence Diagram

In UML, an SD is a variant of an Interaction [3]. Figure 3
describes the structure of Interactions in VDM. For simplicity,
we omit the applicable integrity constraints and the definition
of some basic types. An interaction comprises a set of lifelines
(representing in our case CUTs or actors), messages (restricted
in our case to asynchronous messages, although synchronous
messages could easily be handled), and combined fragments
(restricted in this paper to the most common ones). A com-
bined fragment covers a subset of lifelines and is divided in a
sequence of one or more interaction operands; the semantics
is determined by the interaction operator. Co-regions may be
represented by par combined fragments covering the desired

message ends, so we allow messages to cross boundaries of
combined fragments. In each lifeline, the ordering of message
ends and start/finish boundaries of combined fragments and
interaction operands is represented by assigning sequential
natural numbers to their locations. Combined fragments with
the opt and loop operator have only one operand. Operands
of combined fragments with the opt, loop and alt operator
can have a guard.

types 
 
Interaction :: 
  lifelines         : Lifeline-set 
  messages          : Message-set 
  combinedFragments : CombinedFragment-set; 
 
Message :: 
  id           : MessageId         -- unique 
  sendEvent    : LifelineLocation  -- unique 
  receiveEvent : LifelineLocation  -- unique 
  signature    : MessageSignature; -- not necessarily unique 
 
LifelineLocation = Lifeline × Location; 
 
Lifeline ::  
  name : String; 
 
Location = ℕ;  
 
CombinedFragment :: 
  interactionOperator : InteractionOperatorKind 
  operands            : InteractionOperand+ -- seq of 1 or more 
  lifelines           : Lifeline-set; 
 
InteractionOperatorKind = <seq> | <alt> | <opt> | <par> | 
                          <strict> | <loop>; 
 
InteractionOperand :: 
  guard            : [InteractionConstraint] 
  startLocations   : LifelineLocation-set 
  finishLocations  : LifelineLocation-set; 
 
InteractionConstraint :: 
  minint       : [ValueSpecification]  -- used in loops 
  maxint       : [ValueSpecification]  -- used in loops 
  specification: [ValueSpecification];  

Fig. 3. Interactions

In general, the semantics of an Interaction is expressed in
terms of two sets of valid and invalid traces [3]. In this paper,
we don’t handle the rarely used constructs for defining invalid
traces (such as the neg interaction operator), so only the
valid traces are relevant here. A trace is a sequence of event
occurrences [3], corresponding, in this context, to the sending
or receiving of messages at lifelines (Figure 4). We assume that
there is no global clock that allows ordering event occurrences
from different lifelines, so timestamps are not stored in the
event occurrences.

For computing the set of valid traces defined by an Interac-
tion, we start by computing traces with extended information
(see TraceExt in Figure 4). For distinguishing events that
refer to different messages in the SD with the same signature,
we store the unique message identifier together with the event.
To distinguish events that refer to different repetitions of the
same message in loops (possibly nested), we keep an iteration
counter; for example, a message occurring in the third iteration
of the second iteration of a nested loop (inside a top-level loop)
is numbered with the sequence [2, 3].



Trace = Event*; -- seq of 0 or more 
 
Event :: 
  type       : EventType 
  signature  : MessageSignature 
  lifeline   : Lifeline; 
 
EventType = <Send> | <Receive>; 
   
TraceExt = EventExt*;  
 
EventExt :: 
  type       : EventType 
  signature  : MessageSignature 
  lifeline   : Lifeline  
  location   : Location 
  messageId  : ℕ     
  itercounter: ℕ*; -- used in loops, possibly nested 

Fig. 4. Traces

We formalize the semantics of an Interaction by the function
validTraces in Figure 5. Some trivial auxiliary functions
are omitted for simplifying the presentation.

The valid traces with extended information are computed
recursively, following the nested structure of combined frag-
ments. First, the top level events (message ends) that are not
contained inside combined fragments are determined (func-
tion topLevelEvents), and each event generates a trace
containing only that event (function validTracesExt).
The top level combined fragments are also determined, and
the set of valid traces of each combined fragment is recur-
sively computed (see call to expandCombinedFragment
in validTracesExt). Then, the different sets of top-level
traces are combined (function freeComb), generating the set
of valid global traces; the traces are combined preserving the
order of events per trace, lifeline (according to the locations
and iteration counters) and message (send event before the re-
ceive event). We don’t assume FIFO channels, that is message
overtaking may occur (consistently with the UML standard),
but it would be easy to add the FIFO assumption.

The semantics of each type of combined fragment is defined
in Figure 6. The expansion of each operand is similar to the
expansion of the top-level diagram.

In seq, strict and par combined fragments, all
operands represent mandatory behaviors. Traces from consec-
utive operands are combined according to the semantics of
each operator (see seqComb, strictComb and parComb).

The operands of alt and opt combined fragments
represent behaviors that are selected for execution non-
deterministically and/or according to the values of guard
conditions. In this paper, we don’t take into account possible
guard conditions defined, because they shouldn’t limit the set
of possible traces but only the conditions upon which each
trace may be selected. Hence, the sets of valid traces are given
simply by the expandAlt and expandOpt functions.

To keep the model executable, in this paper we restrict our
attention to loops that have defined minimum and maximum
numbers of iterations, so the operand of a loop represents a
behavior that may be repeated a number of iterations chosen
non-deterministically and/or according to a guard condition

functions 
 

validTraces: Interaction  Trace-set 
validTraces(sd) ≜  removeExtraTraceInfo(validTracesExt(sd)); 
 

removeExtraTraceInfo: TraceExt-set  Trace-set  
removeExtraTraceInfo(s) ≜ 

 {[mk_Event(e.type, e.signature, e.lifeline) | e  t] | t  s}; 
 

validTracesExt: Interaction  TraceExt-set 
validTracesExt(sd) ≜   

 freeComb({{[e]} | e  topLevelEvents(sd)} 

 {expandCombinedFragment(sd, c) | c topLevelCombFrag(sd)})); 
 

topLevelEvents: Interaction  EventExt-set 
topLevelEvents(sd) ≜ 
  {mk_EventExt(<Send>, m.signature, m.sendEvent.#1,  

     m.sendEvent.#2, m.id, []) |  m sd.messages   

                 ∄ c sd.combinedFragments contains(c, m.sendEvent)} 

 {mk_EventExt(<Receive>, m.signature, m.receiveEvent.#1, 

     m.receiveEvent.#2, m.id, []) | m  sd.messages   

       ∄ c  sd.combinedFragments  contains(c, m.receiveEvent)}; 
 
-- Given several sets of traces, gives all interleavings of  
-- traces, one from each set, preserving the order of events per 
-- trace, lifeline and message. 

freeComb: TraceExt-set-set  TraceExt-set 
freeComb(ss) ≜  
  if ss = {} then {[]} 

  else let s  ss in  

       ⋃ {freeComb(t1, t2) | t1  s, t2  freeComb(ss \ {s})); 
 
-- Gives all interleavings of two traces that preserve the  
-- order of events per trace, lifeline and message.  

freeComb: TraceExt  TraceExt  TraceExt-set 
freeComb(t1, t2) ≜ 

  if t1 = []  t2 = [] then {t1 ↷ t2} 

  else (if ∃ e  t2  precedes(e, hd t1) then {} 

      else {[hd t1] ↷ r | r  freeComb(tl t1, t2)}) 

      (if ∃ e  t1  precedes(e, hd t2) then {} 

       else {[hd t2] ↷ r | r  freeComb(t1, tl t2)}); 
  

precedes: EventExt  EventExt  𝔹 
precedes(e1, e2) ≜ 

 (e1.messageId = e2.messageId  e1.itercounter = e2.itercounter   

  e1.type = <Send> e2.type = <Receive>) 

 (e1.lifeline = e2.lifeline 

      (e1.location < e2.location  

         e1.location = e2.location  

           precedesIter(e1.itercounter, e2.itercounter))); 

Fig. 5. Valid traces defined by an Interaction

between the specified limits (see expandLoop). Consecutive
iterations are combined in a weak sequencing way as specified
in the UML standard (see iterate). However, the theoretical
approach is also applicable for unbounded loops.

B. Interactions locally observable

Given a test scenario described by a UML SD (interaction),
we next derive the conditions upon which conformance check-
ing of observed execution traces against the expectations set
by the SD can be performed by the local testers alone based on
the events observed locally, without the need to communicate
those events to the central tester to ensure that the final test
verdict is correct. We call interactions with that characteristic
locally observable or locally checkable.

To that end, function uncheckableLocally in Figure 7
determines the global traces that are locally valid but not glob-
ally valid. Conformance checking can be performed locally if
such traces don’t exist (see isLocallyObservable).



expandCombinedFragment: Interaction  CombinedFragment  
TraceExt-set  
expandCombinedFragment(sd, c) ≜ 
 cases c.interactionOperator:  

   <seq>      expandNary(sd, c.operands, seqComb), 

   <strict>   expandNary(sd, c.operands, strictComb), 

   <par>      expandNary(sd, c.operands, parComb), 

   <alt>      expandAlt(sd, c.operands), 

   <opt>      expandOpt(sd, c.operands1), 

   <loop>     expandLoop(sd, c.operands1) 
 end; 
 

expandNary: Interaction  InteractionOperand*  (TraceExt 

TraceExt TraceExt-set)  TraceExt-set 
expandNary(sd, args, comb) ≜ 
 if args = []  then {[]} 

 else ⋃ {comb(t1,t2) | t1 expandOperand(sd, hd args),  

                        t2 expandNary(sd, tl args)}; 
 
-- Weak sequencing of two traces, given by the interleavings that 
-- preserve the order of events per trace and lifeline 

seqComb: TraceExt  TraceExt  TraceExt-set 
seqComb(t1, t2) ≜ 

 if t1 = []  t2 = [] then {t1 ↷ t2} 

 else {[hd t1] ↷ r | r  seqComb(tl t1, t2)}   

      if  e  t1  (hd t2).lifeline e.lifeline then {} 

      else {[hd t2] ↷ r | r  seqComb(t1, tl t2)}; 
 
-- Strict sequencing of two traces, given by their concatenation. 

strictComb: TraceExt  TraceExt  TraceExt-set 
strictComb(t1, t2) ≜ {t1 ↷ t2}; 
 
-- Parallel combination of two traces, given by the interleavings 
-- that preserve the order of events per trace.  

parComb: TraceExt  TraceExt  TraceExt-set 
parComb(t1, t2) ≜ 

 if t1 = []  t2 = [] then {t1 ↷ t2} 

 else {[hd t1] ↷ r | r parComb(tl t1, t2)}   

      {[hd t2] ↷ r | r parComb(t1, tl t2)}; 
 

expandAlt: Interaction  InteractionOperand*  TraceExt-set 

expandAlt(sd, args) ≜ ⋃ {expandOperand(sd,arg) | arg  args}; 
 

expandOpt: Interaction  InteractionOperand  TraceExt-set 

expandOpt(sd, arg) ≜ expandOperand(sd, arg)  {[]}; 
 

expandLoop: Interaction  InteractionOperand  TraceExt-set 
expandLoop(sd, arg) ≜ 
 ⋃  {iterate(expandOperand(sd, arg), n) | 

     n  {arg.guard.minint,..., arg.guard.maxint}}; 
 

iterate: TraceExt-set  ℕ  TraceExt-set 
iterate(s, n) ≜ 
 if n = 0 then {[]} 

 else ⋃ {seqComb(t1,addIterNum(t2,n))|t1  iterate(s,n-1),t2 s}; 
 

addIterNum: TraceExt  ℕ  TraceExt  
addIterNum(t, iter) ≜  

 [(e, itercounter ↦ [iter] ↷  e.itercounter) | e  t]; 
 

expandOperand: Interaction  InteractionOperand  TraceExt-set 
expandOperand(sd, o) ≜  

 freeComb({{[e]} | e  nestedEvents(sd, o)} 

  {expandCombinedFragment(sd, c) | c  nestedCombFrag(sd,o)}); 

Fig. 6. Valid traces defined by combined fragments

By global traces globally valid, we mean the set of
valid traces defined by the SD, as given by the function
validTraces previously derived. By projecting the set
of traces globally valid onto each lifeline, we get the set
of subtraces valid locally in each lifeline (see function
projectTraces).

By global traces locally valid, we mean all the feasible
global traces which projections onto the lifelines yield sub-

-- Determines if conformance checking can be performally locally. 

isLocallyObservable: Interaction  𝔹 
isLocallyObservable(sd) ≜ uncheckablyLocally(sd) = {}; 
 
-- Gives global traces that are locally but not globally valid. 

uncheckablyLocally: Interaction  Trace-set 
uncheckablyLocally(sd) ≜ let V = validTraces(sd) in 
  joinTraces([], projectTraces(V, sd.lifelines)) \ V; 
 
-- Projects a set of traces (T) onto a set of lifelines (L). 

projectTraces: Trace-set  Lifeline-set  (Lifeline 
𝑚
→ Trace-set) 

projectTraces(T, L) ≜ {l ↦  {projectTrace(t, l) | t  T} | l  L}; 
 
-- Projects a trace (t) onto a lifeline (l). 

projectTrace: Trace  Lifeline  Trace 

projectTrace(t, l) ≜ [e | e  t  e.lifeline = l]; 
 
-- Gives the feasible joins of traces from different lifelines, 
-- respecting the order of events per trace and message. The 
-- first argument is an accumulator for already processed events. 

joinTraces: Trace  (Lifeline 
𝑚
→ Trace-set)  Trace-set 

joinTraces(left, m) ≜ 
  if m = {↦} then {left} 
  else ⋃ { ⋃ {if t = [] then joinTraces(left, {l} ⩤ m) 
                                else joinTraces(left ↷ [hd t], m ++ {l ↦ {tl t}}) 

             | t  m(l)  t = []  isFeasible(left ↷ [hd t])} 

          | l  dom m}; 
 
-- Checks if a trace or subtrace is feasible, that is, respects 
-- the fact that messages can only be received after being sent. 

isFeasible: Trace  𝔹 
isFeasible(t) ≜ 

 ∀ i  inds t  ti.type = <Receive>  

  #{j|j{1,...,i} tj.type=<Send>  tj.signature=ti.signature} ≥ 

  #{j|j{1,...,i} tj.type=<Receive> tj.signature= ti.signature}; 

Fig. 7. Determining if interactions are locally observable

traces that are locally valid. By feasible global trace, we mean
any trace (involving events on the SD lifelines) that respects
the fact that messages can be received only after being sent. We
assume that messages may be lost in the transmission channel,
that is, it is possible that a message is sent and not received,
but the opposite is not possible. Since we assume that only
the message signature is guaranteed to be observable, but not
the sender/receiver of the message (in case of receive/send
events, respectively) nor a unique message instance identifier,
in the presence of multiple message occurrences with the same
signature, we can only make sure that, at any given point in
the trace under analysis, the number of ’send’ occurrences is
greater or equal to the number of ’receive’ occurrences (see
function isFeasible).

To promote model executability, we compute (in function
joinTraces) the global traces locally valid from the sub-
traces locally valid. In fact, the global traces locally valid are
given, equivalently, by all the possible combinations (joins) of
valid subtraces, with one subtrace from each lifeline, restricted
to the combinations that yield feasible global traces (in the
sense described previously) and preserve the order of events
per lifeline.

Examples of interactions that can and cannot be checked
locally are shown in section IV.

C. Primitives for local and global conformance checking

For the sake of completeness, we present in Figure 8
the primitives needed to perform incremental conformance



checking locally in each lifeline by each local tester (func-
tion checkNextEvent), and perform a final conformance
check globally, in case needed, by the central tester (function
finalConformanceCheck).

types 
Verdict = <Valid> | <Invalid> | <Inconclusive>; 
 
functions 
-- Checks if the next observed event in a lifeline is valid, 
-- given a (valid) sequence of previously observed events in the 
-- lifeline, and the set of valid traces for the lifeline. 

checkNextEvent: Trace  Event  Trace-set  𝔹 
checkNextEvent(prevEvents, event, validLocalTraces) ≜ 

  ∃ (prevEvents) ↷ [e] ↷ -validLocalTraces  e = event; 
 
-- Final conformance checking, given the observed local traces.  

finalConformanceCheck: Interaction Lifeline 
𝑚
→ Trace) Verdict 

finalConformanceCheck(sd, localTraces) ≜ 
  let V = validTraces(sd), 

    J = joinTraces([], {l↦ {localTraces(l)} | l sd.lifelines}) 

  in if J  V = {} then <Invalid> 

     else if J V then <Valid> 
     else <Inconclusive>; 

Fig. 8. Incremental and global conformance checking primitives

For performing incremental conformance checking, we as-
sume that each local tester receives a specification of the traces
to be accepted locally at the begin of test execution. For
performing final conformance checking in case needed, we
assume that the global tester receives from the local testers
the traces observed locally at the end of test execution.

The decision procedure finalConformanceCheck pro-
duces the verdict Invalid if there is no feasible global trace
corresponding to the observed local traces (computed by
joinTraces) that is also a globally valid trace. The verdict
is Valid if all the feasible global traces corresponding to the
observed local traces are also globally valid traces. Otherwise,
the verdict is Inconclusive.

Based on the definitions given, it is easy to conclude that if a
test scenario is locally observable, inconclusive verdicts cannot
occur (the reverse is not necessarily true). Hence, the addition
of coordination messages between test components to ensure
local observability will also discard inconclusive verdicts.

D. Interactions locally controllable

Given a test scenario described by a UML SD (interaction),
we next derive sufficient conditions upon which the decision
of when and what test inputs to inject can be performed
by the local testers alone, based on the events previously
observed locally, without the need for communication between
the test components during test execution. We say that a test
scenario is locally controllable in case such decisions can be
performed locally, without generating, directly or indirectly,
invalid traces.

We assume that all lifelines behave according to the follow-
ing causality rules:

1) the set of messages that can be sent by a lifeline at
a given point is a function only of the sequence of
previous event occurrences in the lifeline, being the time
for deciding to send a message non-deterministic;

2) messages can only be received after being sent, being
the transmission time non-deterministic and the lifelines
input-enabled (that is, always able to receive inputs, even
if they are internally stored for later processing);

3) the possibility of a lifeline remaining quiescent (i.e.,
not sending output without first receiving input [9]) is
also a function only of the sequence of previous event
occurrences in the lifeline.

isLocallyControllable: Interaction  𝔹 
isLocallyControllable(sd) ≜ unintendedTraces(sd) = {};  
 
-- Gives subtraces that can be generated according to causality 
-- rules, but end in an unintended send, receive or termination.  

unintendedTraces: Interaction  Trace-set 
unintendedTraces(sd) ≜ let V = validTraces(sd), T = prefixes(V), 
 L = sd.lifelines, P = projectTraces(V,L),  

 us={q ↷ [e] | q T, p ↷ [e]  T e.type = <Send> 

      projectTrace(q,e.lifeline)=projectTrace(p,e.lifeline)}\T, 

 ur=⋃{{q ↷ [e] | q prefixes({p}) isFeasible(q ↷ [e])} | 

         p ↷ [e]  T  e.type = <Receive>} \ T, 

 ut={p | p  T  allMsgsReceived(p)    

     ∀ lL  mayRemainQuiescent(projectTrace(p, l), P(l))} \ V 

in ur us ut;
 

prefixes: Trace-set  Trace-set 

prefixes(T) ≜ {[]}  ⋃ {{t1,...,i | i  inds t} | t  T}; 
 
-- Determines if a lifeline may remain quiescent after a valid  
-- local subtrace (t), given the set of valid local traces (S) 

mayRemainQuiescent: Trace  Trace-set  𝔹 

mayRemainQuiescent(t,S) ≜ tS  (t)↷[e]↷-Se.type=<Receive>; 
 

allMsgsReceived: Trace  𝔹 
allMsgsReceived(t) ≜ 

 |[e|e  t  e.type=<Send>]| = |[e|e  t  e.type=<Receive>]|; 

Fig. 9. Checking if interactions are locally controllable

The first two parts of function unintendedTraces in
Figure 9 determines erroneous global subtraces, with all events
valid except the last one, that can be generated if each lifeline,
knowing the set of traces valid locally, behaves according to
the causality rules 1 and 2 above. The function computes all
global subtraces that can be generated, and then subtracts the
valid ones.

According to rule 1, if two global subtraces p and q have
identical projections onto a lifeline l, and a send event e can
occur immediately after p in lifeline l (i.e., the concatenation of
p and e is also a valid global subtrace), then it may also occur
immediately after q. This gives part us of the computation.

According to rule 2, if a receive event e can occur immedi-
ately after a valid global subtrace p (i.e., the concatenation of
p and e is also a valid global subtrace), then e may also occur
earlier, as long it is appears after the send event (the receive
event may also occur later, but that would be a redundant
check). This gives part ur of the computation.

The third part of function unintendedTraces (variable
ut) determines erroneous global traces that can be generated,
with all events valid, but missing additional events. The
function computes all subtraces with all messages received, at
the end of which all lifelines may decide to remain quiescent
according to rule 3, and then subtracts the valid global traces.

Examples of interactions that can and cannot be controlled
locally are shown in section IV. As illustrated in the examples,



races and non-local choices compromise local controllability,
and hence require that extra coordination messages are com-
municated among the local testers.

E. Primitive for test input generation

For the sake of completeness, we present in Figure 10 a
primitive to determine the next messages that can be sent by a
lifeline, based on the sequence of events observed previously
in the lifeline and the set of traces valid locally in the lifeline,
consistently with the first causality rule previously presented.
This is useful for local testers that simulate the behavior of
actors or CUTs.

-- Gives the next messages that can be sent by a lifeline, given  
-- the previous events observed and the traces valid locally. 

nextSendEvents: Trace  Trace-set  Event-set 
nextSendEvents(prevEvents, validLocalTraces) ≜ 

 {e | (prevEvents) ↷ [e] ↷ - validLocalTraces  e.type = <Send>}; 

Fig. 10. Determining the next messages that can be sent from a lifeline

IV. EXAMPLES

A. Locally observable and controllable scenario

Watch
Actor

Smartphone Web	Server

e1 e2

e4 e3

e5 e6

e7e8

e9 e10

e11
e12

e13e14

e15

alt

alt

m1

m2

m3

m4

m5

m6

m7

m8

m1	- View	history

m2	- Show	history	from	watch

m3	- Request	history	from	smartphone

m4	- Send	history	from	smartphone

m5	- Request	history	from	web	server

m6	- Send	history	from	web	server

m7	- Send	history	from	smartphone

m8	- Show	history	from	watch

e16

Fig. 11. Example of locally observable and controllable scenario

The SD that describes the scenario of visualizing the history
of the last ten workouts in a smartwatch application is shown
in Figure 11. At this point a user tries to access his running
training history on his watch; if the last ten workouts are in the
watch memory they are immediately shown to the user, oth-
erwise the watch needs to communicate with the application
installed on the smartphone asking for the last ten workouts.
Again, if the mobile application has this information it sends
immediately to the watch that presents this information to the
user; however, if this information is not in the application
memory, the application still have to communicate with the
web server that will send these data, which are then sent to
the watch and finally presented to the user.

operations 
testAltNested() ≜ ( 
let 
  l1 = mk_Lifeline("User"), 
  l2 = mk_Lifeline("Watch"), 
  l3 = mk_Lifeline("Smartphone"), 
  l4 = mk_Lifeline("WebServer"), 
  o11 = mk_InteractionOperand(nil,{mk_(l1,2),mk_(l2,2),mk_(l3,1), 
mk_(l4,1)}, {mk_(l1,4), mk_(l2,4), mk_(l3,2), mk_(l4,2)}), 
  o12 = mk_InteractionOperand(nil,{mk_(l1,4),mk_(l2,4),mk_(l3,2), 
mk_(l4,2)}, {mk_(l1,6),mk_(l2,12),mk_(l3,11),mk_(l4,8)}), 
   f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2, l3, l4}), 
   o21 = mk_InteractionOperand(nil, {mk_(l2, 6), mk_(l3, 4), 
mk_(l4, 3)}, {mk_(l2, 8), mk_(l3, 6), mk_(l4, 4)}), 
   o22 = mk_InteractionOperand(nil, {mk_(l2, 8), mk_(l3, 6), 
mk_(l4, 4)}, {mk_(l2, 10), mk_(l3, 10), mk_(l4, 7)}), 
   f2 = mk_CombinedFragment(<alt>, [o21, o22], {l2, l3, l4}), 
   m1 = mk_Message(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
   m2 = mk_Message(2, mk_(l2, 3), mk_(l1, 3), "m2"), 
   m3 = mk_Message(3, mk_(l2, 5), mk_(l3, 3), "m3"), 
   m4 = mk_Message(4, mk_(l3, 5), mk_(l2, 7), "m4"), 
   m5 = mk_Message(5, mk_(l3, 7), mk_(l4, 5), "m5"), 
   m6 = mk_Message(6, mk_(l4, 6), mk_(l3, 8), "m6"), 
   m7 = mk_Message(7, mk_(l3, 9), mk_(l2, 9), "m7"), 
   m8 = mk_Message(8, mk_(l2, 11), mk_(l1, 5), "m8"), 
   sd1 = mk_Interaction({l1, l2, l3, l4}, {m1, m2, m3, m4, m5, 
m6, m7, m8}, {f1, f2}), 
   e1 = mk_Event(<Send>, "m1", l1), 
   e2 = mk_Event(<Receive>, "m1", l2), 
   … 
   e15 = mk_Event(<Send>, "m8", l2), 
   e16 = mk_Event(<Receive>, "m8", l1) 
in ( 
    assertEqual({[e1,e2,e3,e4], [e1,e2,e5,e6,e7,e8,e15, e16], 
[e1,e2,e5,e6,e9,e10,e11,e12,e13,e14,e15,e16]}, validTraces(sd1)); 
    assertTrue(isLocallyObservable(sd1)); 
    assertTrue(isLocallyControllable(sd1)); 
 ) 
); 

Fig. 12. VDM encoding of the SD presented in Figure 11

The VDM encoding of the SD is shown in Figure 12. As
we can formally verify, this example has three valid global ex-
ecution traces ([e1, e2, e3, e4], [e1, e2, e5, e6, e7, e8, e15, e16]
and [e1, e2, e5, e6, e9, e10, e11, e12, e13, e14, e15, e16]) and is
locally observable. This means that is not necessary any
communication with the central tester to detect any fault
during the distributed testing of the system.

B. Non-locally observable but locally controllable scenarios

Non-locally observable scenarios are scenarios where local
observation is not enough, that is, local observations may be
valid, but globally the sequence of events does not correspond
to a valid trace. Examples of this type of scenarios are shown
in Figure 13. In Figure 13 (a) it is presented an SD containing
an ’opt’ fragment and its valid traces. In this case, if the event
e1 occurs and for some reason the message m1 gets lost, it is
not possible to check locally that an error has occurred. This
happens because the empty trace [] is a valid execution trace,
which makes the observation [e1] on L1 and the observation
[] on L2 both valid locally. However, globally they do not
correspond to a valid execution trace.

In Figure 13 (b) it is presented an SD containing a ’loop’
fragment and its valid traces. In this case, and like in the
previous example, if the second iteration occurs and the second
message m1 was sent ([e1]) but never received, looking only
locally at L1 and L2, it will not be possible to detect that a



problem has occurred since [e1, e1] is a valid execution trace
for L1 and [e2] is also a valid execution trace for L2. However,
when we look globally at the combination of these two traces,
we find that none of their combinations gives a valid trace.

L2

m1

L1

opt e1e1 e2e2

L2

m1

L1

loop [1,2] e1e1 e2e2

(a)

(b)

Valid Traces: [e1, e2], [e1, e2, e1, e2], [e1, e1, e2, e2]
Uncheckably Locally: [e1, e1, e2], [e1, e2, e1] 

Valid Traces: [e1, e2], []
Uncheckably Locally: [e1]

Fig. 13. Examples of non-locally observable (but locally controllable)
scenarios because of the presence of optional messages without corresponding
acknowledgment messages

C. Locally observable but not locally controllable scenario

Locally observable but not locally controllable scenarios are
scenarios where errors can be detected locally, but decision of
when and what inputs to inject cannot be done locally, since
it is necessary information from other components.

Example	3

L2 L3

m1

L1

m2

e1 e2

e3e4

Valid	Traces:	[e1,e2,e3,e4],	[e1,e3,e2,e4],	[e3,e1,e2,e4]
Unintended	Traces:	[e1,	e3,	e4],		[e3,	e1,	e4],	[e3,e4]

Fig. 14. Example of locally observable but not locally controllable scenario
because of a race condition

An example of such scenarios is shown in Figure 14. In
this case, the system is composed of three components that
are represented by the different lifelines. In this scenario
the observation of the execution traces according to L2 has
to be [e2, e4], however without additional information the
component represented by L3 does not know when it can
send m2 in order to guarantee that it should reach L2 after
m1. Without that information, the unintended traces shown in
Figure 14 may occur.

L2 L4

m1

L1

m2

L3

e1e1 e2e2 e3e3 e4e4
alt

m3 m4e5e5 e6e6 e7e7 e8e8

Valid Traces: 
[e1, e2, e3, e4], [e1, e3, e2, e4], [e1, e3, e4, e2], 
[e3, e1, e2, e4], [e3, e1, e4, e2],  [e3, e4, e1, e2], 
[e5, e6, e7, e8], [e5, e7, e6, e8], [e5, e7, e8, e6], 
[e7, e5, e6, e8], [e7, e5, e8, e6], [e7, e8, e5, e6]

Unintended Traces: 
[e1, e2, e7], [e1, e7], [e7, e1], [e7, e8, e1], 
[e5, e6, e3], [e5, e3], [e3, e5], [e3, e4, e5] 

Fig. 15. Example of non-locally observable nor locally controllable scenario
because of a non-local choice

D. Non-locally observable nor locally controllable scenario

Non-locally observable nor locally controllable scenario are
scenarios where decisions regarding conformance checking
and input injection are not possible locally.

An example of such a scenario is shown in Figure 15. In
this scenario the system to be tested involves four lifelines.
According to the ’alt’ fragment, if the component represented
by L1 sends the message m1, L3 should send the message
m2; if L1 sends m3, L3 must send m4. In this situation,
and without communication between the lifelines, sending
erroneous messages is not locally detectable. For example if
m1 is sent by L1 and m4 is sent by L3, locally the observations
are valid. Similarly when L1 sends m1, L3 locally does not
know if it needs to send m2 or m4, which makes the system
not locally controllable.

V. RELATED WORK

A. Model-based testing

MBT techniques and tools have attracted increasing interest
from academia and industry, because of their potential to
increase the effectiveness and efficiency of the test process,
by means of the automatic generation of test cases (test se-
quences, input test data, and expected outputs) from behavioral
models of the SUT [6].

However, MBT approaches found in the literature suffer
from several limitations [10], such as the lack of integrated
support for the whole test process, the difficulty to bridge the
gap between the model and the implementation, the difficulty
to control the test case explosion problem, and the lack of
support for the integration testing of distributed systems.

MBT can be done offline or online. Offline testing means
that test cases are first generated and subsequently executed
[11], while in online testing test generation and execution
are performed together so that the test generator can react
to how the SUT behaves [12]. The use of online testing is
necessary if the SUT is non-deterministic, because the test



generator can see which path the SUT has taken, and follow
the same path in the model [13]. We focus our research work
on the online testing of distributed and heterogeneous systems
(instead of offline testing), to cope with non-determinism. We
also propose a toolset architecture to support the whole test
process in an integrated fashion.

MBT approaches use a high variety of models. In general,
one can distinguish state based and scenario based approaches
[14]. State based approaches use abstract state machines [15],
UML state machines [16], input-output automata [17] or
similar behavioral models for describing all possible behaviors
of the system or its components. Scenario-based approaches
use UML SDs, message sequence charts (MSC) [18] or
similar behavioral models for describing interactions between
components of the system or interactions between the system
and the environment that occur in specific contexts, repre-
senting key system behaviors. State-based models are best
suited for capturing system design decisions and are usually
more detailed, whilst scenario-based models are best suited
for capturing system requirements [14] and are usually less
detailed.

We focus our research work on a scenario-based approach
(instead of state-based testing), because scenario-based models
are more convenient for describing and visualizing the inter-
actions that occur between the components and actors of a
distributed system in key scenarios [2] [19]. Scenario-based
models also help partially avoiding the test case explosion
problem. To facilitate industrial adoption, we opted for using
UML SDs [3] [20] as the input behavioral models.

B. Distributed testing architectures

One difficulty in testing distributed systems is that their
distributed nature imposes theoretical limitations on the con-
formance faults that can be detected by the test components,
depending on the test architecture used [7], [21]. Two basic test
architectures have been proposed in the past to test distributed
systems: a purely distributed test architecture with independent
local testers communicating synchronously with the compo-
nents of the SUT [22]; a purely centralized test architecture,
in which a single centralized tester interacts asynchronously
with the components of the SUT. More recently, Hierons
[7] proposed a hybrid framework that combines local testers
and a centralized tester. He proved that this architecture is
more powerful than the distributed and centralized approaches,
i.e., it has a higher fault detection capability. However, his
work is only concerned with conformance relations for system
testing of distributed systems based on input-output transition
systems, and does not consider integration testing.

Given its advantages, we base our research work on the
hybrid test architecture proposed by Hierons [7], but with the
additional objectives of minimizing the communication over-
head, avoiding, whenever possible, communications with the
centralized tester or between the local testers, and supporting
integration testing.

Apart from the fact that we take into account not only the
interactions with the environment but also the interactions

between the SUT components, our conformance checking
procedure (finalConformanceCheck) is more restrictive
than the dioco (distributed input-output) conformance relation
described in [7] for a purely distributed test architecture,
because some traces accepted as valid in dioco may be
correctly deemed inconclusive in our case. The addition of
coordination messages between the test components to ensure
observability leads to a hybrid test architecture similar to the
one proposed in [7] in terms of fault detection capability, but
in general with a smaller communication overhead; after the
addition of those messages, our conformance checking proce-
dure becomes essentially equivalent to the diocos conformance
relation defined in [7] for the hybrid test architecture.

C. Observability and controllability in distributed testing

There are some works in the literature that analyze observ-
ability and controllability in the context of distributed system
testing. One of them is the work from Hierons [9], where
he investigates the use of coordination messages to overcome
controllability problems when testing from an input output
transition system and gives an algorithm for introducing suffi-
cient messages. From his work, we adapted the first condition
of the unintendedTraces function. However, Hierons approach
is focused on system testing (focusing only on the interactions
with the environment), so the system is represented using a
single lifeline and each message is represented by a single
event (the system sending or receiving a message). In our
work, we also analyze the interactions between the system
components, and hence need to distinguish the send and
receive events. This leads to the need to add a second condition
related to the reception of messages (whose transmission time
may be arbitrary) in the unintendedTraces function.

Another related work is Mitchell’s work [23]; in this paper,
he discusses the problems related to race conditions in scenar-
ios described through MSCs or UML SDs. The author presents
solutions to these problems but only to basic scenarios, without
control flow variants, so can not be directly applied to more
complex scenarios, such as those that are usually found in the
description of distributed system interactions.

Boroday et al. [24] propose algorithms to extend test sce-
narios for distributed systems represented by MSCs or UML
SDs, in order to obtain race-free scenarios suitable for test
implementation, by inserting coordination messages between
test components and quiescence observation events in each
test component. However, in their work, only the interactions
with the environment are modeled, whilst we also analyze the
interactions between the system components and assume that
a test component is deployed close to each component of the
SUT, which modifies the determination of race-free scenarios.
Nevertheless, part of the approach for insertion of coordination
messages may be adapted to our context.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Given the growing importance of distributed systems testing
and the need to minimize the communication overhead during
test execution, we address in this article the problem of



decentralized conformance checking in MBT of distributed
systems.

In the case of integration testing of distributed systems based
on test scenarios described by UML SDs, we established the
conditions upon which coordination messages need not be
exchanged between the local testers that monitor and control
each component of the distributed system.

The first condition refers to local observability - the ability
to detect conformance errors locally by the local testers
based on the events observed locally, without the need to
communicate with other local testers or a central tester.

The second condition refers to local controllability - the
ability to decide when and what test inputs to inject by each
local tester based on the events observed locally, without the
need to communicate with other local testers or a central tester.

Local controllability and observability are formally estab-
lished by analyzing the set of valid traces defined by a UML
SD under consideration. We also present examples of local
observability and local controllability problems associated
with the presence of optional messages without corresponding
acknowledgment messages, races and non-local choices.

As future work, we intend to refine the local observability
and local controllability conditions and the primitives for
conformance checking and test input generation, taking into
account interaction parameters, message parameters, guard
conditions and time constraints in UML SDs. Equivalent
conditions and primitives that do not require the computation
of the set of valid traces will also be investigated, because this
set can be very large or even infinite. We will also investigate
how to generate the coordination messages needed in the
absence of local observability and/or local controllability.
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