Hybrid Genetic Algorithm for Multi-Objective Transmission Expansion Planning

Thumbnail Image
Date
2016
Authors
Phillipe Vilaça Gomes
João Tomé Saraiva
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper aims to describe a new tool to solve the Transmission Expansion Planning problem (TEP). The Non-Dominative CHA-Climbing Genetic Algorithm uses the standard blocks of Genetic Algorithms (GA) associated with an improvement of the population building block using Constructive Heuristic Algorithms (CHA) and Hill Climbing Method. TEP is a hard optimization problem because it has a non convex search space and integer and nonlinear nature, besides, the difficulty degree can be further increased if it includes more than one objective. In this work, a multi-objective TEP approach is detailed using an AC Optimal Power Flow to generate the set of Pareto solutions using the investment cost and the level of CO2 emissions, i.e. two conflicting objectives.
Description
Keywords
Citation