Eigenspace method for spatiotemporal hotspot detection
Eigenspace method for spatiotemporal hotspot detection
Files
Date
2015
Authors
Hadi Fanaee Tork
João Gama
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Hotspot detection aims at identifying sub-groups in the observations that are unexpected, with respect to some baseline information. For instance, in disease surveillance, the purpose is to detect sub-regions in spatiotemporal space, where the count of reported diseases (e.g. cancer) is higher than expected, with respect to the population. The state-of-the-art method for this kind of problem is the space-time scan statistics, which exhaustively search the whole space through a sliding window looking for significant spatiotemporal clusters. Space-time scan statistics makes some restrictive assumptions about the distribution of data, the shape of the hotspots and the quality of data, which can be unrealistic for some non-traditional data sources. A novel methodology called EigenSpot is proposed where instead of an exhaustive search over the space, it tracks the changes in a space-time occurrences structure. The new approach does not only present much more computational efficiency but also makes no assumption about the data distribution, hotspot shape or the data quality. The principal idea is that with the joint combination of abnormal elements in the principal spatial and the temporal singular vectors, the location of hotspots in the spatiotemporal space can be approximated. The experimental evaluation, both on simulated and real data sets, reveals the effectiveness of the proposed method.