On the feasibility of byzantine agreement to secure fog/edge data management
On the feasibility of byzantine agreement to secure fog/edge data management
Files
Date
2021
Authors
Houssam Ahmad Yactin
Shoker,A
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Fog/Edge computing improves the latency and security of data by keeping storage and computation close to the data source. Nevertheless, this raises other security challenges against malicious, a.k.a, Byzantine, attacks that can exploit the isolation of nodes, or when access to distributed data is required in untrusted environments. In this work, we study the feasibility of deploying Byzantine Agreement protocols to improve the security of fog/edge systems in untrusted environments. In particular, we explore existing Byzantine Agreement protocols, heavily developed in the Blockchain area, emphasizing the Consistency, Availability, and Partition-Tolerance tradeoffs in a geo-replicated system. Our work identifies and discusses three different approaches that follow the Strong Consistency, Eventual Consistency, and Strong Eventual Consistency models. Our conclusions show that Byzantine Agreement protocols are still immature to be used by fog/edge computing in untrusted environment due to their high finality latency; however, they are promising candidates that encourage further research in this direction. © 2021, Springer Nature Switzerland AG.