An active reactive bid-based market model using fuzzy sets
An active reactive bid-based market model using fuzzy sets
No Thumbnail Available
Date
2008
Authors
Mário Hélder Gomes
João Tomé Saraiva
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The restructuring of power systems has often originated the organization of power system operation
planning in a set of chronological sequence of activities that are reasonably decoupled. This means
that the Market Operator purely economic schedule together with bilateral contracts is conveyed to
the System Operator to be validated from a technical point of view. The System Operator also has
to schedule reactive power but some of its reactive power requirements may be unfeasible given the
previous active power schedules and the alternator capability diagram. Apart from this aspect,
active and reactive powers are coupled in determining the eventual violation of branch thermal
limits and reactive power has a well-known local nature. While recognizing the coupling between
active and reactive powers, the models presented in this paper admit that the Market Operator
schedule may have to be altered either because there are branch limit or nodal voltage violations or
because the System Operator requires a reactive output that can not be provided due to the previous
active schedule. The changes on the initial schedule are determined by solving an optimization
problem that uses adjustment generator or demand bids. Apart from that, we adopted a symmetric
fuzzy programming approach recognizing that some constraints have a soft nature, namely the ones
related with voltage and branch flow limits. To solve the resulting non-linear problem we used
Sequential Linear Programmin