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This paper presents a multiyear dynamic model to the Transmission Expansion Planning, TEP, problem to
identify the most suitable set of projects as well as their scheduling along the planning horizon. The can-
didate plans are evaluated using a fitness function that incorporates operation and investment costs plus
a set of penalty terms. These terms are associated with the level of losses, non-zero values for the power
not supplied namely for the entire system and for n � 1 contingencies, financial limits, maximum number
of projects to implement in each year or all along the horizon and the capability to accommodate not only
the expected demand, but also uncertainties affecting the demand forecasts. Given the discrete nature of
the problem, we adopted an enhanced approach of the PSO algorithm to solve it. This includes an evolu-
tionary adaptation of the PSO movement rule as well as several modifications to ensure that along the
iterative process each candidate solution is technically feasible given its discrete nature. The paper also
reports the results of a set of tests to evaluate several design decisions related with the development of
the Discrete Evolutionary PSO, DEPSO, as well as to compare the results of its application to the TEP with
results reported by other researchers.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the last 25 years power systems in several countries and geo-
graphic areas went through a restructuring process that involved
the unbundling of traditional vertically integrated utilities in a
number of activities covering the entire value chain from genera-
tion to consumption. These activities correspond to generation,
transmission and distribution network operation, and retailing to-
gether with coordination activities, regarding the technical opera-
tion of the system, regulation and whole sale market functions. The
unbundling of traditional utilities induced a large number of
changes including the introduction of market mechanisms to link
the generation and the demand, namely through Market Operators
and Bilateral Contracts [1]. In general, this move also implied the
development of regulatory mechanisms regarding transmission
and distribution network activities (involving the expansion and
network reinforcement, the operation and the maintenance) and
the correct identification and assignment of all the costs along
the value chain. This allows developing tariffs for each activity
along the chain and then, using an additive principle, the creation
of access tariffs and tariffs paid by final users that adequately re-
flect the costs each agent brings to the system.
ll rights reserved.
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Apart from the changes summarized above, for several years
after the beginning of the restructuring process a large emphasis
was put on shorter term activities, sometimes neglecting long term
planning, in some cases with unpleasant consequences. However,
long term studies both at the generation [2] and at the transmis-
sion [3] levels continue to be necessary as it is demonstrated by
several recent publications, on one side, and by the plans to build
a super transmission grid in Europe, on the other. In any case, there
has been a change in the models as now generation and transmis-
sion agents correspond to different activities and entities. The first
one is provided by several competing agents while the second one
is typically assigned to a transmission provider or to a Transmis-
sion System Operator, TSO, that acts in terms of a regulated natural
monopoly, regarding each geographic area. In the past, generation,
transmission and distribution were included in the same utility so
that long term forecasting and expansion planning activities were
developed in a more integrated and centralized way. Now, each
generation company develops its own expansion plan taking into
account the possible reactions of its competitors and transmission
companies should have estimates of the demand evolution and of
the possible generation additions in order to prepare expansion
and reinforcement plans.

As a result of this unbundling, the TEP problem gained a new
complexity degree as the information at the generation and at
the demand levels are more uncertain than in the past. In very gen-
eral terms, a TEP problem aims at determining the timing, the type
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and the location of a set of new transmission facilities that should
be added to an existing network along an extended planning hori-
zon in order to ensure an adequate transmission capacity taking
into account future generation options and load requirements.
Regarding this definition, it is important to make a number of
clarifications:

– On the legal and regulatory side, the European Parliament and
the European Council approved the Directive 2009/72/CE,
establishing common rules for the internal electricity market
[4]. TEP is clearly identified as a major responsibility of TSOs,
given that they should ensure the long-term ability of the sys-
tem to meet reasonable demands for the transmission of elec-
tricity. On the other hand, the EU Commission Regulation No.
838/2010 of September 23rd 2010, defined the guidelines to
the inter-transmission system operator compensation mecha-
nism associated with cross-border electricity flows, to be car-
ried out by the Agency for the Co-operation of Energy
Regulators. This ultimately means that transmission providers
and TSO’s should adequately develop their networks so that
they are prepared to accommodate reasonable new generation
and demand requirements.

– Secondly, given the complexity of the TEP problem, several
researchers developed models that introduced simplifications
at two levels as follows:
� In the first place, an extended planning horizon was fre-

quently addressed in a static way, that is, each year in
the horizon was treated separated and in sequence, so that
the final expansion plan was just a collection of partial
plans. This type of approach eliminates the holistic view
over the problem given that a particular expansion project
justified to address a particular network bottleneck could
very well be anticipated in order to address some other
network problems given the meshed nature of transmis-
sion networks. This means that a multiyear expansion plan
is not just the addition of partial plans identified in
sequence. The expansion plan should be built using an
holistic model that treats the entire planning horizon at a
time.
� On the other hand, several researchers simplified the

problem using continuous variables to represent the
transmission capacity between a pair of nodes. Although
computationally more efficient, these continuous versions
of TEP will lead to solutions that are not implementable
from a technical point of view, given the available conduc-
tor sections and voltage levels. This ultimately means that
at the end a rounding process was typically used eventu-
ally turning the final rounded solution far away from the
optimum of the true discrete TEP problem.

– Thirdly and perhaps more than in the past, long term expansion
activities are subjected to uncertainties that can now be consid-
ered as key elements of any planning process [5]. An expansion
plan should be good not only for a reference scenario regarding
both the evolution of generation and demand but should also be
robust if some changes on this reference evolution happen in
the future. This means for instance that the demand can be sub-
jected to uncertainties and that an increasing part of generation
is now connected to distribution networks and it is powered by
volatile primary resources. In this way, transmission networks
should be prepared to accommodate the connection of new
generators, uncertain demand as the current economic crisis
is showing and the injection of electricity by distribution net-
works in case the connected distributed generation is larger
than the demand of these networks.
As a result of all these concerns, this paper details a multiyear
dynamic mathematical model to the TEP problem. The problem
is formulated as a single objective discrete optimization problem
and it represents all the years or stages in which the planning hori-
zon is discretized. The adopted objective function aims at minimiz-
ing the operation plus investment costs along the planning horizon
subjected to a number of constraints having technical and financial
natures. Given its mixed integer nature, we developed a set of
adaptations to the Evolutionary PSO algorithm, in order to turn it
more adequate to treat discrete problems. On the other hand, the
demand can be subjected to uncertainties modeled by triangular
Fuzzy Numbers [6]. This framework is used to evaluate each candi-
date plan characterizing the risk of eventually not being able to
supply the demand subjected to uncertainty. This information is
then integrated in the fitness function of the Discrete Evolutionary
PSO, DEPSO. According to these ideas, this paper is structured as
follows. After this initial section, Section 2 reviews the literature
addressing the TEP problem, Section 3 addresses load modeling
using Fuzzy Sets, Section 4 details the PSO and the EPSO algorithms
and the adaptations in terms of the DEPSO, Section 5 presents the
mathematical formulation of the TEP problem and the developed
solution algorithm and Section 6 presents results of two Case Stud-
ies to illustrate the approach and to compare the obtained results
with the ones reported by other researchers for the same networks.
Finally, Section 7 presents the most relevant conclusions.
2. Review of transmission expansion planning models

Traditionally the expansion planning of transmission networks
was addressed in an integrated way with generation expansion
planning as detailed in [7]. More recently, integrated generation/
transmission expansion planning approaches continue to be re-
ported in the literature, namely considering geographical areas in
which the unbundling of the sector was not implemented [8,9].
Under this more traditional and integrated view, it is important
to consider that there were approaches that could be used to build
expansion plans considering an extended amount of data and fore-
casts into the future, as well as several software packages designed
to evaluate pre-built plans namely computing reliability, transient
behavior or stability indices. Typically, these packages were devel-
oped by utilities or in research centers closely related with them.

With the advent of the unbundling of the power sector, trans-
mission companies or entities responsible for the preparation of
reference transmission expansion plans started to use external
information namely related with the construction of new genera-
tion stations, the development of distribution networks as demand
increases, the increased number of dispersed generation namely
connected to distribution networks including recently to LV net-
works, and the variability of several primary generation resources
as wind and solar radiation. In view of these changes, the TEP prob-
lem gained new dimensions and it can now be defined as the selec-
tion of a set of new transmission equipments (both lines and
transformers) and the scheduling of their commissioning along
an extended planning horizon. This selection is driven by a crite-
rium or by a set of criteria in case of multi objective approaches
[10,11] while enforcing a number of constraints. With the restruc-
turing of power systems, the TEP problem that was already a com-
plex mixed integer optimization problem has to meet new
challenges given that:

– More than one entity owns generation assets and the capacity
of transmission lines can determine the degree to which gener-
ators in different locations can compete.
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Fig. 1. Illustration of a triangular fuzzy number.
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– In several countries the developers of wind parks are already
asked to pay or at least to contribute to pay new distribution
or even transmission connection lines or substation
reinforcements.

– There is an increasing substitution effect of transmission by dis-
persed and volatile generation resources and by demand side
management.

– The environmental constraints are now stronger than in the
past reducing the number of available corridors and turning
more difficult to get licenses to build new high voltage lines.

– Finally, the restructuring of power systems lead to new rela-
tions between agents with a progressive decoupling of the flow
of electricity from the flow of money requiring the already men-
tioned creation of specific tariffs to remunerate network
providers.

Given all these concerns, the TEP problem typically includes cri-
teria as the maximization of the benefits achieved with the invest-
ments (namely reducing power not supplied, losses and operation
costs), the minimization of investment and maintenance costs, the
reduction of environmental impacts and the increase of the inter-
connection capacity with other systems. Finally, TSO’s often men-
tion the desire to be as neutral as possible in the relations
between generation and demand, that is, transmission networks
should impose as little as possible constraints to the economic
schedules determined by electricity markets. The publications on
the TEP problem are numerous as indicated in [12,13], and so it
is important to classify the models namely using some general
characteristics. In the first place, TEP models can be grouped as:

– Static or single stage models – a TEP model is termed as static or
single stage if the planning horizon is just one period. In these
cases, the planner aims at identifying the most adequate net-
work for a single future situation. A multiyear horizon is typi-
cally decoupled in a number of isolated periods that are
treated separately and in sequence. Under this scheme, the
planner starts by solving the problem for period 1 and then,
when moving to period 2, the projects scheduled to period 1
are considered as already available. The models detailed in
[14–16] are of this type and use optimization techniques as
Genetic Algorithms, Tabu Search, Simulated Annealing and
Expert Systems.

– Dynamic or multiyear approaches – in this case the optimiza-
tion problem explicitly includes information regarding the
entire planning horizon represented by a number of periods
or stages. In these models, the expansion plan is outlined along
the entire horizon in a multistage and coordinated way. These
approaches are illustrated in [17–19] using traditional optimi-
zation techniques, dynamic optimization and a mixed integer
formulation.

Regarding the adopted optimization techniques, several
techniques and solution algorithms have been applied to the TEP
problem. In this scope [20,21] use linear and quadratic program-
ming, [22] uses an interior point approach, [18,23] adopt dynamic
programming and [19,24,25] use mix integer formulations. On the
other hand, [7,26] adopt Benders decomposition and [27] uses
Hierarchical decomposition. More recently, given the complexity
and the discrete nature of the TEP problem, metaheuristics also
started to be applied. In this scope, Simulated Annealing is used
in [28,29], Tabu Search is used in [15,30], and GRASP is adopted
in [31]. Evolutionary algorithms as Genetic Algorithms, Evolution-
ary Programming and Artificial Immune Systems are used in
[32–36] and Refs. [35–38] describe applications of Particle Swarm
Optimization (PSO) and Ant Colonies (ACO) or provide compari-
sons of these approaches with other techniques.
Finally, as mentioned in the Introduction, the expansion planning
and even the operation of power systems are increasingly influenced
by uncertainties. Regarding the TEP, [5,39,40] describe some ap-
proaches using scenarios, probabilistic and fuzzy set models.
3. Load modeling using fuzzy set concepts

As mentioned above, power systems are affected by uncertain-
ties that should be incorporated in several types of studies and
models. In the particular case of TEP studies, if traditional deter-
ministic data is simply used, then the best plans derived from
expansion planning exercises will certainly be the most adequate
for this crisp input data but may not be robust in the sense that
small variations affecting the input data will not eventually be well
addressed by such plans. Therefore, incorporating uncertainties,
namely in long term models, is an important issue as a way to ad-
dress the risk of adopting expansion plans too exposed to the
uncertainties in input data.

Uncertainties are usually addressed using probabilistic models
and more recently using fuzzy concepts that were introduced in
the seminal paper of Zadeh [41]. Probabilistic models are well sui-
ted for random phenomena in which the event can be reproduced
under the same conditions as many times as desired. In this case,
there is no uncertainty regarding the possible outcomes of an
experiment, but the experiment itself is so complex that it is not
actually possible to know in advance which of the possible out-
comes will in fact occur. For instance, this is what happens when
throwing a die. There is no doubt that the outcome will be face 1,
or face 2, . . ., or face 6, but it isn’t actually possible to establish a
priori which of these 6 possible outcomes will occur in the next
experiment. Differently, fuzzy sets can be used to model phenom-
ena regarding which there is incomplete knowledge or if we want
to incorporate data expressed by experts in a qualitative way. For
instance, expressions as ‘‘approximately’’ or ‘‘larger than’’ that are
common in human language reflect our own subjective past
experiences and incorporate knowledge that, in any case, should
be included in several models. This issue is of particular importance
to model data as, for instance, the evolution of the demand seen by
transmission networks. This demand is certainly affected by the
current volatile economic environment and by the increasing pres-
ence of generation connected to distribution networks, in some
cases using volatile primary resources, as wind and solar radiation.
In such cases, fuzzy sets represent a very flexible and adequate op-
tion to model vague information as for instance associated with
expressions as ‘‘the demand will be approximately 200 MW’’.

The developed TEP model admits that the demand is modeled
by fuzzy sets, in particular by triangular fuzzy numbers. A fuzzy
set can be defined by (1) as a set of ordered pairs in which x1 is
an element of the universe X under analysis and l~Aðx1Þ is the mem-
bership degree of x1 to the fuzzy set taking values in [0.0; 1.0] and
it expresses the compatibility degree of x1 with the fuzzy set.

~A ¼ fðx1;l~Aðx1ÞÞ; x1 2 Xg: ð1Þ

The membership function of triangular fuzzy numbers have a
particular shape as it is illustrated in Fig. 1, and can be used to
model the knowledge associated with an expression as ‘‘the de-
mand will be approximately 200 MW’’. Taking the number in
Fig. 1, the most credible value that the demand can take is
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200 MW but the planner wouldn’t like to completely discard val-
ues from 180 to 200 MW on one side and from 200 to 220 MW
on the other. According to his assessment, this means that values
in the intervals [180; 200[ and ]200; 220] MW are still possible in-
stances of this fuzzy set. Given its particular shape, a triangular
fuzzy number as the one in Fig. 1 is denoted by (180; 200; 220).
Regarding a fuzzy number, an a -level set or an a -cut corresponds
to the crisp set of values having a membership degree larger than
or equal to a and the central value is the mean value of the 1.0-cut.
In the case of the number in Fig. 1, the 0.0-cut is the interval
[180; 220] and the central value is 200.0.

Finally, if a multiyear TEP problem is addressed, the planner
also has to specify a load growth coefficient, lgr in percentage, that
is used to transfer the load in period pd of the planning exercise to
the period pd + 1. Using this coefficient, if the demand in node k in
period pd is given by the triangular fuzzy number (180; 200; 220),
then in period pd + 1 it will be given by the triangular fuzzy num-

ber 100þlg r
100 :180; 100þlg r

100 :200; 100þlg r
100 :220

� �
.

4. Discrete evolutionary particle swarm optimization, DEPSO

4.1. PSO

Particle Swarm Optimization (PSO) was originally proposed in
1995 by Kennedy and Eberhart [42], and is based on the analogy
of swarms of birds and fish schooling. PSO is based on the idea of
each agent being a particle, characterized by its position and veloc-
ity. A set of particles forms a population or swarm and each particle
evolves according with the so called movement rule. The ultimate
objective of the particles consists in finding the position which cor-
responds to the best possible performance in the search space. A
new particle is generated from an ancestor, according to the
‘‘movement rule’’ and this scheme proved to be adequate to make
the swarm converge to the zone of the optimum, but failed to as-
sure the convergence to an accurate optimum final position.

4.2. EPSO

Evolutionary Particle Swarm Optimization (EPSO) is an evolu-
tionary meta-heuristic proposed in 2002 by Miranda and Fonseca
[43]. The EPSO particle structure and behavior is similar with that
of PSO. Each solution is coded in a particle, in its original or pheno-
typic variables. The EPSO algorithm structure is illustrated below.

Procedure EPSO
Initialize a random population P of npt particles
REPEAT

Replication – each particle is replicated r times;

Mutation – each particle has its strategic parameters
mutated;

Reproduction – each particle generates an offspring
through recombination;

Evaluation – each offspring has its fitness evaluated;

Selection –the best particles survive to form a new
generation;

Test – for termination (based on fitness, on number of
generations or other criteria);
Until test is positive.

End EPSO

Adopting the PSO movement rule to recombine the particles to-
gether with self-adaptation schemes, EPSO improves the conver-
gence speed and develops a sense of self-adaptation, reducing
the dependence on a number of pre-set weights. In fact, EPSO
may be seen either as an evolutionary computing method of the
self-adaptive (SA) evolutionary strategy type, with a special rule
for the replication of individuals instead of ordinary crossover
and mutation of object parameters, or as a special PSO method
where the weights that condition the movement in space undergo
self-adaptive mutation. In classical approaches to EPSO, each parti-
cle is cloned twice so that one can perform the search using two
populations. The mutation of the strategic parameters W into W�

is done using either (2), (3) [43]. In these expressions, s and r
are learning parameters fixed externally.

Multiplicative Lognormal random numbers
W�

pt ¼Wpt � ½log Nð0;1Þ�s ð2Þ

Additive Gaussian distributed random numbers
W�

pt ¼Wpt þ r � Nð0;1Þ ð3Þ

In the most effective EPSO variant, not only the weights affecting
the components of the movement are mutated but also the global
best (bG) particle is randomly disturbed, according to (4) [43].

b�G ¼ bG þW�
pt4 � Nð0;1Þ ð4Þ

The weight Wpt4 controls the ‘‘size’’ of the neighborhood of bG where
it is more likely to find the real best solution. The off-springs are
generated by recombination of the particles. This recombination
defining the movement rule is given by (5) and (6), and it is illus-
trated in Fig. 2.

Xitþ1
pt ¼ Xit

pt þ Vitþ1
pt ð5Þ

Vitþ1
pt ¼W�

pt1 � V
it
pt þW�

pt2 � ðbpt � Xit
ptÞ þW�

pt3 � ðb
�
G � Xit

ptÞ � p ð6Þ

In these expressions:
– Xit

pt is the location of the particle pt in generation it.
– bpt is the best point found by particle pt in its past life up to the

current generation.
– b�G is the best overall point found by the swarm of particles in

their past life.
– Vit

pt is the velocity of particle pt at generation it.
– W�

pt1, W�
pt2, W�

pt3 and W�
pt4 are the mutated weights conditioning

the inertia, the memory, the cooperation terms and the best glo-
bal particle.

– p is a communication factor in [0, 1]. The vector associated with
the cooperation factor does not point exactly to the global opti-
mum bG but to a mutated nearby location as described in [44].

The first step on the selection process is the evaluation of all the
offsprings. This evaluation step is conducted using a fitness func-
tion that can include penalty terms to enforce constraints. The best
fitness may correspond either to the largest or to the minimum va-
lue of the fitness function, depending on the nature of the problem
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being addressed. The offspring selection may be done by stochastic
tournament or other selection procedures.

When comparing EPSO with classic PSO, Ref. [44] reports that
EPSO displays faster convergence, it is more accurate and more ro-
bust and it is more insensitive to weight initialization.

4.3. Discrete PSO, Chaos and Lamarkism

The original PSO model was developed to tackle problems in con-
tinuous search spaces. However, many real problems have discrete
nature and recently different discrete PSO models were proposed.
The first discrete PSO approach was proposed by Kennedy and Eber-
hart for binary-valued solution elements [45]. The entire algorithm
of the binary version of PSO is almost the same as that of the basic
continuous version, except for the state equations listed below.
The position of each particle is a vector in the d-dimensional binary
solution space, xi e {0, 1}d and the velocity is a vector in the d-
dimensional continuous space. In [45], the probability of an agent’s
deciding yes or no, true or false, or making some other decision is a
function of personal and social factors as suggested by Eq. (7). The
parameter Vit

pt;j is an agent’s alternative choice tendency and deter-
mines a probability threshold in the range [0, 1]. If Vit

pt;j is higher, the
agent is more likely to choose 1, and lower values favor 0 choice.
One of the functions accomplishing this threshold range is the sig-
moid function (8), which is usual in artificial neural networks.

PðXitþ1
pt;j ¼ 1Þ ¼ f Xit

pt;j;V
it
pt;j;pbestpt;j; gbestpt;j

� �
ð7Þ

sig Vit
pt;j

� �
¼ 1

1þ expð�Vit
pt;jÞ

ð8Þ

Like in the basic PSO continuous real version, the formula for the
discrete binary PSO version can be described by

Vitþ1
pt;j ¼ Vit

pt;j þ rand1:ðpbestpt;j � Xit
pt;jÞ þ rand2:ðgbestj � Xit

pt;jÞ ð9Þ

Ifqitþ1
pt;j < sigðVit

pt;jÞ; then Xitþ1
pt;j ¼ 1 else Xitþ1

pt;j ¼ 0 ð10Þ

In these expressions rand1 and rand2 are positive random numbers,
drawn from a uniform distribution, with a predefined upper limit;
qitþ1

pt;j is a random number between 0 and 1. These equations are
used in an iterative repeated way over each j dimension of each par-
ticle. The second and the third terms in (9) can be weighted like in
the basic continuous version of PSO. sigðVit

pt;jÞ should not get too
close to the limits of the interval [0, 1] to ensure good chances for
bit flipping. This can be achieved by limiting the maximum value
of Vit

pt;j, which is often set in [�4, +4].
Discrete PSO approaches also differ from traditional PSO regard-

ing encoding. The particles are vectors composed of integers, in-
stead of real numbers, and several researchers studied different
codification alternatives as, for instance, Gallego et al. [46] and
Jin et al. [47]. Binary representations are the most common,
although [46] mentions several reasons for not using them in the
TEP problems, namely that mutation and cross-over can generate
off-springs too different from their parent configurations eventu-
ally originating chaotic behavior. Jin et al. [47] formulated the dis-
crete velocity vector of the PSO algorithm using (11). In this
expression Fix is a function that takes the integer part of its argu-
ment and tint tin, tmem and tcoop are the usual inertia, memory and
cooperation terms of the PSO velocity vector.

v itþ1
pt ¼ Fix tit

int;pt þ tit
mem;pt þ tit

coop;pt

� �
ð11Þ

Excess attraction promoted by the best particles leads to premature
convergence of the algorithm to solutions that can be far from the
best. The literature presented different ways of approaching this
problem, and one of the most interesting and promising includes
the concept of chaos. Caponetto et al. [48] showed that chaotic
sequences improve the performance of Evolutionary Algorithms.
In addition to the ability of enlarging the exploration of the
search space, chaos-based approaches also allow for faster conver-
gence, contributing to improve the performance of the algorithms.
In this scope, Malik et al. [49] proposed a PSO optimizer using a
sigmoid function to determine the weights. Several experiments
showed that the performance improved with faster convergence
capability and aggressive movement towards the solution region.
Finally, Houck et al. [50] investigated the benefits of including
a Lamarkian flavor in the evolution strategy. As detailed in
Section 4.4, when addressing discrete problems it is frequent that
the velocity vector gets zero meaning that the particle would
remain unchanged. If that is the case, one can promote a change
of some dimensions of the particle meaning that one would act at
the fenotype level, rather than at the components used to deter-
mine the velocity vector, that is, instead of changing the particle
at the genotype level. This ultimately means that one is promoting
a local search around a particle that will eventually already have
promising characteristics.

4.4. DEPSO

The discrete EPSO used in this work is a new approach of the
EPSO model able to tackle problems with non-continuous and inte-
ger search spaces and it was originally described in [51]. Even
though it includes the same main blocks of classic EPSO, DEPSO
has the following main differences when compared with classical
EPSO: the elements in the particles are integers, the mutation rules
are based on chaotic behaviors and it is introduced a third popula-
tion with Lamarckian evolution.

A solution for a job scheduling problem, also named as particle,
is represented by a vector whose positions represent the state
when each project will be available for use. In addition to these
states, two more are possible, corresponding to situations of non-
implementation of a particular project: either the possibility of
not being chosen, or the possibility of being postponed beyond
the periods under review. Admitting that npd is the number of
periods in the planning horizon, this means that npd + 2 possible
states are possible. Accordingly, each population is a set of particles
and is characterized by the number of particles npt, pt e {1. . .npt},
by the number of projects npj, pj e {1. . .npj} and by the number
of possible periods in the horizon, pd e {0. . .npd + 1} .

The off-springs are generated by recombination of the particles,
following recombination rules similar with EPSO. As in the classical
EPSO approach described in [43,44], the inertia, memory and coop-
eration weights are subjected to mutation. Regarding the classical
EPSO, a different mutation operator was adopted (12). For each
iteration it, particle pt and period pd it includes a sigmoid function
with chaotic behavior. In (12) as well as in expressions used along
the paper the symbol ⁄ denotes a value or parameter that under-
went mutation.

witþ1�

pt;pj;pd ¼ 0:5þ randðÞ � 1

1þ exp �wit�

pt;pj;pd

� �
0
@

1
A ð12Þ

This mutation rule includes the previous value of the weight to mu-
tate, that is, it carries along the influence of the weights of the pre-
vious iterations to the following ones. It also allows an easy
integration in the classical mutation expressions, contributing to
design a simpler and faster algorithm. The best global particle is a
vector whose positions are mutated only when randomly generated
numbers take values less than kc e [0, 1].

The mutated bG is given by (13) in which the weights wit
4 also

undergo mutation using (12).
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b�Gpj ¼ bGpj þ roundð2 �wit�

4 � 1Þ ð13Þ

A major difficulty of using particle swarms is the control of the pop-
ulation movement, ruled by velocity V. In the case of DEPSO this sit-
uation is even more relevant, since the space is not continuous, and
one must ensure that the movement rule makes the particles move
from one position to another while respecting the search space.

Xitþ1
pt;pj ¼ Xit

pt;pj þ Vitþ1
pt;pj ð14Þ

Vitþ1
pt;pj ¼ round wit�

pt;pj;1 �V
it
pt;pjþwit�

pt;pj;2 � bpt;pj�Xit
pt;pj

� �
þwit�

pt;pj;3 � b�G;pj�Xit
pt;pj

� �
�Ppj

� �
ð15Þ

The movement rules in DEPSO are similar to those of EPSO, but all
elements in X and V in (14) and (15) are integers [51]. It should be
noted that expression (15) includes a rounding process to obtain
integer elements in V. When the particles exceed the search space
boundaries, they are repaired typically returning them back to the
search space by placing them on the nearest integer position in
the search space.

In the developed algorithm we also adopted a third population
to promote diversity or local search, according to the progress of
the algorithm. When the velocity of a particle is zero for the parti-
cles in populations 1 and 2 and for all particles of population 3, a
Lamarckian evolution is promoted to define V. This evolution mir-
rors the ideas of Jean Baptiste Lamarke, a French biologist that
lived in the end of the XVIII century and that can be seen as a proto
evolutionist. According to his ideas described for instance in [50],
living beings would suffer mutations along time at the macroscopic
level in order to generate more complex and perfect entities pro-
gressively more adapted to their living conditions. Later on, the
evolution theory of Darwin privileged mutations at the genotype
or microscopic level, rather than at the fenotype or macroscopic le-
vel, suggested by Lamarke. In the developed DEPSO approach, if as
a result of genotype changes on the three terms of the velocity vec-
tor, this vector is null, then it is promoted a Lamarkian based evo-
lution admitting that some elements of the velocity vector are
changed. These changes are considered if randomly generated
numbers N(0,1) are smaller than a threshold kLam e [0, 1] .

The general structure of the DEPSO algorithm is detailed below.
The application of DEPSO to the TEP problem will be detailed in
Section 5.3.

Procedure DEPSO
Initialize a random population P of npt particles;
REPEAT

Replication – each particle is replicated r times, forming r
populations;

Mutation – each particle has its strategic parameters
mutated using expression (12) and the best global particle
is mutated using (13);

Reproduction – each particle generates an offspring
through recombination using expression (14) and (15). If
the offsprings exceed the search space boundaries they are
returned back to the search space using a repair strategy. If
the velocity vector (15) of an offspring is zero, then a
Lamarkian based evolution step is activated;

Evaluation – all offsprings in all r populations are
evaluated using a specified fitness function;

Selection – particles pt from population 1, population 2,
. . ., population r are compared using the respective values
of the fitness function. Regarding particle pt, it survives the
particle in population r that has the smallest value of the
fitness function, in case of minimization problems. At the
end of this selection step, a new population having npt
particles is formed;

Test – for termination (based on fitness, on number of
generations or other criteria);
Until test is positive.

End DEPSO
Finally, it is important to mention that the DEPSO model can

accommodate constraints by using additive penalties in the evalu-
ation function. The merits of DEPSO result from the EPSO own mer-
its. In addition, as DEPSO was specially designed to address integer
problems, when treating such problems it shows some advantages:
it displays a faster convergence, it is more accurate and it is more
robust. DEPSO does not require adjustment in the parameteriza-
tions, it shows an easy convergence, it allows smaller populations
(which reduces the number of evaluations and reduces the time re-
quired for each run) and it is able to escape from local minima.

5. Mathematical formulation of the TEP problem

5.1. Introduction

A dynamic or multiyear TEP problem aims at determining the
timing, the type and the location of the new transmission facilities
to be added to an existing network along an extended planning
horizon in order to ensure an adequate transmission capacity tak-
ing into account future generation options and load requirements.
This problem is typically addressed along a long-term horizon, or-
ganized on a yearly basis and with all sub periods considered
jointly in order to model the influence of investments in a given
period over the network performance in other periods. TEP models
are usually very complex, given their mixed integer nature and the
adopted solution algorithms, leading to a significant computational
burden.

The initial network should be characterized with information
about power lines and underground cables, substations and trans-
formers. For planning purposes, lines and transformers can be trea-
ted as branches of the network, provided that one keeps in mind
the technical and economic characteristics that differentiate them.

The characterization of each generation center includes the type
of station, location, identification of the connection node, number
of generation units and characteristics of each unit. In order to
guarantee the feasibility of the model, and without prejudice to
the results to be obtained, we will consider linear generation cost
functions in order to evaluate operation costs. Economic data, such
as inflation, interest and discount rates for the long term are set
based on forecasts that, as for other factors mentioned above,
may be subject to uncertainties.

5.2. The definition of the expansion plan

An expansion plan is a set of infrastructure network invest-
ments, scheduled over the planning horizon. Investments have to
be selected according to various criteria, and be considered as a
whole in a coordinated manner. There is an important dynamic
component to be considered, since investments in a given year
may have impact in the following years in different areas, some
of them geographically distant. So, in response to operating condi-
tions for the years included in the planning horizon, alternative
expansion plans can be prepared and should be evaluated accord-
ing to the selected criterium. After appropriate evaluation of the
different plans, decisions are made on the investments, based on
the plans that were considered more appropriate.
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The problem is so complex that assumptions have to be done in
order to make the TEP exercise feasible:

– Basic assumptions: load growth rates; expansion by adding new
lines or transformers with characteristics similar to the ones in
the same corridor; the reliability focus is restricted to transmis-
sion lines or transformers; only load uncertainties modeled by
triangular fuzzy numbers are assumed.

– List of projects: new lines or transformers can be installed not
only in existing corridors or substations but also connecting
new demand or generation centers or being established in
new corridors. In any case, the cost of each project is admitted
to be known and it is admitted that there is no precedence and
no relationship among the projects. Apart from their cost and
nodes, as a result of the TEP exercise each project will be asso-
ciated to the period in which it will enter in service.

The TEP project list is based on npj projects, and a time frame
based on npd + 2 periods, typically associated to yearly stages. Dy-
namic TEP problems usually have temporal horizons that can go
from 1 year to several years, rarely exceeding 10 years. Briefly,
the definition of the expansion plan project list includes the follow-
ing topics: number of states or years, list of projects available for
implementation admitting that they have already been cleared
on environmental evaluations, available financial resources and a
minimum threshold for a quality of service index. A solution Xpt

of the TEP problem will then be associated to a particle in the pop-
ulation of the DEPSO algorithm and it corresponds to a plan that
includes a number of projects selected among this list, including
their time frame. The search space under analysis is discrete and
integer and it typically includes a large number of possible alterna-
tive plans, given by (npd + 2)npj.

5.3. Mathematical model

Each particle is a possible solution to the problem and the main
difference between this approach and classical EPSO is that the ele-
ments in this particle are integers, and not real. The integrity of the
particle is maintained all along the solution algorithm as men-
tioned in Section 4.4. In the DEPSO, a population is characterized
by:

– The number of particles, npt, representing the population size
and associated with the index pt. In the developed approach
we used fixed sized populations along each run of the
algorithm.

– The number of positions in each particle, npj, representing the
particle size and associated to the index pj.

– And the number of periods of the planning horizon, npd, associ-
ated with the index pd.

A population can then be seen as a matrix having npt lines and
npj columns. This means that a column in this matrix corresponds
to a particle in the population that has npj positions, each one asso-
ciated to a project in the list of possible projects to be supplied by
the planner. Each project can eventually be selected to incorporate
this particular particle, that is, to be included in a particular plan.
Each position of this particle, that is, each position of this column
of the matrix, is filled with an integer indicating the period in
the horizon regarding which this particular project is scheduled.
As indicated in Section 5.2, although the planning horizon has
npd periods, we consider two extra values, the 0 indicating that
the project was not selected to integrate this particle and npd + 1
indicating that it was postponed.

Having in mind these considerations, the formulation of the TEP
model can thus be given by (16)–(21). This represents a condensed
and general formulation that in fact is not different from the for-
mulations available in several publications listed in Section 2. In
general, the TEP problem aims at identifying the most adequate
expansion plan by selecting particular projects from a project list
and by adequately locating them along the planning horizon, so
that a cost function is minimized while enforcing a number of con-
straints. Different publications report particular variations over
this general formulation in the sense that, for instance, financial
or reliability constraints are modeled in different ways. The partic-
ular characteristics of the implemented TEP model will be detailed
below regarding both the terms in the objective function and the
formulation of each set of constraints. Finally, it should be noticed
that this general formulation has a mixed integer nature due to the
fact that the planner provides a list of possible expansion projects,
from which some of them are used to build the expansion plan. On
the other hand, using the DEPSO algorithm, in each iteration there
are a number of possible plans in the population (corresponding to
the particles). Therefore, each solution X is indexed to the indices
pt associated to the particle under analysis and it related to the
iteration of the algorithm.

min CostXit
pt ¼

Xnpdþ1

pd¼0

Xnpj

pj¼1

ICpj:K
pd
pt;pj þ OCpt;pd

" #
=ð1þ irÞpd ð16Þ

Subjected to:

Physical constraints; ð17Þ

Financial constraints; ð18Þ

Reliability constraints; ð19Þ

pt ¼ 1;2; . . . ;npt ð20Þ

it ¼ 1;2; . . . ;niter ð21Þ

This problem aims at minimizing the objective function (16) that
includes operation and investment costs along the horizon referred
to the initial year using a discount rate ir, assuming that the plan-
ning horizon is multiyear. Investment costs, ICpj result from the
sum of the updated values for each project pj included in the solu-
tion under analysis, that is, associated with particle pt, considering
the interest rate defined in the beginning of the process. In (16) Kpd

pt;pj

represents a binary variable that in case of being 1 indicates that
project pj in the project list is included in particle pt and scheduled
to start operation in period pd. Operating costs are given by OCpt,pd

and are associated to the costs in period pd related with the particle
pt. These costs can include the generation costs, losses, maintenance
and costs associated with ancillary services, and externalities. As it
is necessary to use simple models, usually linear optimization mod-
els are adopted to estimate these operation costs.

The feasibility of solutions Xit
pt and their operational cost, in par-

ticular Power Not Supplied, PNS, are evaluated running a DC Opti-
mal Power Flow for each period pd in the horizon. In each period
the network integrates the selected installations completed previ-
ously and the forecasted demand.

The model (16)–(21) considers three types of constraints that
are included in the fitness function of the DEPSO algorithm using
penalty terms. These constraints and the respective penalty terms
will now be detailed:

– Physical constraints – the formulation includes a number of
constraints as physical limits of the network branches, physical
limits of the generators, number of projects that can be devel-
oped simultaneously, value of a reliability index to ensure the
quality of the expansion plan. Several of these constraints are
inherently related with power flow algorithm. The power flows
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in each period are calculated by solving a deterministic DC OPF
exercise formulated by (22)–(26). In this formulation ck, Pgk and
Plk represent the variable generation cost, the generation and
the load connected to node k, G is a penalty assigned to Power
Not Supplied, PNS, abk is the sensitivity coefficient of the active
flow in branch b regarding the injected power in node k, Pgmin

k

and Pgmax
k are the minimum and maximum outputs of the gen-

erator connected to node k, and finally Pmin
b and Pmax

b represent
the minimum and maximum active power flow in branch b.

min f ¼
X

ck � Pgk þ G �
X

PNSk ð22Þ

Subject to:X
Pgk þ

X
PNSk ¼

X
Plk ð23Þ

Pgmin
k 6 Pgk 6 Pgmax

k ð24Þ

PNSk 6 Plk ð25Þ

Pmin
b 6

X
abk � ðPgk þ PNSk � PlkÞ 6 Pmax

b ð26Þ
Fig. 3. Flowchart detailing the main blo
In order to increase the realism of the model, this DC-OPF was en-
hanced to include an estimate of transmission losses. Considering
that voltage magnitudes are 1.0 pu, active losses in branch b, from
node i to node j, are approximately calculated by (27). In this
expression gij is the conductance of branch i � j and hij is the phase
difference across this branch.

Lossij � 2:gij � ð1� cos hijÞ ð27Þ

At the end of each DC-OPF run, voltage phases and branch losses are
computed, and half of the losses in each branch are added to the
load in each extreme bus. This change on loads requires adjusting
the generation level and thus the voltage phases. These calculations
are repeated until convergence is reached. The level of losses esti-
mated at the end of this process is then compared with a reference
value. If this reference value is exceeded, then a penalty pen1 is in-
cluded in the fitness function. In a similar way, the solution of the
DC-OPF algorithm (22)–(26) also outputs the value of PNS. If the va-
lue of PNS admitting that all systems components are available,
PNS(n), is not zero, then the penalty term pen2 is also added to
the fitness function of the particle under analysis.
– Financial constraints – two financial constraints are considered

in the model. The first one corresponds to the maximum
cks of the developed TEP algorithm.
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number of projects that can be implemented per period. This
limitation arises due to financial or operational reasons and, if
it is violated, we consider a penalty term pen3 in the fitness
function. The second one corresponds to the maximum invest-
ment value over the entire horizon and it models a global finan-
cial constraint. If the investment level associated with the
projects scheduled in particle pt exceeds the maximum admit-
ted value, then a penalty pen4 is included in the fitness function.

– Reliability constraints – the developed approach penalizes plans
in which PNS is non-zero for configurations of the network asso-
ciated to n � 1 contingencies. In some countries, the TSO oper-
ation code also includes a list of n � 2 contingencies regarding
which the system should survive. If that is the case, the contin-
gencies in this list should also be tested for the system configu-
ration associated with particle pt and, if non-zero PNS values are
obtained, then a penalty term pen5 is also used.

Considering the objective function (16) plus the five penalty
terms mentioned above, we formulate the fitness function of the
TEP problem by (28).

min CostXit
pt ¼

Xnpdþ1

pd¼0

Xnpj

pj¼1

ICpj � Kpd
pt;pj þ OCpt;pd

" #
ð1þ irÞpd þ

X5

t¼1

pent

,

ð28Þ

Regarding this expression, it should be noticed that each particle
corresponds to a possible solution to the TEP problem, that is, to a
possible expansion plan. Each particle will then have to be charac-
terized in terms of its goodness regarding a fitness function. If all
constraints were enforced by the plan associated to a given particle,
then its fitness function would only correspond to the cost function
(16). However, it is likely that the plans associated with several par-
ticles violate some constraints and so the corresponding particles
will not be as good as others. This information is included in the fit-
ness function by adding penalty terms to the cost function (16) thus
arriving to (28). These penalty terms are assigned large positive val-
ues so that a particle leading to the violation of several constraints
will display a large value of the fitness function. Given that the prob-
lem is a minimization one, these largely penalized solutions tend to
be eliminated from the population as the iterative process develops.

It is also important to notice that in this approach each penalty
term is activated as soon as the associated constraints are violated.
This corresponds to a conservative approach in which the planner ad-
mits no violation of any constraint in the final expansion plan. As a re-
sult, the value of each penalty term is not dependent on the amount of
violation of each constraint limit. Therefore, the value of the penalty
terms can be set a priori and have the same units as the rest of the
terms in the cost function. In the simulations to be reported in Sec-
tion 6 all the penalty terms were assigned a value of 100,000$ and
each of these values is added to the fitness function if each of the cor-
responding constraints are violated. It is clear that a different ap-
proach could have been adopted, for instance considering penalty
terms including a factor that multiplies the amount of violation of
each constraint limit. If that was the case, each of these factors would
then have different units, depending on the nature of each constraint.

Due to the evaluation process complexity, in our case based on
running a large number of DC OPF problems, a simple, but effective
analysis of the particles is adopted so that only those particles with
suitable characteristics are fully evaluated. The evaluation process
includes three distinct phases: the evaluation of the eligibility of
the particles Xit

pt; the evaluation of solutions obtained for the deter-
ministic demand level; and the assessment of the best population,
admitting that the demand is affected by uncertainties modeled by
triangular fuzzy numbers.

The first steps of the multiyear TEP algorithm admitting a deter-
ministic demand level are the initial data definition and the DEPSO
settings. Complementary, a selected particle may be used for seed-
ing purposes, which may accelerate the convergence. The first pop-
ulation is generated with so many particles as those defined in the
initial data. The multiyear TEP model with deterministic demand is
then structured as indicated below and Fig. 3 details the main
blocks of the developed approach.

Procedure TEP with deterministic demand
Initialize a random population P of npt particles;
Repeat

Replication – clone the population 3 times;

Populations 1 and 2

Mutation – each particle has its strategic parameters
mutated;

Reproduction – each particle generates an offspring
through recombination;

Evaluation – each offspring has its fitness evaluated;

Population 3

Mutation/Reproduction – each particle is mutated and
generates an offspring by Lamarkian evolution;

Evaluation – each offspring has its fitness evaluated;

Selection – the best particles survive to form a new
generation;

Test – for termination, based on fitness and on number of
generations;
Until test is positive.

End TEP with deterministic demand
5.4. Treatment of demand uncertainties and solution algorithm

Load data may be subject to uncertainties. These uncertainties
may be associated with the demand level in each period and at
every bus bar. In the developed model, we admitted that loads
are represented by triangular fuzzy numbers, as detailed in Sec-
tion 3. Using these load representations we are implicitly admitting
that there is an infinite number of possible load combinations
against which the robustness of each plan should be tested.

In order to simplify and to speed up this evaluation process, we
considered that the triangular fuzzy numbers representing each of
the loads are discretized in a number of a -cuts defined in Section 3.
In particular, in the developed approach we considered a = 1,
a = 0.5 and a = 0 .

In the first case, a = 1 corresponds to a single load combination
in which all nodal load values have a membership function of 1. In
fact, the expansion plans associated to each of the particles in the
final population of the DEPSO algorithm are associated with this
single load combination. This means that the solutions identified
so far can be termed as deterministic solutions, or expansion plans
associated with a set of load values in the absence of uncertainties.

For a = 0.5 and a = 0 each load is represented by an interval
corresponding to the load values having a membership degree
not smaller than 0.5 and not smaller than 0.0. Each particle in
the final population is then tested using the load combinations in
these a-cuts. In particular, we are interested in checking if PNS
assumes non zero values if the load in each node is allowed to vary
in the intervals associated with these cuts. After extensive tests we
concluded that an accurate indication on the PNS value associated
with a particle within a specific a-cut could be provided just con-
sidering the combination of the largest possible values that each
nodal load could assume in the corresponding a-cut. This means
using for each load the largest value in the interval defining the
cut under analysis. If, from this analysis, there is a non-zero
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outcome for PNS associated with a particle pt in the final popula-
tion, then the fitness function (28) includes a new penalty term
as indicated in (29).

min CostXit
pt ¼

Xnpdþ1

pd¼0

Xnpj

pj¼1

ICpj � Kpd
pt;pj þ OCpt;pd

" #
ð1þ irÞpd þ

X6

t¼1

pent

,

ð29Þ

Once all the particles in the final population are analyzed consider-
ing the specified load uncertainties, we get the final value of the fit-
ness function for all particles. Using these values, we can finally
select the most adequate transmission expansion plan.

6. Case studies using the DEPSO algorithm

6.1. General aspects

The tests of the multiyear TEP model using DEPSO were carried
out using two networks:

– The Garver Network, introduced by Garver in 1970 [52].
– The IEEE RTS Network, with 24 busbars. The demand is set at

8.550 MW and the installed generation capacity is set at
10.215 MW, three times more than the original values specified
in [53].

These networks were chosen for the following reasons: they are
reference networks in many scientific TEP studies and the result of
the static planning is known in both cases. In addition, we wanted
to test the dynamic TEP with DEPSO with a network that would be
larger than the ones usual in the literature on dynamic TEP, as for
example in [35,54].

The first tests, using the Garver Network, were conducted to
gain insight on the behavior of the DEPSO algorithm, namely
regarding its settings. The tests are normally performed in sets of
10 or 100 trials for each setting option, to assess the frequency of
occurrence of the expected result. The following topics were inves-
tigated: population dimension; seeding procedure; diversity in the
population; chaotic mutation operator; mutation of the best glo-
bal; communication factor p; the Lamarckian evolution when
V = 0, in populations 1 and 2 and the Lamarckian evolution, in pop-
ulation 3 (namely the most adequate value for the threshold kLam

mentioned in Section 4.4). As a result of these runs, it was possible
to parameterize the DEPSO algorithm considering a number of key
aspects that are listed in Table 1. Apart from these key DEPSO
parameters, this table also includes some other parameters that
were used when running the TEP exercise using the Garver net-
work and the IEEE RTS system. It is clear that some of these values
have to be changed if another network is analyzed. The number of
projects in the list to be specified by the planner is just an example
of such a situation.

Finally, the next paragraphs list the input data and the results to
be obtained from a TEP exercise:

– Input data – it can be gathered in three main groups:
� Network data – network in the period before starting the

planning exercise (topology of the network, branches,
extreme buses and resistance and reactance, nodal loads
and generators including installed capacity and connection
buses), load growth coefficient, definition of the triangular
fuzzy numbers to model load uncertainties, generators to
be connected to the network along the planning horizon.
� Planning data – this includes the number of periods in the

horizon, the list of projects (for each project this includes
the extreme buses, the transmission capacity and the
investment cost), maximum number of projects in each
period, maximum investment value along the entire hori-
zon, maximum level of transmission losses, value of the
penalty terms to be used if some constraints are violated.
� DEPSO settings – values for the parameters p, and kLam1,2,

kLam3, kc, number of particles in each population, maximum
number of iterations, and maximum number of iterations
without improvement of the fitness function before
stopping.

– Results – the main result is the best expansion plan integrating
a list of projects to be implemented along the planning horizon
together with their placement along that horizon. A number of
complementary results are also obtained as the value of the fit-
ness function, decomposed in terms of investment and opera-
tional costs, the power flow in each branch in each period of
the horizon, the losses in each period of the horizon and reliabil-
ity results, in this case associated with the PNS values consider-
ing not only the state in which all components are available but
also for the tested contingencies.

6.2. Case 1 – Garver network

6.2.1. Single period analysis
In an early development stage of the algorithm, we conducted

numerous tests using the Garver Network with the main objective
of validating the developed approach. For this reason, and also for
simplicity, some of the features specified before were released:

– Losses – the losses were not included in this phase.
– PNS(n � 1) it was only considered PNS(n) at this stage. Given the

reduced size of the network, we considered that enforcing that
PNS(n) is zero is enough and that PNS(n � 1) reliability is
meaningless.

– States and search space – when these tests were performed one
was only reasoning in terms of npd + 1 states. The state corre-
sponding to the postponement of projects was introduced
latter.

In any case, these conditions do not alter the validity of the re-
sults obtained on testing DEPSO algorithm.

Table 2 presents the project list defined for the Garver network
expansion problem. This list includes 17 projects, and it is based on
the projects identified in several publications using the Garver net-
work. For each possible branch in this list, it is specified the ex-
treme buses, the resistance and reactive, the transmission
capacity and the investment cost. The search space for a single per-
iod analysis has therefore 217 � 1.31 � 105 positions.

The solution identified for the single period analysis of the Gar-
ver network coincides with the one reported in the literature:
branch 3–5, 1 new line; branch 4–6, 3 new lines. Fig. 4 details
the Garver network before and after running the expansion plan-
ning algorithm.

The algorithm was run 100 times with populations of 10, 20, 30
and 50 particles. According to the results in Fig. 5, the performance
of the developed DEPSO was remarkable, given that convergence
was obtained for a very small number of iterations, even for popu-
lations of 10 particles. For populations with at least 20 particles in
98% of the cases the optimal solution indicated above was identi-
fied in less than 10 iterations. For populations with 50 particles,
the optimal solution was identified in 100% of the runs showing
the good convergence characteristics of the DEPSO.

The efficiency of DEPSO can be assessed by comparing the per-
formance and the results obtained by other researchers for the
same network adopting different methodologies. A comparison be-
tween DEPSO and GA can be made based on the study published in
[46]. On this study it is presented a single period TEP on the Garver
network, based on GA, and it is reported that usually about 21–30



Table 1
Values adopted for several parameters of the DEPSO algorithm and for the TEP formulation.

Parameter Value

Symbol Description

p Communication factor used in expression (15) 0.3
kLam1,2 Parameter used to activate the Lamarkian evolution step in

populations 1 and 2
0.4

kLam3 Parameter used to activate the Lamarkian evolution step in
population 3

0.5

kc Parameter used to determine if the best global particle, bG
undergoes mutation or not, using (13)

0.4

lgr Variation of the load from one period to the next one in
multiyear planning exercises (%)

Dependent on the network to be anaylsed. In the two test cases reported in this paper 5%
was used

npd Number of periods in the planning horizon In the two test cases reported in this paper, 1 was used in single period runs and 4 in
multiyear analysis

npt Number of particles in the population of the DEPSO Dependent on the run. Sections 6.2 and 6.3 report results obtained with 10, 20, 30, 50,
80, 100 and 150 particles in each population

npj Number of projects in the list to be specified by the planner Dependent on the network. In the runs reported in this paper 17 projects were used for
the Garver network and 28 for the IEEE RTS network

pentt = 1. . .6 Penalty terms used in expression (28) and (29) 100,000$
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iterations are required to get the results. Using the model and the
solution algorithm reported in this paper fewer iterations are re-
quired to achieve the solution given that even with populations
of 10 particles, only 11 iterations are needed to obtain the optimal
solution in 100% of the runs, as showed in Fig. 5.

6.2.2. Four period analysis
The four period analysis also adopted the 17 projects listed in

Table 1. In this case, the search space has 517 � 7.62 � 1011 posi-
tions. This test was designed with the following assumptions: load
increase of 5% per period; fixed investment costs (for the sake of
simplicity, it was considered that the effect of technological and
market competitiveness outweighed the effect of inflation and cap-
ital discount rates); projects available from the year of entry into
service; it should be underlined that the network configuration,
and the corresponding power flows for subsequent years depend
on previous year’s configuration.

The best solution has an investment cost of 150 � 106$ and it
includes the following new branches:

– Period 1 – 1 branch 2–6, 1 branch 3–5, 1 branch 4–6 and 1
branch 1–5.

– Period 2 – no new branches were scheduled for this period.
– Period 3 – 1 branch 4–6.
– Period 4 – 1 branch 3–5.

The evolution of the Garver network along the four periods is
illustrated in Fig. 6. This figure shows the structure of the network
from period 1 to period 4, from the left to the right side.

As for the single period test, the algorithm was run 100 times
with populations of 10, 20, 30, 50 and 80 particles. According to
the results presented in Fig. 7, the 10 particles population appar-
ently has a need for more iterations to converge. However, in
94% of cases the DEPSO reached the optimum in 100 iterations
even using small populations with only 10 particles. Using popula-
tions of 30 particles one reaches the optimum in 95% of cases after
42 iterations, while with 80 particles similar results are found with
only 20 iterations.

The performance of DEPSO can also be assessed in Fig. 8, which
compares the results obtained using the EPSO reported in [55] and
results obtained with DEPSO. This figure shows the frequency of
identification of the best fitness for 25, 50 and 100 iterations. In
each test 100 runs were performed with 10, 30, 50 and 100 parti-
cles. As it can be seen, DEPSO has better performance than the clas-
sical EPSO. Comparing the search spaces, in our case we have 517
combinations and in the case of [55] there were 515 possible com-
binations. Although the search space used by DEPSO is 25 times
larger, the performance was improved given that DEPSO needs less
iterations and smaller populations than EPSO to get the same re-
sults. In fact, in all the situations reported in Fig. 8 the percentage
of identification of the best solution obtained for DEPSO is always
larger than the one reported for EPSO. DEPSO is also able to escape
from local minima, as it reaches 100% of optimal solutions in 100
iterations, independently from the population dimension.

6.3. Case 2 – IEEE 24 bus reliability test system

6.3.1. Single period analysis
The IEEE RTS network has 24 nodes, 35 lines and 32 generators.

In order to obtain a more stressed network, and in line with other
recent research works, the demand was set at 8550 MW and the
installed generation capacity is 10,215 MW, 3 times more than
the original values, as adopted by many researchers.

The list of possible projects on the expansion planning exercise
is shown in Table 3 in which the first four listed projects corre-
spond to the installation of new transformers. As for Table 2, for
each possible new branch, the extreme buses, the resistance, the
reactance, the transmission capacity and the investment cost are
specified. The search space has 328 � 2.29 � 1013 positions, for a
single period analysis.

In the first place, the fitness considered the investment costs, no
limit was imposed on the number of projects to be added, the qual-
ity of service was only evaluated for the particles having PNS(n) = 0
and the estimation of transmission losses was not included. Under
these conditions, the best identified plan included two branches
between nodes 1 and 5, one new branch 6–10, two new branches
between nodes 7 and 8 and one new branch 16–17. The corre-
sponding investment cost was 1280 M$. This solution compares
favorably with the ones reported in [24] and in [34]. For instance,
the best solution reported in [24] not considering transmission
losses included one branch 6–10, two branches 7–8, one branch
10–12, one branch 11–13 and one branch 20–23. Using the invest-
ment costs indicated in [24], the total investment cost associated
with this solution is 170.29 � 106$ while the total investment cost
associated with the solution obtained by the DEPSO algorithm is
164.46 � 106$.

In a second step, a new set of 20 tests, 1000 iterations each, with
10, 30 and 100 particles were performed now including the estimate
of transmission losses. The best solution ever found has an invest-
ment cost of 2150 � 106$ and it includes two new transformers



Table 2
Project list specified for the Garver network expansion problem.

Branch no From bus To bus Resist. (pu) React. (pu) Cap. (MW) Cost (106$)

1 2 6 0.0800 0.0300 100 30
2 2 6 0.0800 0.0300 100 30
3 2 6 0.0800 0.0300 100 30
4 2 4 0.1000 0.4000 100 40
5 5 6 0.1476 0.6100 78 61
6 3 5 0.0500 0.2000 100 20
7 3 5 0.0500 0.2000 100 20
8 3 5 0.0500 0.2000 100 20
9 4 6 0.0800 0.3000 100 30

10 4 6 0.0800 0.3000 100 30
11 4 6 0.0800 0.3000 100 30
12 4 6 0.0800 0.3000 100 30
13 4 6 0.0800 0.3000 100 30
14 1 4 0.1500 0.6000 80 60
15 1 5 0.0500 0.2000 100 20
16 1 2 0.1000 0.4000 100 40
17 2 3 0.0500 0.2000 100 20

Fig. 4. Garver network before (left) and after the planning exercise (right).
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(9/11; 10/11) and three new lines (2/4, 6/10 and 11/13). The most
frequent investment value is 2160 � 106$, and it corresponds to
three different solutions: one solution with frequency 1/20 (new
lines 6/10; 7/8(2); 16/17(2); 20/23; 11/13), one solution with fre-
quency 4/20 (new lines: 2/4(2); 2/6; 6/10; 7/8(2); 16/19; 17/18)
Fig. 5. DEPSO test with 10, 20, 30 and 50 pa
and one solution with frequency 15/20 (new transformer 9/11 and
new lines: 1/5; 6/10; 7/8(2); 20/23; 11/13).

With populations of 100 particles one reaches the fitness of
2160 � 106$ in 100% of the runs and 600 iterations are enough to
find the best solution in all runs. With populations of 30 particles
rticles (single period, Garver network).



Fig. 6. Evolution of the Garver network from period 1 to period 4, from the left to the right side.

Fig. 7. DEPSO test with 10, 20, 30, 50 and 80 particles (multi period, Garver
network).

Fig. 8. DEPSO and EPSO performance comparison.

M.C. da Rocha, J.T. Saraiva / Electrical Power and Energy Systems 45 (2013) 427–442 439
the success frequency was of 95% of the cases. One has to keep in
mind that with 1000 iterations and a population of 30 particles, the
DEPSO tests 90,000 solutions, in a search space with
328 � 2.29 � 1013 possible solutions.
6.3.2. Four period analysis
On the four period analysis it was adopted the same list of pos-

sible projects shown in Table 3. For these tests, and to cope with
the demand increase of 5% a year, two new generators were added,
in bus 4 (300 MW, similar to the generators in bus 7), and in bus 19
(591 MW, similar to the generator in bus 13). The search space for
a four period analysis has 628 � 6.14 � 1021 positions.

Multi period tests were run with different sizes of the popula-
tions, namely with 30, 100 and 150 particles and not considering
the estimate of transmission losses. As can be seen in Fig. 9, and
as expected, the performance of the run with 150 particles is much
more interesting than those with 30 and 100 particles, not only be-
cause fewer iterations are needed to identify a solution, but also
because the solution is slightly better given that the investment
cost is more reduced.

Table 4 displays the best plans that were identified both consid-
ering the single period test and the multiperiod tests, using 30, 100
and 150 particles as indicated above. Regarding the single period
analysis, the plan in Table 4 coincides with the one reported in Sec-
tion 6.3.1 not considering the estimate of transmission losses. The
columns in this table represent the associated investment cost and
the projects that were included in the different solutions that were
obtained in each test. For each of the four analyzed solutions, each
project has a digit ranging from 0 to 5. As detailed in the beginning
of Section 5.3, a 0 means that such project was not included in this
solution, a digit from 1 to 4 indicates the period in which the pro-
ject is commissioned and 5 means that it was postponed. All the
remaining projects listed in Table 3 and not present in Table 4 were
not selected in any of these four solutions.

Comparing the results obtained for the multiperiod tests, one
can see that the three solutions are similar in the sense that they
include mostly the same projects. In particular the first and the
second solutions differ only in the project 2/6, which in the run
with 100 particles is postponed from the second period to the
fourth period. However, as indicated in Table 4, regarding the sin-
gle period and the multi-period solutions one finds significant dif-
ferences that are summarized below:

– The project 16/17, identified in the single period solution, is
only selected in the fourth period in one of the multi-period
solutions.

– One of the projects 7/8 is delayed from period 1 to period 2.
– Several projects not elected in the singe period solution are

included in the multi-period solution. This occurs with projects
3/24, 10/12, 2/6, 11/13 and 11/23.

One may conclude that a multi-period analysis is not necessar-
ily a combination of static schedules, and that not always the pro-
jects that are elected for a single period solution are considered in
dynamic multi-period analysis. This means that transmission
expansion planning exercises should be conducted in a dynamic
and multiyear way so that the optimization problem preserves
the holistic view over the network along the entire planning hori-
zon. Among the three multi-period solutions, the one identified
with 150 particles displays the most reduced value for the invest-
ment cost and should therefore be adopted, if no other information
was available. In practice, however, TEP problems are very complex
and in a real situation such a solution should be cross-validated
considering other aspects, namely environmental ones. Eventually,
the decision maker could also adopt a more costly solution as the
ones obtained with populations with 30 or 100 particles. These
two plans are equal regarding the first period, that is, they both in-
clude one branch 10/12, one branch 1/5, one branch 6/10, one



Table 3
Project list for the IEEE RTS network expansion problem.

Branch no From bus To bus Resist. (pu) React. (pu) Cap. (MW) Cost (106$)

1 3 24 0.0000 0.4195 400 500
2 9 11 0.0000 0.4195 400 500
3 10 11 0.0000 0.4195 400 500
4 10 12 0.0000 0.4195 400 500
5 1 5 0.1090 0.4225 175 220
6 1 5 0.1090 0.4225 175 220
7 2 4 0.1640 0.6335 175 330
8 2 4 0.1640 0.6335 175 330
9 2 6 0.2485 0.9600 175 500

10 2 6 0.2485 0.9600 175 500
11 6 10 0.0695 0.3025 175 160
12 7 8 0.0795 0.0032 175 160
13 7 8 0.0795 0.0032 175 160
14 8 10 0.2135 0.8255 175 430
15 11 13 0.0305 0.2389 500 660
16 12 13 0.0305 0.2380 500 660
17 14 16 0.0250 0.1945 500 540
18 15 21 0.0315 0.2450 500 680
19 15 24 0.0335 0.2595 500 720
20 16 17 0.0165 0.1295 500 360
21 16 17 0.0165 0.1295 500 360
22 16 19 0.0150 0.1150 500 320
23 17 18 0.0090 0.0720 500 200
24 20 23 0.0140 0.1080 500 300
25 11 13 0.0305 0.2380 500 660
26 12 13 0.0305 0.2380 500 660
27 11 14 0.0305 0.2380 500 580
28 14 16 0.0250 0.1945 500 540

Fig. 9. Evolution of the fitness function for a deterministic multi-period test with 30, 100 and 150 particles.
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branch 7/8 and one branch 11/13 which means they imply no dif-
ferent decisions till period 2. In a more conservative decision mak-
ing environment, this could be interpreted as a way of postponing
decisions that would start differentiating the expansion plans. This
could constitute an argument to favor the solutions obtained with
populations with 30 or 100 particles, in detriment of the plan ob-
tained with a 150 particle population because this one would re-
quire taking differentiating and eventually more risky decisions
right from the beginning of the planning horizon.
6.3.3. Four period analysis considering demand uncertainties
When considering uncertainties on the four period analysis, the

same list of possible projects on the expansion planning shown in
Table 3 was adopted. The uncertainty in each load is modeled using
a fuzzy number with a triangular membership function. Each
particle is tested in five points of the membership function: 95%,
97.5%, 100%, 102.5%, 105% of the central value of each load.
It should be noted that point of 100% corresponds to the
deterministic solution, already tested in the previous section. All
particles were tested by assessing the PNS(n � 1) with the fuzzy
load.

From the results we observe the following:

– The solutions which have identified the inclusion of a trans-
former 3/24 display poor quality in the presence of load
uncertainties.

– Some solutions that have identified the exclusion of certain
lines (such as 1/5 and 11/23, which interconnect generating
buses with relevant loads) also show poor quality, being very
sensitive to load variations.

– Only 19% of the 100 solutions that integrate the final population
failed the load uncertainty test.

– The 34 particles with better fitness showed no problem in
accommodating load uncertainties.

– There is no correlation between the number of projects and net-
work behavior, as it was observed that solutions with fewer
projects and better fitness have better performance than solu-
tions with more projects and worse fitness, namely solutions
having larger investment cost.



Table 4
Deterministic expansion plans for the single and multi-period analysis not considering the estimate of transmission losses.

Solutions Investment cost (106$) Expansion projects from the list in Table 3

3–24 10–12 1–5 1–5 2–6 6–10 7–8 7–8 11–13 11–13 16–17 11–23

4 Period analysis
30 Part 2599.16 0 1 1 5 2 1 1 2 1 3 5 5
100 Part 2527.44 0 1 1 5 4 1 1 2 1 3 0 0
150 Part 2427.72 4 1 1 5 0 1 1 2 0 0 4 1
1 Period analysis
30 Part 1280.00 0 0 1 1 0 1 1 1 0 0 1 0
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This information can thus be used to characterize in a more
complete way each plan in the final population so that the planner
has more insight on the behavior on the network in view of the
specified load uncertainties. This means he can select the final plan
in a more robust and less risky way, not just taking into account
the investment cost associated with each possible solution.
7. Conclusions

This paper described a multiyear transmission expansion plan-
ning formulation having mixed integer nature. This problem was
solved using a discrete version of the EPSO algorithm, termed as
DEPSO. Regarding the TEP formulation it is important to mention
that it has a dynamic multiyear nature so that all periods in the
planning horizon are treated in the same run of the planning exer-
cise. This means that the model can profit from an holistic view on
the problem, instead of obtaining separate solutions for consecu-
tive years. On the other hand, the developed model incorporates
a number of constraints having technical, financial and reliability
natures, which are very much in line with the concerns of system
operators. In fact, expansion plans should comply with physical
operation laws of power systems (related with power flow con-
straints), and TSO’s often mention financial limitations for instance
associated with the number of projects that can be built simulta-
neously. It is still important to mention that the grid codes govern-
ing the activity of several TSO’s impose that transmission systems
should be planned and operated so that they are secure regarding
n � 1 and, in some cases, n � 2 contingencies. These constraints are
easily incorporated in the developed approach since each candi-
date plan identified by the DEPSO is analyzed against contingen-
cies and if power not supplied arises, then the corresponding
fitness function is penalized. The developed approach also admits
that the loads are modeled by triangular fuzzy numbers as a way
to incorporate the uncertainty that can affect them. This ultimately
means that the final plan should be adequate regarding the most
credible load scenario associated with the central values of the load
triangular numbers but should also display an adequate behavior if
the load changes. Incorporating load uncertainties in this way
means that the expansion plans will be more robust in the sense
that they will still be adequate despite the demand is affected by
uncertainties along the horizon. The analysis with load uncertainty
also helps on identifying the most critical branches, those which
reveal a greater influence on PNS. This knowledge can then be use-
ful in order to expand the dynamic TEP project list with new pro-
jects that can address specific bottlenecks identified in the system.

The TEP problem was solved using the developed DEPSO algo-
rithm. The DEPSO algorithm was tested using different networks
and it showed a very good performance namely in terms of con-
verging to the optimal solutions. On the other hand, when com-
pared with other heuristics as EPSO, the convergence took fewer
iterations and a greater ability to escape from local minima was
observed. It is still important to notice that the diversity in the
population is guaranteed, which results in a variety of solutions,
among which the planner can choose the one that best suits his
needs. The results obtained with the DEPSO algorithm were com-
pared with the results reported by other researchers to the same
networks and the solutions provided by DEPSO compare very
favorably with them, namely regarding the total investment cost.

Research work is now going on in order to test the DEPSO
algorithm and the developed TEP model on realistic transmission
systems, so that new reports on the near future are expected on
this topic.
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